Insights Into Their Binding Mode with BRD4 Bromodomain Using Molecular Docking and Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identifying of Selective Agonists Targeting Lxrβ from Terpene Compounds of Alismatis Rhizoma
Identifying of selective agonists targeting LXRβ from terpene compounds of Alismatis Rhizoma Chuanjiong Lin Sichuan University Jianzong Li ( [email protected] ) Sichuan University Chuanfang Wu Sichuan University Jinku Bao Sichuan University Original paper Keywords: Hyperlipidemia, LXRα, LXRβ, molecular docking, molecular dynamics simulations, agonist, Alismatis Rhizoma Posted Date: February 1st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-164666/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Molecular Modeling on February 22nd, 2021. See the published version at https://doi.org/10.1007/s00894-021-04699-z. Page 1/40 Abstract Hyperlipidemia is thought as an important contributor to coronary disease, diabetes and fatty liver. Liver X receptors β (LXRβ) was considered as a validated target for hyperlipidemia therapy due to its role in regulating cholesterol homeostasis and immunity. However, many current drugs applied in clinic are not selectively targeting LXRβ and they can also activate LXRα which activate SREBP-1c worked as activator of lipogenic genes. Therefore, exploiting agonists selectively targeting LXRβ are urgent. Here, computational tools were used to screen potential agonists selectively targeting LXRβ from 112 terpenes of Alismatis Rhizoma. Firstly, structural analysis between selective and nonselective agonists were used to explore key residues of selective binding with LXRβ. Our data indicated that Phe271, Ser278, Met312, His435, Trp457 were important to compounds binding with LXRβ, suggesting that engaging ligand interaction with these residues may provide directions for development of ligands with improved selective proles. -
Triazolobenzodiazepines and -Triazepines As Protein Interaction Inhibitors Targeting Bromodomains of the BET Family
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Triazolobenzodiazepines and -triazepines as Protein Interaction Inhibitors Targeting Bromodomains of the BET Family Matthias Alfons Wrobel aus Weiden i.d.OPf. 2013 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Franz Bracher betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 09.12.2013 Matthias Wrobel Dissertation eingereicht am 10.12.2013 1. Gutachter: Prof. Dr. Franz Bracher 2. Gutachter: Prof. Dr. Stefan Knapp Mündliche Prüfung am 21.01.2014 This dissertation was carried out in close collaboration with the Structural Genomics Consortium of the University of Oxford. Prof. Dr. Stefan Knapp Dr. Panagis Filippakopoulos Screening via DSF / ITC / Co-crystallization …für Caro …für meine Familie Acknowledgements I would like to thank Prof. Dr. Franz Bracher for giving me the possibility to work on this interesting topic, the helpful advices in meetings, always having a sympathetic ear for all kind of affairs and his support during the time of my PhD Thesis. I would also like to thank all the members of the Board of Examiners. In gratitude for the opportunity to visit his group at the University of Oxford (UK) and his considerable commitment for our collaboration, I would like to thank Prof. Dr. Stefan Knapp. Special thanks goes to Dr. Panagis Filippakopoulos for his supervision during my stays at the SGC and his patience and support in uncountable discussions about co-crystallization, structure optimization and critical appraisal of screening results. -
BET Bromodomain Protein Inhibition Is a Therapeutic Option for Medulloblastoma
www.impactjournals.com/oncotarget/ Oncotarget, November, Vol.4, No 11 BET bromodomain protein inhibition is a therapeutic option for medulloblastoma Anton Henssen1, Theresa Thor2,4, Andrea Odersky 1, Lukas Heukamp6, Nicolai El- Hindy7, Anneleen Beckers8, Frank Speleman8, Kristina Althoff1, Simon Schäfers1, Alexander Schramm1, Ulrich Sure7, Gudrun Fleischhack1, Angelika Eggert9, Johannes H. Schulte1,5 1 Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany 2 German Cancer Consortium (DKTK), Germany 3 Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany 4 German Cancer Research Center (DKFZ), Heidelberg, Germany 5 Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany 6 Institute of Pathology, University Hospital Cologne, Cologne, Germany 7 Department of Neurosurgery, University of Essen, Essen, Germany 8 Center of Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium 9 Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany Correspondence to: Johannes H. Schulte, email: [email protected] Keywords: BET bromodomains, BRD4, MYC, JQ1, pediatric brain tumors, targeted therapy Received: October 23, 2013 Accepted: October 25, 2013 Published: October 27, 2013 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Medulloblastoma is the most common malignant brain tumor of childhood, and represents a significant clinical challenge in pediatric oncology, since overall survival currently remains under 70%. Patients with tumors overexpressing MYC or harboring a MYC oncogene amplification have an extremely poor prognosis. Pharmacologically inhibiting MYC expression may, thus, have clinical utility given its pathogenetic role in medulloblastoma. -
