ESCMID Online Lecture Library © by Author ESCMID Online Lecture Library Filaria and Filariasis

Total Page:16

File Type:pdf, Size:1020Kb

ESCMID Online Lecture Library © by Author ESCMID Online Lecture Library Filaria and Filariasis Benznidazol Nifurtimox Free radical formation upon metabolism Nifurtimox also for West African trypanosiomiasis (CNS stage) © by author ESCMID Online Lecture Library © by author ESCMID Online Lecture Library Aldert Bart & Tom van Gool Case history 34-year old Nigerian male Applicant for asylum, arrival in Netherlands: sept 2009 No medical history Former occupation: farmer Since 5 years: “Pepperish body” Worm-like movements in throat and stomach Itching skin, varying in duration and location Additional information:© by author No unprotected sex (never tested for HIV) ESCMIDNo movements Online in his eye Lecture Library No skin lesions No intoxications Stable weight Physical examination No abnormalities, notably: No lymfadenitis No scrotal abnormalities No skin lesions Additional tests Initial laboratory tests: all normal, notably: Haemoglobin 9.2 mmol/l, WBC 4.2 x 109/l, normal differentiation (no eosinophilia) Negative serology© for: byHIV, authorschistosomiasis and strongyloides QBC: no trypanosomiasis, but… ESCMID Online Lecture Library © by author ESCMID Online Lecture Library Filaria and filariasis heterogeneous group of nematodes (draadwormen) blood/tissue parasites vector borne transmission imported disease spectrum of diseases (eosinophilia!) serological cross© reactions by author ESCMID Online Lecture Library Filaria macrofilaria: adult worms, male or female take 1-2 year to develop, live up to >15 years 2-7 cm (Loa loa) to 50 cm (Onchocerca volvulus) in lymphatic system, subcutaneous, deep connective tissues or body cavities; may migrate microfilaria: larvae up to 1 year in host In blood, skin, urine,© lungs; by migrate author develop in vector (1-2 weeks) in infectious larvae ESCMID Online Lecture Library PERIODICITY nocturnal periodicity: largest number of microfilaria in the peripheral circulation occurs at night between 9 p.m. and 2 a.m. (W. bancrofti). diurnal periodicity: largest number of microfilaria found during daytime (Loa loa). aperiodic: (Mansonella perstans ). subperiodic or nocturnally subperiodic: microfilaria can be detected© by during author the day but at higher levels during late afternoon or at night (W. bancrofti, pacific region). ESCMID Online Lecture Library The basis of periodicity is unknown and when they are not in the peripheral blood, they are primarily in capillaries and blood vessels of the lungs. • Lymphatic filariasis – Wuchereria bancrofti – Brugia malayi – Brugia timori • Onchocerciasis (river blindness) – Onchocerca volvulus • Others: – Loa loa © by author – Mansonella perstans (formerly Dipetalonema perstans) – M. streptocerca ESCMID– M. ozzardi Online Lecture Library • Zoonoses: Dirofilaria Geographical Site of adult in Parasite Discase caused Vector distribution body Wuchereria lymphatic filariasis Africa, Asia, mosquitos lymphatics bancrofti (Bancroftian) South America, Pacific lymphatic filariasis Brugia malayi Asia mosquitos lymphatics (Malayan) loaiasis Calabar Central and West Loa loa Chrysops subcutaneous swelling Africa Onchocerca Onchocerciasis Africa and Central Simulium subcutaneous volvulus 'river blindness' America Tetrapetalonema Central and West abdominal or pleural none Culicoides perstans Africa, South America mesenteries Tetrapetalonema none West Africa Culicoides subcutaneous streptocerca Mansonella abdominal or pleural none South America Culicoides ozzardi © by author mesenteries The microfilariae of each species of filarial worms differ, and examination of microfilariaeESCMID is necessary Online to confirm the Lecture presence and identity Library of a particular parasitic infection. Genus and species of Geographic Location of Size in µm Sheath Head Tail Periodicity Vector Symptoms adult location distribution microfilaria length width Tropis and 1 subtropics Blood + Wuchereria bancrofti Tapered to point; Nocturnal, lymphatics Worldwide 230 - 300 7,5-10 Short no nuclei in end subperiodic Mosquitoes elephantiasis Tapered; terminal Southeast Asia, Brugia malayi Blood and subterminal Nocturnal, 2 West Pacific + lymphatics 170 - 260 5-6 Prolonged nuclei subperiodic Mosquitoes elephantiasis Tapered; nuclei West and Central Loa loa Blood irregularly spaced calabar swellings 3 