Usable, Secure Content-Based Encryption on the Web

Total Page:16

File Type:pdf, Size:1020Kb

Usable, Secure Content-Based Encryption on the Web Brigham Young University BYU ScholarsArchive Theses and Dissertations 2016-07-01 Usable, Secure Content-Based Encryption on the Web Scott Ruoti Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Computer Sciences Commons BYU ScholarsArchive Citation Ruoti, Scott, "Usable, Secure Content-Based Encryption on the Web" (2016). Theses and Dissertations. 6083. https://scholarsarchive.byu.edu/etd/6083 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Usable, Secure Content-Based Encryption on the Web Scott Isaac Ruoti A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Kent Seamons, Chair Daniel Zappala Mike Goodrich David Wingate Bryan Morse Department of Computer Science Brigham Young University July 2016 Copyright © 2016 Scott Isaac Ruoti All Rights Reserved ABSTRACT Usable, Secure Content-Based Encryption on the Web Scott Isaac Ruoti Department of Computer Science, BYU Doctor of Philosophy Users share private information on the web through a variety of applications, such as email, instant messaging, social media, and document sharing. Unfortunately, recent revelations have shown that not only is users' data at risk from hackers and malicious insiders, but also from government surveillance. This state of affairs motivates the need for users to be able to encrypt their online data. In this dissertation, we explore how to help users encrypt their online data, with a special focus on securing email. First, we explore the design principles that are necessary to create usable, secure email. As part of this exploration, we conduct eight usability studies of eleven different secure email tools including a total of 347 participants. Second, we develop a novel, paired-participant methodology that allows us to test whether a given secure email system can be adopted in a grassroots fashion. Third, we apply our discovered design principles to PGP-based secure email, and demonstrate that these principles are sufficient to create the first PGP-based system that is usable by novices. We have also begun applying the lessons learned from our secure email research more generally to content-based encryption on the web. As part of this effort, we develop MessageGuard, a platform for accelerating research into usable, content-based encryption. Using MessageGuard, we build and evaluate Private Facebook Chat (PFC), a secure instant messaging system that integrates with Facebook Chat. Results from our usability analysis of PFC provided initial evidence that our design principles are also important components to usable, content-based encryption on the Web. Keywords: Security, HCI, Usable security, Content-based encryption, Secure email, Webmail, End-to-end encryption, user study ACKNOWLEDGMENTS Thanks first and foremost goes to my advisor Kent Seamons. His mentorship has been crucial in helping me develop the skills necessary to be a successful research scientist. I also want to thank Daniel Zappala for helping me significantly refine my writing and presentation skills. Additionally I am grateful for the mentoring provided by various researchers during my graduate education: Mike Goodrich, Charles Knutson, Jay McCarthy, Rich Shay, and Shabsi Walfish. Thanks also goes to the students who have helped me conduct studies, gather data, and analyze results for this dissertation: Jeff Andersen, Ben Burgeon, Scott Heidbrink, Travis Hendershot, Nathan Kim, Tyler Monson, Mark ONeill, Chris Robison, Elham Vaziripour, and Justin Wu. Finally, a special thanks goes to my wife, Emily Ruoti. She has always been a willing participant in my pilot studies and has provided copious amount of feedback on the systems I have built as well as the papers I have written. More importantly, she has helped raise our daughter Esther, picking up the slack when my dissertation required nearly all of my free time. Thank you Emily. Table of Contents List of Figures vi List of Tables vii 1 Introduction 1 1.1 Email Security . .3 1.2 Unusable, Secure Email . .4 1.3 User Studies . .8 1.3.1 System Usability Scale . .9 1.3.2 Mistakes . 10 1.4 Dissertation Overview . 11 2 Confused Johnny: Why Automatic Encryption Leads to Confusion and Mistakes 15 3 Private Webmail 2.0: Simple and Easy-to-Use Secure Email 36 4 A Usability Study of Four Secure Email Tools Using Paired Participants 49 5 MessageGuard: A Browser-based Platform for Usable End-to-End Encryption Research 75 6 Private Facebook Chat 95 7 A Comparative Usability Study of Key Management in Secure Email 106 iv 8 Conclusion 124 8.1 Design Principles of Usable, Secure Email . 129 8.1.1 Tight Integration . 129 8.1.2 Hidden Security Details . 129 8.1.3 Tutorials . 131 8.1.4 Distinct Interface Design . 132 8.2 Novel, Paired-Participant Evaluation Methodology . 