Synthesis and a Combined Simil
Er et al. Chemistry Central Journal (2018) 12:121 https://doi.org/10.1186/s13065-018-0485-3 Chemistry Central Journal RESEARCH ARTICLE Open Access An integrated approach towards the development of novel antifungal agents containing thiadiazole: synthesis and a combined similarity search, homology modelling, molecular dynamics and molecular docking study Mustafa Er1*, Abdulati Miftah Abounakhla1, Hakan Tahtaci1, Ali Hasin Bawah1, Süleyman Selim Çınaroğlu2, Abdurrahman Onaran3 and Abdulilah Ece4* Abstract Background: This study aims to synthesise and characterise novel compounds containing 2-amino-1,3,4-thiadiazole and their acyl derivatives and to investigate antifungal activities. Similarity search, molecular dynamics and molecular docking were also studied to fnd out a potential target and enlighten the inhibition mechanism. Results: As a frst step, 2-amino-1,3,4-thiadiazole derivatives (compounds 3 and 4) were synthesised with high yields (81 and 84%). The target compounds (6a–n and 7a–n) were then synthesised with moderate to high yields (56–87%) by reacting 3 and 4 with various acyl chloride derivatives (5a–n). The synthesized compounds were characterized using the IR, 1H-NMR, 13C-NMR, Mass, X-ray (compound 7n) and elemental analysis techniques. Later, the in vitro anti- fungal activities of the synthesised compounds were determined. The inhibition zones exhibited by the compounds against the tested fungi, their minimum fungicidal activities, minimum inhibitory concentration and the lethal dose values (LD50) were determined. The compounds exhibited moderate to high levels of activity against all tested pathogens. Finally, in silico modelling was used to enlighten inhibition mechanism using ligand and structure-based methods. -
Macrophage Inflammatory Responses BET Inhibitor JQ1 Impair Mouse
BET Protein Function Is Required for Inflammation: Brd2 Genetic Disruption and BET Inhibitor JQ1 Impair Mouse Macrophage Inflammatory Responses This information is current as of October 4, 2021. Anna C. Belkina, Barbara S. Nikolajczyk and Gerald V. Denis J Immunol 2013; 190:3670-3678; Prepublished online 18 February 2013; doi: 10.4049/jimmunol.1202838 Downloaded from http://www.jimmunol.org/content/190/7/3670 Supplementary http://www.jimmunol.org/content/suppl/2013/02/19/jimmunol.120283 Material 8.DC1 http://www.jimmunol.org/ References This article cites 51 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/190/7/3670.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 4, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BET Protein Function Is Required for Inflammation: Brd2 Genetic Disruption and BET Inhibitor JQ1 Impair Mouse Macrophage Inflammatory Responses Anna C. -
A Phase IB Dose Exploration Trial with MK-8628, a Small
Official Protocol Title: A Phase IB Dose Exploration Trial with MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Subjects with Selected Advanced Solid Tumors NCT number: NCT02698176 Document Date: 21-Nov-2016 Product: MK-8628 1 Protocol/Amendment No.: 006-02 THIS PROTOCOL AMENDMENT AND ALL OF THE INFORMATION RELATING TO IT ARE CONFIDENTIAL AND PROPRIETARY PROPERTY OF MERCK SHARP & DOHME CORP., A SUBSIDIARY OF MERCK & CO., INC., WHITEHOUSE STATION, NJ, U.S.A. SPONSOR: Oncoethix GmbH, a wholly owned subsidiary of Merck Sharp & Dohme Corp. (hereafter referred to as the Sponsor or Merck) Weystrasse 20 6000 Lucerne Switzerland Protocol-specific Sponsor Contact information can be found in the Investigator Trial File Binder (or equivalent). TITLE: A Phase IB Dose Exploration Trial with MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Subjects with Selected Advanced Solid Tumors IND NUMBER: 123,715 EudraCT NUMBER: 2015-005488-18 MK-8628-006-02 Final Protocol 21-Nov-2016 Confidential Product: MK-8628 2 Protocol/Amendment No.: 006-02 TABLE OF CONTENTS SUMMARY OF CHANGES................................................................................................ 11 1.0 TRIAL SUMMARY.................................................................................................. 13 2.0 TRIAL DESIGN........................................................................................................ 14 2.1 Trial Design .......................................................................................................... -
Design, Synthesis and Evaluation of Bitopic Arylpiperazine-Phthalimides As Selective Dopamine D3 Receptor Agonists