Africa + subcutaneous 250 - 300 6-8 Short to end Diurnal Deer fly African eye worm Central and South Mansonella perstans America Tapered, bluntly Blood 4 body cavities, mesentery, - rounded; nuclei to Africa perirenal 150 - 210 4-5 Rounded end None Midge asymptomatic Mansonella ozzardi Central and South America, Blood 5 subcutaneous, possible - Long, slender tail; Carribean body cavity 175 - 240 3-5 Rounded no nuclei to end None Midge asymptomatic Central and South © by author river blindness America onchodermatitis Skin 6 Onchocerca volvulus - Short, Tapered to point; None or femoral lymph Africa subcutaneous 250 - 300 5-9 rounded no nuclei in end minimal Black fly nodes Tapered, bluntly West and Central Mansonella Skin rounded; nuclei to 7 Africa - streptocercaESCMID Online LectureRounded, end of tail. TailLibrary bent non pathogenic subcutaneous 150 - 240 2,5-3,5 slender in hook shape None Midge slight itching rash Lymphatic filariasis: elephantiasis 1.3 billion people at risk (20% world population) 30% India, 30% Africa, remainder Asia, Pacific, Americas Bangladesh, Congo, India, Indonesia, Madagascar, Nigeria, Philippines most highly - endemic countries 70-120 million persons© infected by author 25ESCMID million genital diseaseOnline (hydrocoele) Lecture Library 15 million lymphoedema/elephantiasis of the leg © by author ESCMID Online Lecture Library Adults in lymphatic system Microfilaria in blood transmission by mosquitoes 78-130 million infected worldwide Wuchereria bancrofti Brugia malayi © by author BrugiaESCMID timori Online Lecture Library © by author ESCMID Online Lecture Library Distribution of lymphatic filariases Adults in lymphatic system Microfilaria in blood transmission by mosquitoes 78 million infected worldwide Wuchereria bancrofti: periodic and non-periodic (islands of Eastern Pacific) Brugia malayi: periodic© by and author non-periodic (West Malaysia, S. Vietnam, Thailand, Philippines) BrugiaESCMID timori: IndonesiaOnline Lecture Library Bancroftian filariasis: I. Distribution and life cycle maturation (~1 year) lymph nodes, ~10 testis and days epididymis © by author ESCMID Online Lecture Library Adult male W. bancrofti ~4 cm females ~ 8–10 cm long © by author OnESCMID maturation, the Online infective larvaeLecture copulate Library and the adult filariae become localised in lymph glands (e.g. in the groin). © by author ESCMID Online Lecture Library Mosquito vectors: Culex, Mansonia, Aedes © by author ESCMID Online Lecture Library - Symptomless mf+ carriers - Amicrofilaremic patients adult (including - Lymphangitis endosymbiont Wolbachia) - Lymphadenopathy cause of disease through - Lymphadenitis inflammatory response © by author methylene-blue staining of Wolbachia endobacteria. (A, C). Wolbachia are ESCMID Online Lecture Libraryessential for growth, development, embryogenesis and survival of O. volvulus and lymphatic filaria - Symptomless mf+ carriers - Amicrofilaremic patients adult (including - Lymphangitis endosymbiont Wolbachia) - Lymphadenopathy cause of disease through - Lymphadenitis inflammatory response - Chronic Manifestations© by author in endemic areas : Hydrocoele ESCMIDOrchi-epididymitis Online Lecture Library Elephantiasis teenager from an Early elephantiasis due eastern Indian village Elephantiasis of the leg to Brugia malayi suffering from filarial and scrotum due to hydrocele. Wuchereria bancrofti in © by author Tahiti: requires radical surgery to remove the surplus tissue. ESCMID Online Lecture Library Severe socio-economic consequences of lymphatic filariasis: shunning, decreased income, … Elephantiasis of the scrotum © by author Urine containing lymph ESCMIDThe dilated lymph Online vessels rupture Lecture and Library discharge chyle into the urinary tract, thus producing the milky appearance known as chyluria. © by author ESCMID Online Lecture Library Control: mass drug administration 1. ONCHOCERCIASIS Onchocerca volvulus Transmitted by Simulium (fly) Adults in nodules, microfilaria in the dermis: tropical Africa (99%), South America, Yemen. Symptomatology Symptomless but© mf+ by author Cutaneous lesions: nodules or onchocercoma, pruritis, dermatitis with lichenification, lizard or elephant skin ESCMIDOcular lesions: Online blindness Lecture Library © by author ESCMID Online Lecture Library Geographical map of Onchocerca volvulus mainly a disease of riverine country © by author ESCMID Online Lecture Library © by author