133 8.3 Platform for Usable, Content-based Encryption Research . 135 8.3.1 MessageGuard as a platform . 135 8.3.2 Case Studies . 137 8.4 Trade-offs of PGP, IBE, and Password-based Key Management . 137 8.5 Future Work . 138 8.5.1 User Understanding of Secure Email . 138 8.5.2 Anti-Phishing Interfaces . 139 8.5.3 New Encryption Protocols . 140 8.5.4 Key Management . 140 8.5.5 Usability Studies . 141 8.5.6 New Applications for Content-based Encryption . 141 References 143 v List of Figures 1.1 Basic Email Security . .5 1.2 Email Security with TLS . .6 1.3 Email Security with End-to-End Encryption . .7 1.4 Adjective-based Ratings to Help Interpret SUS Scores . 10 8.1 SUS Scores for Secure Email Systems . 128 vi List of Tables 1.1 The Ten SUS Questions . .9 1.2 SUS Score Card . .9 8.1 User Studies in this Dissertation . 127 8.2 SUS Scores for Secure Email Systems . 127 vii Chapter 1 Introduction Users share private information on the web through a variety of applications, such as email, instant messaging, social media, and document sharing. TLS protects this information during transmission, but does not protect users' data while at rest. Additionally, middleboxes can weaken TLS connections by failing to properly implement TLS or adequately validate certificate chains [19]. Even if a website correctly employs TLS and encrypts user data while at rest, the user's data is still vulnerable to honest-but-curious data mining [24], third-party library misbehavior [34], website hacking, protocol attacks [10, 12, 18], and government subpoena. This state of affairs motivates the need for content-based encryption of user data. In content-based encryption, users' sensitive data is encrypted at their own device and only decrypted once it reaches the intended recipient, remaining opaque to the websites that store or transmit this encrypted data.1 The best known examples of content-based encryption are secure email (e.g., PGP, S/MIME) and secure instant messaging (e.g., OTR). In addition to protecting communication, content-based encryption can protect any data users store or distribute online; for example, files stored in the cloud (e.g., DropBox, Google Drive) or private postings to web-based message boards. In this dissertation, most of our research focuses on a specific application of content- based encryption|secure email. We chose this focus for several reasons: 1In contrast, connection-level encryption (i.e., TLS) only protects data during transmission, and not while it is stored or handled by websites. 1 1. Email is the dominant form of communication on the Internet. There are 4.3 billion email accounts, owned by 2.5 billion users. Collectively, these users send over 205 billion email messages per day.2 This dwarfs other platforms, including instant messaging clients such as WhatsApp (42 billion messages per day).3 2. Sensitive information is sent over email. While not necessarily an every-day occurrence, from time to time individuals need to use email to send highly sensitive information. For example, some businesses will ask that a job applicant send their social security number to the business in order to process a reimbursement.4 Furthermore, unlike many other communication mediums, email is usually archived by the email server, increasing the vulnerability of sensitive information sent over email.5 3. Advances in secure email are likely to be applicable to other content-based encryption systems. While there are some features that are unique to secure email, many of the principles for designing securing email in a usable manner also apply to other content-based encryption systems. For example, in this dissertation we used principles learned from our secure email work to create a secure Facebook Chat system that was well received by users. 4. Email is unlikely to disappear in the near future. While new communication platforms continue to replace other applications, email has seen steady growth. This indicates that advances in secure email will have far-reaching and long-lasting benefits. 5. Secure email obviates the need for secure storage depots. Because email transmission is not secure, many organizations resort to the use of separate secure messaging websites for sensitive communication. When a user receives a message on these systems, they also receive an email that tells them to log into the secure messaging 2http://www:radicati:com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015- 2019-Executive-Summary:pdf 3http://www:iphoneincanada:ca/news/whatsapp-1-billion/ 4 I have personally experienced this as I was interviewing for jobs; multiple institutions requested that I send them my social security number to process my reimbursements. 5This also demonstrates why connection-level security (i.e., TLS) is insufficient, as it does nothing to protect data while at rest.