Electronic Supplementary Material (ESI) for MedChemComm. This journal is © The Royal Society of Chemistry 2018 Design, Synthesis and Evaluation of Bitopic Arylpiperazine-phthalimides as Selective Dopamine D3 Receptor Agonists Yongkai Caoa,b,c,1, Ningning Sunb,1, Jiumei Zhangc,1, Zhiguo Liud, Yi-zhe Tangc, Zhengzhi Wuc,*, Kyeong-Man Kimb,* and Seung Hoon Cheonb, a Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China b College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Republic of Korea c The First Affiliated Hospital of Shenzhen University, Shenzhen 518035,China d Chemical Biology Research at School of Pharmaceutical sciences, Wenzhou Medical University, Wenzhou 325035, China 1. Docking The SYBYL-X 2.0 program was used for ligand sketching, hydrogen addition, and minimization with the Trips force field and Gasteriger-Huckel charges.1 The dopaminergic receptors, D3R (PDB code: 3PBL) and D2R (PDB code: 6C38), were refined using the Biopolymer module implemented in SYBYL-X 2.0. After the removal of all the ligands and water molecules, the N- and C-termini were treated with charges. Subsequently, hydrogens were added and staged minimizations were performed using AMBER7_FF99 force field and Gasteriger-Marsili charges. The most selective D3R ligand among the identified compounds, compound 9i, was docked into the refined D2R 2 and D3R with the program LeDock (www.lephar.com). Briefly, a rectangular box was generated in the LeDockGUI, a free graphics user interface of VMD, based on the binding pockets of eticlopride in D3R and risperidone in D2R. The compound 9i was docked into the dopaminergic receptors using LeDock program and for each ligands, 30 poses were generated and clustered by a RMSD cutoff of 1 Å. -
Molecular Docking : Current Advances and Challenges
ARTÍCULO DE REVISIÓN © 2018 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 21(Supl. 1): 65-87, 2018. DOI: 10.22201/fesz.23958723e.2018.0.143 MOLECULAR DOCKING: CURRENT ADVANCES AND CHALLENGES Fernando D. Prieto-Martínez,1a Marcelino Arciniega2 and José L. Medina-Franco1b 1Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad # 3000, Delegación Coyoacán, Ciudad de México 04510, México 2Instituto de Fisiología Celular, Departamento de Bioquímica y Biología Estructural, Universidad Nacional Autónoma de México E-mails: [email protected], [email protected],[email protected] ABSTRACT Automated molecular docking aims at predicting the possible interactions between two molecules. This method has proven useful in medicinal chemistry and drug discovery providing atomistic insights into molecular recognition. Over the last 20 years methods for molecular docking have been improved, yielding accurate results on pose prediction. Nonetheless, several aspects of molecular docking need revision due to changes in the paradigm of drug discovery. In the present article, we review the principles, techniques, and algorithms for docking with emphasis on protein-ligand docking for drug discovery. We also discuss current approaches to address major challenges of docking. Key Words: chemoinformatics, computer-aided drug design, drug discovery, structure-activity relationships. Acoplamiento Molecular: Avances Recientes y Retos RESUMEN El acoplamiento molecular automatizado tiene como objetivo proponer un modelo de unión entre dos moléculas. Este método ha sido útil en química farmacéutica y en el descubrimiento de nuevos fármacos por medio del entendimiento de las fuerzas de interacción involucradas en el reconocimiento molecular. -
Targeting MYC Dependence in Cancer by Inhibiting BET Bromodomains
Targeting MYC dependence in cancer by inhibiting BET bromodomains Jennifer A. Mertz1, Andrew R. Conery1, Barbara M. Bryant, Peter Sandy, Srividya Balasubramanian, Deanna A. Mele, Louise Bergeron, and Robert J. Sims III2 Constellation Pharmaceuticals, Inc., Cambridge, MA 02142 Edited* by Robert N. Eisenman, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved August 30, 2011 (received for review May 23, 2011) The MYC transcription factor is a master regulator of diverse in preclinical animal models of endotoxic shock caused by acti- cellular functions and has been long considered a compelling vation of Toll-like receptors that trigger the up-regulation of therapeutic target because of its role in a range of human cytokines controlled by NF-κB (7). Importantly, although RNAi- malignancies. However, pharmacologic inhibition of MYC function mediated depletion of any one individual BET protein has broad has proven challenging because of both the diverse mechanisms effects on transcription, pharmacologic inhibition of the BET driving its aberrant expression and the challenge of disrupting bromodomains perturbs the transcription of a narrower range protein–DNA interactions. Here, we demonstrate the rapid and po- of genes (7). These findings suggest an opportunity to use BET- tent abrogation of MYC gene transcription by representative small bromodomain inhibitors to fine-tune key regulatory pathways for molecule inhibitors of the BET family of chromatin adaptors. MYC therapeutic benefit. transcriptional suppression was observed in the context of the nat- BET inhibitors exhibit anticancer effects in both in vitro and ural, chromosomally translocated, and amplified gene locus. Inhi- in vivo models of midline carcinoma (8), a rare but lethal disease bition of BET bromodomain–promoter interactions and subsequent that frequently harbors a chromosomal translocation in which reduction of MYC transcript and protein levels resulted in G1 arrest the bromodomains of BRD4 are fused to the NUT gene (9). -