ESCMID Online Lecture Library Simulium or buffalo-fly with a humped back (larval stages in fast running water) © by author ESCMID Online Lecture Library Onchocercal scabies © by author ESCMID Online Lecture Library Subcutaneous nodule predominantely in the lower part of the body in Africa Macroscopic section of nodule © by author ESCMID Online Lecture Library Nodule opened to show tangled mass of adult worms. Female worms are very long and thin (50 X 0.5 cm). The males are shorter (2 cm). © by author ESCMID Online Lecture Library River blindness © by author ESCMID Online Lecture Library Control - 2. LOASIS Loa loa Transmission by Chrysops sp. Adults migrate, microfilaria in blood only in Central and West African rain forest. Symptomatology: Asymptomatic mf+ carriers Transient Calabar swellings© by author Almost constant pruritis Migration of adult under the skin and the conjunctiva Neurological,ESCMID
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Wuchereria Bancrofti Filaria Activates Human Dendritic Cells and Polarizes
    ARTICLE https://doi.org/10.1038/s42003-019-0392-8 OPEN Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4 Suprabhat Mukherjee 1,2,4,5, Anupama Karnam 2,5, Mrinmoy Das 2,5, Santi P. Sinha Babu 1 & 1234567890():,; Jagadeesh Bayry 2,3 Interaction between innate immune cells and parasite plays a key role in the immuno- pathogenesis of lymphatic filariasis. Despite being professional antigen presenting cells cri- tical for the pathogen recognition, processing and presenting the antigens for mounting T cell responses, the dendritic cell response and its role in initiating CD4+ T cell response to filaria, in particular Wuchereria bancrofti, the most prevalent microfilaria is still not clear. Herein, we demonstrate that a 70 kDa phosphorylcholine-binding W. bancrofti sheath antigen induces human dendritic cell maturation and secretion of several pro-inflammatory cytokines. Further, microfilarial sheath antigen-stimulated dendritic cells drive predominantly Th1 and regulatory T cell responses while Th17 and Th2 responses are marginal. Mechanistically, sheath antigen- induced dendritic cell maturation, and Th1 and regulatory T cell responses are mediated via toll-like receptor 4 signaling. Our data suggest that W. bancrofti sheath antigen exploits dendritic cells to mediate distinct CD4+ T cell responses and immunopathogenesis of lym- phatic filariasis. 1 Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan 731235, India. 2 Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe—Immunopathologie et immuno-intervention thérapeutique, Sorbonne Universités, F-75006 Paris, France. 3 Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France.
    [Show full text]
  • Structure Function Analysis of Thioredoxin from Wuchereria Bancrofti, a Drug Target for Human Lymphatic Filariasis
    Structure function analysis of thioredoxin from Wuchereria bancrofti, a drug target for human lymphatic filariasis Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt von Nasser Yousef (M.Sc.) aus Kairo, Ägypten Hamburg 2014 Die vorliegende Arbeit wurde im Zeitraum von 2009 bis 2014 in der Arbeitsgruppe von Prof. Ch. Betzel am Institut für Biochemie und Molekularbiologie am Department Chemie der Universität Hamburg angefertigt. Gutachter: Herr Prof. Christian Betzel Herr Prof. Reinhard Bredehorst Tag der Disputation: 25.07.2014 To my wife and daughters Table of Contents Table of Contents Table of Contents ........................................................................................................................I List of figures ........................................................................................................................... VI List of tables ............................................................................................................................. IX List of abbreviations ................................................................................................................. X Symbols for Amino Acids .................................................................................................... XVI 1. Aim of this Work .................................................................................................................. 1 2. Summary – Zusammenfassung
    [Show full text]
  • Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
    Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933.