Recommended publications
  • M3AAWG Best Common Practices for Mitigating Abuse of Web Messaging Systems, Version 1.1 Updated March 2019 (2010)
    Messaging, Malware and Mobile Anti-Abuse Working Group (M3AAWG) M3AAWG Best Common Practices for Mitigating Abuse of Web Messaging Systems, Version 1.1 Updated March 2019 (2010) The reference URL for this document is www.m3aawg.org/WebMessagingAbuse Table of Contents Updated in this Version ......................................................................................................................................................... 1 Introduction ........................................................................................................................................................................... 1 Typical Attacks ...................................................................................................................................................................... 2 Monitoring and Alerting ....................................................................................................................................................... 2 Proactive Defense .................................................................................................................................................................. 3 UI Access ........................................................................................................................................................................................................... 3 Web Application Security ..............................................................................................................................................................................
    [Show full text]
  • Cross-Domain Communications
    CSE 361: Web Security Cross-domain Communication Nick Nikiforakis 2 A World Without Separation between Sites http://kittenpics.org https://gmail.com 3 The Same-Origin Policy for JavaScript • Most basic access control policy • controls how active content can access resources • Same-Origin Policy for JavaScript for three actions • Script access to other document in same browser • frames/iframes • (popup) windows • Script access to application-specific local state • cookies, Web Storage, or IndexedDB • Explicit HTTP requests to other hosts • XMLHttpRequest 4 The Same-Origin Policy for JavaScript • Only allows access if origins match Protocol Hostname Port • Origin defined by protocol, hostname, and port http://example.org:80/path/ Originating document Accessed document Non-IE Browser Internet Explorer http://example.org/a http://example.org/b http://example.org http://www.example.org http://example.org https://example.org http://example.org http://example.org:81 5 Domain Relaxation • Two sub-domains of a common parent domain want to communicate • Notably: can overwrite different port! • Browsers allow setting document.domain property • Can only be set to valid suffix including parent domain • test.example.org -> example.org ok • example.org -> org forbidden • When first introduced, relaxation of single sub-domain was sufficient • Nowadays: both (sub-)domains must explicitly set document.domain 6 Domain Relaxation http://sub.kittenpics.org http://kittenpics.org document.domain = "kittenpics.org" document.domain = "kittenpics.org" 7 Domain Relaxation http://sub.kittenpics.org http://kittenpics.org document.domain = "kittenpics.org" Cross-Origin Communication 9 Cross-origin communication • Subdomains of the same domain can use domain relaxation when they want to talk to one another.
    [Show full text]
  • A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web
    A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications Gabriela Sampaio Imperial College London, UK [email protected] José Fragoso Santos INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Portugal Imperial College London, UK [email protected] Petar Maksimović Imperial College London, UK [email protected] Philippa Gardner Imperial College London, UK [email protected] Abstract We introduce a trusted infrastructure for the symbolic analysis of modern event-driven Web applica- tions. This infrastructure consists of reference implementations of the DOM Core Level 1, DOM UI Events, JavaScript Promises and the JavaScript async/await APIs, all underpinned by a simple Core Event Semantics which is sufficiently expressive to describe the event models underlying these APIs. Our reference implementations are trustworthy in that three follow the appropriate standards line-by-line and all are thoroughly tested against the official test-suites, passing all the applicable tests. Using the Core Event Semantics and the reference implementations, we develop JaVerT.Click, a symbolic execution tool for JavaScript that, for the first time, supports reasoning about JavaScript programs that use multiple event-related APIs. We demonstrate the viability of JaVerT.Click by proving both the presence and absence of bugs in real-world JavaScript code. 2012 ACM Subject Classification Software and its engineering → Formal software verification; Software and its engineering → Software testing and debugging Keywords and phrases Events, DOM, JavaScript, promises, symbolic execution, bug-finding Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.28 Acknowledgements Fragoso Santos, Gardner, and Maksimović were partially supported by the EPSRC Programme Grant ‘REMS: Rigorous Engineering for Mainstream Systems’ (EP/K008528/1) and the EPSRC Fellowship ‘VetSpec: Verified Trustworthy Software Specification’ (EP/R034567/1).