    [Show full text]
  • Dr. Donald L. Price Center for Parasite Repository and Education College of Public Health, University of South Florida
    Dr. Donald L. Price Center For Parasite Repository and Education College of Public Health, University of South Florida PRESENTS Sources of Infective Stages and Modes of Transmission of Endoparasites Epidemiology is the branch of science that deals with the distribution and spread of disease. How diseases are transmitted, i.e. how they are passed from an infected individual to a susceptible one is a major consideration. Classifying and developing terminology for what takes place has been approached in a variety of ways usually related to specific disease entities such as viruses, bacteria, etc. The definitions that follow apply to those disease entities usually classified as endoparasites i.e. those parasites that reside in a body passage or tissue of the definitive host or in some cases the intermediate host. When the definition of terms for the “Source of Infection” or “Mode of Infection” relate to prevention and/or control of an endoparasitic disease, they should be clearly described. For the source of infection, the medium (water, soil, utensils, etc.) or the host organism (vector, or intermediate host) on which or in which the infective stage can be found should be precisely identified. For the mode of transmission, the precise circumstances and means by which the infective stage is able to come in contact with, enter, and initiate an infection in the host should be described. SOURCE OF INFECTION There are three quite distinct and importantly different kinds of sources of the infective stage of parasites: Contaminated Sources, Infested Sources, and Infected Sources. CONTAMINATE SOURCES Contaminated Source, in parasitology, implies something that has come in contact with raw feces and is thereby polluted with feces or organisms that were present in it.
    [Show full text]
  • Eisai Announces Results and Continued Support Of
    No.17-18 April 19, 2017 Eisai Co., Ltd. EISAI ANNOUNCES RESULTS AND CONTINUED SUPPORT OF INITIATIVES FOR ELIMINATION OF LYMPHATIC FILARIASIS 5 YEAR ANNIVERSARY OF LONDON DECLARATION ON NEGLECTED TROPICAL DISEASES Eisai Co., Ltd. (Headquarters: Tokyo, CEO: Haruo Naito, “Eisai”) has announced the results of its initiatives for the elimination of lymphatic filariasis (LF), and its continued support of this cause in the future. This announcement was made at an event held in Geneva, Switzerland, on April 18, marking the 5th anniversary of the London Declaration on Neglected Tropical Diseases (NTDs), an international public-private partnership. Announced in January 2012, the London Declaration is the largest public-private partnership in the field of global health, and represents a coordinated effort by global pharmaceutical companies, the Bill & Melinda Gates Foundation, the World Health Organization (WHO), the United States, United Kingdom and NTD-endemic country governments, as well as other partners, to eliminate 10 NTDs by the year 2020. Since the signing of the London Declaration, donations of medical treatments by pharmaceutical companies have increased by 70 percent, and these treatments contribute to the prevention and cure of disease in approximately 1 billion people every year. Under the London Declaration, Eisai signed an agreement with WHO to supply 2.2 billion high-quality diethylcarbamazine (DEC) tablets, which were running in short supply worldwide, at Price Zero (free of charge) by the year 2020. These DEC tablets are manufactured at Eisai’s Vizag Plant in India. As of the end of March 2017, 1 billion tablets have been supplied to 27 endemic countries.
    [Show full text]
  • Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being
    Research and Reviews on Healthcare: Open Access Journal DOI: 10.32474/RRHOAJ.2020.06.000226 ISSN: 2637-6679 Research Article Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being Firew Admasu Hailu1*, Geremew Tafesse1 and Tsion Admasu Hailu2 1Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia 2Addis Ababa Medical and Business College, Addis Ababa, Ethiopia *Corresponding author: Firew Admasu Hailu, Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia Received: November 05, 2020 Published: November 20, 2020 Abstract Introduction: This study mainly focus on the major pathologic manifestations of human gastrointestinal impacts of parasitic worms. Background: Helminthes and protozoan are human parasites that can infect gastrointestinal tract of humans beings and reside in intestinal wall. Protozoans are one celled microscopic, able to multiply in humans, contributes to their survival, permits serious infections, use one of the four main modes of transmission (direct, fecal-oral, vector-borne, and predator-prey) and also helminthes are necked multicellular organisms, referred as intestinal worms even though not all helminthes reside in intestines. However, in their adult form, helminthes cannot multiply in humans and able to survive in mammalian host for many years due to their ability to manipulate immune response. Objectives: The objectives of this study is to assess the main pathophysiology and gastrointestinal impacts of parasitic worms in human being. Methods: Both primary and secondary data were collected using direct observation, books and articles, and also analyzed quantitativelyResults and and conclusion: qualitatively Parasites following are standard organisms scientific living temporarily methods. in or on other organisms called host like human and other animals.