    [Show full text]
  • Get Started with HTML5 ● Your Best Bet to Experiment with HTML5 – Safari – Chrome As of – Beta: Firefox 4 and IE 9
    BibhasBibhas BhattacharyaBhattacharya CTO,CTO, WebWeb AgeAge SolutionsSolutions [email protected]@webagesolutions.com www.webagesolutions.com/trainingwww.webagesolutions.com/training Get Started With HTML5 ● Your best bet to experiment with HTML5 – Safari – Chrome As of – Beta: FireFox 4 and IE 9. October 2010 ● Test your browser: – html5test.com – html5demos.com – www.findmebyip.com/litmus ● JavaScript library to test for HTML5 features – www.modernizr.com Browser Support ● Dreamweaver CS5 11.0.3 update will install HTML5 compatibility pack. ● CS4 and CS3 users should download the pack from Dreamweaver Exchange. ● See a demo: – www.youtube.com/watch?v=soNIxy2sj0A DreamWeaver Story - The canvas element - Custom audio & video player - New semantic elements - Geolocation (header, section, footer etc.) - Local data storage - New form input elements - Web SQL & IndexedDB (e-mail, date, time etc.) - Offline apps - Audio and video - Messaging - CSS3 - Web worker - Push using WebSocket For web page designers For developers What's New in HTML5? SimplifiedSimplified <!DOCTYPE html> DOCTYPEDOCTYPE <html> <head> <title>Page Title</title> Simplified <meta charset="UTF-8"> Simplified charsetcharset settingsetting </head> <body> <p>Hello World</p> </body> </html> Basic HTML 5 Document ● Elements that have no special visual styling but are used to provide structure and meaning to the content. ● HTML4 semantic elements – div (block) – span (in line) ● HTML5 semantic elements – header, footer, section, article, aside, time and others..
    [Show full text]
  • Web Messaging and Notification System Between Journalists And
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Web messaging and notification system between journalists and citizens Cláudia Margarida da Rocha Marinho Mestrado Integrado em Engenharia Informática e Computação Supervisor: Maria Teresa Magalhães da Silva Pinto de Andrade Second Supervisor: Pedro Miguel da Silva Santos July 19, 2019 Web messaging and notification system between journalists and citizens Cláudia Margarida da Rocha Marinho Mestrado Integrado em Engenharia Informática e Computação Approved in oral examination by the committee: Chair: Jorge Manuel Gomes Barbosa (Assistant Professor) External Examiner: Paula Viana (Coordinator Professor) Supervisor: Maria Teresa Andrade (Assistant Professor) July 19, 2019 Abstract Over the recent years, live streaming has become a popular trend among events’ attendees, al- lowing them to share their own experiences of the event with people around the world. Realizing that this might be an opportunity for content providers to enrich their coverage of large events by making use of the attendees’ contributions, MOG Technologies started a project in a partnership with INESC TEC, Jornal de Notícias and OSTV. The idea of the project is to offer simple means for the event attendees, who can be general public or professional reporters, to send video streams in real-time to the TV producer who is covering the event and live broadcasting it to the public. The video streams are captured with the smartphones of the attendees through an intuitive web app. On the production side, the intention is to allow the TV event producer to continuously browse through the different received feeds using a drag-and-drop web-based GUI and, at any instant, to select a given feed to be inserted automatically in the main broadcast stream, which can also appear in the on-site large TV screens.
    [Show full text]
  • Audioworklet: the Future of Web Audio
    AudioWorklet: The future of web audio Hongchan Choi Google Chrome [email protected] ABSTRACT 1.2 Web Audio API processing model To appreciate the advantages of AudioWorklet over Script- This paper presents a newly introduced extension to the ProcessorNode, it is helpful to understand how Web Audio Web Audio API that enables developers to author custom API operates internally. The following is a quick recap of audio processing on the web. AudioWorklet brings JavaScript- the processing model embodied in the API specification. based audio processing that is fast, reliable and secure while addressing numerous problems found in the earlier Browser main thread High priority thread ScriptProcessorNode. AudioWorklet’s design is discussed, followed by technical aspects, usage examples, and what Control thread Render thread the new functionality offers to the computer music commu- User script nity. Audio graph code change update 1. BACKGROUND Command AudioNodes queue 1.1 What is AudioWorklet? Asynchronous messaging Since its birth in 2010, the Web Audio API [1] has trans- formed the web browser into a platform for interactive ap- Figure 1. The processing model of the Web Audio API plications for music and audio. Although it has been rea- sonably successful in accommodating various use cases Two crucial premises of the Web Audio API rendering with its highly dynamic design, there has been a major mechanism are that 1) the audio rendering needs to be per- criticism pointing out its lack of flexibility and extensi- formed on a dedicated thread with high priority and 2) the bility. Besides built-in features for basic audio processing rendering pipeline must have a fixed size render quantum and synthesis, the API also provided developers with a way of 128 frames.
    [Show full text]
  • Standards for Web Applications on Mobile: Current State and Roadmap
    Standards for Web Applications on Mobile: current state and roadmap January 2014 Latest version http://www.w3.org/Mobile/mobile-web-app-state/ This version http://www.w3.org/2014/01/mobile-web-app-state/ (PDF version) Previous version http://www.w3.org/2013/09/mobile-web-app-state/ Web technologies have become powerful enough that they are used to build full-featured applications; this has been true for many years in the desktop and laptop computer realm, but is increasingly so on mobile devices as well. This document summarizes the various technologies developed in W3C that increase the capabilities of Web applications, and how they apply more specifically to the mobile context. A good subset of these technologies are described and explained in the W3C on-line training on programming Web applications. 1. Graphics ...................................................................................................................................................................................3 2. Multimedia.............................................................................................................................................................................10 3. Device Adaptation .................................................................................................................................................................14 4. Forms .....................................................................................................................................................................................17
    [Show full text]
  • Challenges for Enabling Targeted Multi-Screen Advertisement for Interactive TV Services for the Fourth W3C Web and TV Workshop
    Position Paper: Challenges for enabling targeted multi-screen advertisement for interactive TV services for the Fourth W3C Web and TV Workshop Christopher Krauss, Louay Bassbouss, Stefan Pham, Stefan Kaiser, Stefan Arbanowski, Stephan Steglich Fraunhofer Institute for Open Communication Systems Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany ffi[email protected] February 3, 2014 The Fraunhofer Institute FOKUS1 Competence Center Future Applications and Media FAME2 re- searches and develops in the fields of interactive smart and social media services, cross-platform applica- tions as well as personalized service offerings. All technical solutions comply with applicable international standards, such as DASH IF, the Open IPTV Forum, HbbTV and W3C. In this context, the theme of the FAME organized 4th FOKUS Media Web Symposium3 on May 8 - 9, 2014 is "Internet delivered Media and Multi-screen Technologies and Standards". In this position paper we will address the challenges and missing standards for enabling targeted multi-screen advertisement for interactive TV services. Furthermore, we will outline and discuss the limitations and difficulties of building cross-platform and multi-screen TV services. We will also propose potential solutions for closing the gap between the web and TV domains based on the following use case: Alice and Bob are watching a Formula 1 race on the TV. The broadcaster offers a service which allows users watch the race from different camera perspectives, where the TV displays the perspective of the main camera and a companion device may be used to display the perspective of the on-board camera of a selected driver (user can select which driver).
    [Show full text]
  • Http Mailbox - Asynchronous Restful
    Old Dominion University ODU Digital Commons Computer Science Theses & Dissertations Computer Science Summer 2013 HTTP aiM lbox - Asynchronous Restful Communication Sawood Alam Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds Part of the Computer Sciences Commons, and the Digital Communications and Networking Commons Recommended Citation Alam, Sawood. "HTTP aiM lbox - Asynchronous Restful Communication" (2013). Master of Science (MS), thesis, Computer Science, Old Dominion University, DOI: 10.25777/wh13-fd86 https://digitalcommons.odu.edu/computerscience_etds/28 This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HTTP MAILBOX - ASYNCHRONOUS RESTFUL COMMUNICATION by Sawood Alam B.Tech. May 2008, Jamia Millia Islamia, India A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE COMPUTER SCIENCE OLD DOMINION UNIVERSITY August 2013 Approved by: Michael L. Nelson (Director) Michele C. Weigle (Member) Ravi Mukkamala (Member) ABSTRACT HTTP MAILBOX - ASYNCHRONOUS RESTFUL COMMUNICATION Sawood Alam Old Dominion University, 2013 Director: Dr. Michael L. Nelson Traditionally, general web services used only the GET and POST methods of HTTP while several other HTTP methods like PUT, PATCH, and DELETE were rarely utilized. Additionally, the Web was mainly navigated by humans using web browsers and clicking on hyperlinks or submitting HTML forms. Clicking on a link is always a GET request while HTML forms only allow GET and POST methods.