    [Show full text]
  • Co-Infection with Onchocerca Volvulus and Loa Loa Microfilariae in Central Cameroon: Are These Two Species Interacting?
    843 Co-infection with Onchocerca volvulus and Loa loa microfilariae in central Cameroon: are these two species interacting? S. D. S. PION1,2*, P. CLARKE3, J. A. N. FILIPE2,J.KAMGNO1,J.GARDON1,4, M.-G. BASA´ N˜ EZ2 and M. BOUSSINESQ1,5 1 Laboratoire mixte IRD (Institut de Recherche pour le De´veloppement) – CPC (Centre Pasteur du Cameroun) d’Epide´miologie et de Sante´ publique, Centre Pasteur du Cameroun, BP 1274, Yaounde´, Cameroun 2 Department of Infectious Disease Epidemiology, St Mary’s campus, Norfolk Place, London W2 1PG, UK 3 Infectious Disease Epidemiology Unit London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK 4 Institut de Recherche pour le De´veloppement, UR 24 Epide´miologie et Pre´vention, CP 9214 Obrajes, La Paz, Bolivia 5 Institut de Recherche pour le De´veloppement, De´partement Socie´te´s et Sante´, 213 rue La Fayette, 75480 Paris Cedex 10, France (Received 16 August 2005; revised 3 October; revised 9 December 2005; accepted 9 December 2005; first published online 10 February 2006) SUMMARY Ivermectin treatment may induce severe adverse reactions in some individuals heavily infected with Loa loa. This hampers the implementation of mass ivermectin treatment against onchocerciasis in areas where Onchocerca volvulus and L. loa are co-endemic. In order to identify factors, including co-infections, which may explain the presence of high L. loa micro- filaraemia in some individuals, we analysed data collected in 19 villages of central Cameroon. Two standardized skin snips and 30 ml of blood were obtained from each of 3190 participants and the microfilarial (mf) loads of both O.
    [Show full text]
  • Review of the Genus Mansonella Faust, 1929 Sensu Lato (Nematoda: Onchocercidae), with Descriptions of a New Subgenus and a New Subspecies
    Zootaxa 3918 (2): 151–193 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3918.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:DE65407C-A09E-43E2-8734-F5F5BED82C88 Review of the genus Mansonella Faust, 1929 sensu lato (Nematoda: Onchocercidae), with descriptions of a new subgenus and a new subspecies ODILE BAIN1†, YASEN MUTAFCHIEV2, KERSTIN JUNKER3,8, RICARDO GUERRERO4, CORALIE MARTIN5, EMILIE LEFOULON5 & SHIGEHIKO UNI6,7 1Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7205 CNRS, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France 2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria E-mail: [email protected] 3ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa 4Instituto de Zoología Tropical, Faculdad de Ciencias, Universidad Central de Venezuela, PO Box 47058, 1041A, Caracas, Venezuela. E-mail: [email protected] 5Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7245 MCAM, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France E-mail: [email protected], [email protected] 6Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia E-mail: [email protected] 7Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan 8Corresponding author. E-mail: [email protected] †In memory of our colleague Dr Odile Bain, who initiated this study and laid the ground work with her vast knowledge of the filarial worms and detailed morphological studies of the species presented in this paper Table of contents Abstract .