    [Show full text]
  • HTML5 and Java Technologies
    HTML5 and Java Technologies Peter Doschkinow Senior Java Architect The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. Agenda . Motivation . HTML5 Overview – Related Java Technologies . Thin Server Architecture . Demo Motivation . Need for clarification Gartner’s 2012 Emerging Technologies Hype Cycle – What is behind the hype . Architectural consequences of new trends . What does the Java platform offer to meet the new challenges . Building of common understanding Web Technology History . 1991 HTML . 1995 JavaScript @ Netscape . 1994 HTML2 . 1996 ECMAScript 1.0, 1.1 . 1996 CSS1 . 1997 ECMAScript 1.2 . 1997 HTML4 . 1998 ECMAScript 1.3 . 1998 CSS2 . 2000 ECMAScript 3 . 2000 XHTML1 . 2010 ECMAScript 5 . 2002 Tableless Web Design . Next: ECMAScript 6 Harmony . 2005 AJAX . 2009 HTML5: as of Dec 2012 W3C CR HTML5 Features W3C / Web Hypertext Application Technology Working Group(WHATWG) . Markup – Semantic markup replacing common usages of generic <span>, <div> . <nav>, <footer>,<audio>, <video>, ... API – Canvas 2D (for immidate mode 2D drawing),Timed media playback – Offline Web Applications, Local Srorage and Filesystem, Web Storage – Geolocation, Web Storage, IndexedDB – File API, Drag-and-Drop, Browser History – ... HTML5 Features Offloaded to other specs, originally part of HTML5 . WebSocket API, Server-Sent Events(SSE), Web Messaging, Web Workers, Web Storage (Web Apps WG ) .
    [Show full text]
  • An Expressive Model for the Web Infrastructure: Definition and Application to the Browserid SSO System
    An Expressive Model for the Web Infrastructure: Definition and Application to the BrowserID SSO System∗ Daniel Fett, Ralf Küsters, Guido Schmitz University of Trier, Germany {fett,kuesters,schmitzg}@uni-trier.de Abstract The web constitutes a complex infrastructure and as demonstrated by numerous attacks, rigorous analysis of standards and web applications is indispensable. Inspired by successful prior work, in particular the work by Akhawe et al. as well as Bansal et al., in this work we propose a formal model for the web infrastructure. While unlike prior works, which aim at automatic analysis, our model so far is not directly amenable to automation, it is much more comprehensive and accurate with respect to the standards and specifications. As such, it can serve as a solid basis for the analysis of a broad range of standards and applications. As a case study and another important contribution of our work, we use our model to carry out the first rigorous analysis of the BrowserID system (a.k.a. Mozilla Persona), a recently developed complex real-world single sign-on system that employs technologies such as AJAX, cross-document messaging, and HTML5 web storage. Our analysis revealed a number of very critical flaws that could not have been captured in prior models. We propose fixes for the flaws, formally state relevant security properties, and prove that the fixed system in a setting with a so-called secondary identity provider satisfies these security properties in our model. The fixes for the most critical flaws have already been adopted by Mozilla and our findings have been rewarded by the Mozilla Security Bug Bounty Program.
    [Show full text]
  • CTA Specification, CTA-5000) and W3C (As a Final Community Group Report), by Agreement Between the Two Organizations
    CCTTAA SSppeecciiffiiccaattiioonn Web Application Video Ecosystem – Web Media API Snapshot 2017 CTA-5000 December 2017 NOTICE Consumer Technology Association (CTA)™ Standards, Bulletins and other technical publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards, Bulletins and other technical publications shall not in any respect preclude any member or nonmember of the Consumer Technology Association from manufacturing or selling products not conforming to such Standards, Bulletins or other technical publications, nor shall the existence of such Standards, Bulletins and other technical publications preclude their voluntary use by those other than Consumer Technology Association members, whether the document is to be used either domestically or internationally. WAVE Specifications are developed under the WAVE Rules of Procedure, which can be accessed at the WAVE public home page (https://cta.tech/Research-Standards/Standards- Documents/WAVE-Project/WAVE-Project.aspx) WAVE Specifications are adopted by the Consumer Technology Association in accordance with clause 5.4 of the WAVE Rules of Procedures regarding patent policy. By such action, the Consumer Technology Association does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Standard, Bulletin or other technical publication. This document does not purport to address all safety problems associated with its use or all applicable regulatory requirements. It is the responsibility of the user of this document to establish appropriate safety and health practices and to determine the applicability of regulatory limitations before its use.
    [Show full text]