    [Show full text]
  • Zoonotic Abbreviata Caucasica in Wild Chimpanzees (Pan Troglodytes Verus) from Senegal
    pathogens Article Zoonotic Abbreviata caucasica in Wild Chimpanzees (Pan troglodytes verus) from Senegal Younes Laidoudi 1,2 , Hacène Medkour 1,2 , Maria Stefania Latrofa 3, Bernard Davoust 1,2, Georges Diatta 2,4,5, Cheikh Sokhna 2,4,5, Amanda Barciela 6 , R. Adriana Hernandez-Aguilar 6,7 , Didier Raoult 1,2, Domenico Otranto 3 and Oleg Mediannikov 1,2,* 1 IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), IHU Méditerranée Infection, Aix Marseille Univ, 19-21, Bd Jean Moulin, 13005 Marseille, France; [email protected] (Y.L.); [email protected] (H.M.); [email protected] (B.D.); [email protected] (D.R.) 2 IHU Méditerranée Infection, 19-21, Bd Jean Moulin, 13005 Marseille, France; [email protected] (G.D.); [email protected] (C.S.) 3 Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; [email protected] (M.S.L.); [email protected] (D.O.) 4 IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, Aix-Marseille University, 19-21, Bd Jean Moulin, 13005 Marseille, France 5 VITROME, IRD 257, Campus International UCAD-IRD, Hann, Dakar, Senegal 6 Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal; [email protected] (A.B.); [email protected] (R.A.H.-A.) 7 Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain * Correspondence: [email protected]; Tel.: +33-041-373-2401 Received: 19 April 2020; Accepted: 23 June 2020; Published: 27 June 2020 Abstract: Abbreviata caucasica (syn.
    [Show full text]
  • Guinea Worm in Domestic Dogs in Chad: a Description and Analysis of Surveillance Data
    PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE Guinea worm in domestic dogs in Chad: A description and analysis of surveillance data 1,2 1 2 Sarah Anne J. GuagliardoID *, Sharon L. Roy , Ernesto Ruiz-Tiben , 2 2 2 Hubert Zirimwabagabo , Mario Romero , Elisabeth ChopID , Philippe Tchindebet Ouakou3, Donald R. Hopkins2, Adam J. Weiss2 1 Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, 2 Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America, 3 Guinea Worm Eradication Program, Ministry of Public Health, N'Djamena, Chad a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract After a ten-year absence of reported Guinea worm disease in Chad, human cases were rediscovered in 2010, and canine cases were first recorded in 2012. In response, active sur- OPEN ACCESS veillance for Guinea worm in both humans and animals was re-initiated in 2012. As of 2018, the Chad Guinea Worm Eradication Program (CGWEP) maintains an extensive surveillance Citation: Guagliardo SAJ, Roy SL, Ruiz-Tiben E, Zirimwabagabo H, Romero M, Chop E, et al. (2020) system that operates in 1,895 villages, and collects information about worms, hosts (animals Guinea worm in domestic dogs in Chad: A and humans), and animal owners. This report describes in detail the CGWEP surveillance description and analysis of surveillance data. PLoS system and explores epidemiological trends in canine Guinea worm cases during 2015± Negl Trop Dis 14(5): e0008207. https://doi.org/ 10.1371/journal.pntd.0008207 2018. Our results showed an increased in the number of canine cases detected by the sys- tem during the period of interest.
    [Show full text]
  • Molecular Detection of Dirofilaria Spp. and Host Blood-Meal Identification
    Khanzadeh et al. Parasites Vectors (2020) 13:548 https://doi.org/10.1186/s13071-020-04432-4 Parasites & Vectors RESEARCH Open Access Molecular detection of Diroflaria spp. and host blood-meal identifcation in the Simulium turgaicum complex (Diptera: Simuliidae) in the Aras River Basin, northwestern Iran Fariba Khanzadeh1, Samad Khaghaninia1, Naseh Maleki‑Ravasan2,3*, Mona Koosha4 and Mohammad Ali Oshaghi4* Abstract Background: Blackfies (Diptera: Simuliidae) are known as efective vectors of human and animal pathogens, world‑ wide. We have already indicated that some individuals in the Simulium turgaicum complex are annoying pests of humans and livestock in the Aras River Basin, Iran. However, there is no evidence of host preference and their possible vectorial role in the region. This study was conducted to capture the S. turgaicum (s.l.), to identify their host blood‑ meals, and to examine their potential involvement in the circulation of zoonotic microflariae in the study areas. Methods: Adult blackfies of the S. turgaicum complex were bimonthly trapped with insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the river, as well as rice and alfalfa farms) of ten villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanlou, Khetay, Khomarlou, Larijan, Mohammad Salehlou, Parvizkhanlou and Qarloujeh) of the Aras River Basin. A highly sensitive and specifc nested PCR assay was used for detection of flarial nematodes in S. turgaicum (s.l.), using nuclear 18S rDNA‑ITS1 markers. The sources of blood meals of engorged specimens were determined using multiplex and conventional cytb PCR assays. Results: A total of 2754 females of S. turgaicum (s.l.) were collected.
    [Show full text]