Use of QSAR Global Models and Molecular Docking for Developing New
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2019 Use of QSAR global models and molecular docking for developing new inhibitors of c-src tyrosine kinase Robert Ancuceanu1, Bogdan Tamba*2, Cristina Silvia Stoicescu3, Mihaela Dinu1 1Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania 2Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania ([email protected]); 3Institute of Physical Chemistry "Ilie Murgulescu", Bucharest, Romania Abstract Prototype of a family of at least nine members, c-src tyrosine kinase is a therapeutically interesting target, because its inhibition might be of interest not only in a number of malignancies, but also in a diverse array of conditions, from neurodegenerative pathologies to certain viral infections. Computational methods in drug discovery are considerably cheaper than conventional methods and offer opportunities of screening very large numbers of compounds in conditions that would be simply impossible within the wet lab experimental settings. We have explored the use of global QSAR models and molecular ligand docking in the discovery of new c-src tyrosine kinase inhibitors. Using a data set of 1038 compounds from ChEMBL and 19 blocks of molecular descriptors, we have developed over 200 QSAR classification models, based on six machine learning algorithms and 17 feature selection methods. We have selected 49 with reasonably good performance (positive predictive value and balanced accuracy higher than 70% in nested cross validation) and the models were assembled by stacking with a simple majority vote and used for the virtual screening of over the “named” ZINC data set (over 100,000 compounds). -
Computer?Aided Docking: an Invaluable Tool in Drug Discovery
IJPCBS 2017, 7(4), 453-458 Nagaraju Pappula et al. ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Review Article COMPUTER‐AIDED DOCKING: AN INVALUABLE TOOL IN DRUG DISCOVERY AND MOLECULAR BIOLOGY Nagaraju Pappula*, Ravichandra Sharabu and Pradeep Kumar Thadiboina Hindu College of Pharmacy, Amaravathi Road, Guntur – 522 002, Andhra Pradesh, India. ABSTRACT Docking is a pharmacologically important tool in the field of drugs designing and computational biology. It works with the basic understanding of structure prediction of intermolecular complex formed between drug and its target molecule. The aim of ligand-receptor docking is to identify the pivotal active binding sites of a ligand with a protein of already known three-dimensional structures. Molecular docking is a computational procedure that aims to predict the favored orientation of a ligand to its macromolecular target when these are bound to each other to form a stable complex. The present review focused on importance of docking and its applications in drug innovation. The relevant basic theories including sampling algorithms, scoring functions are summarized. The differences in and performances of available docking software are also discussed. Keywords: Dock, Drug discovery, Scoring and Lipinski rule. INTRODUCTION coordinates. Furthermore, for flexible ligand Computational docking or computer‐aided docking, we should also define ligand bonds that docking is a tremendously valuable tool to gain are rotatable. All this will be done in a tool called an understanding of protein-ligand interactions Auto Dock Tools (ADT). which is important for the drug discovery 1-3. Docking server integrates a number of Procedure8,9 computational chemistry software specifically Step-1 aimed at correctly calculating parameters4 Receptor building – The receptor complex is needed at different steps of the docking downloaded from RCSB PDB. -
Recent Advances in in Silico Target Fishing
molecules Review Recent Advances in In Silico Target Fishing Salvatore Galati 1 , Miriana Di Stefano 1 , Elisa Martinelli 1, Giulio Poli 1,* and Tiziano Tuccinardi 1,2 1 Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; [email protected] (S.G.); [email protected] (M.D.S.); [email protected] (E.M.); [email protected] (T.T.) 2 Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA * Correspondence: [email protected]; Tel.: +39-0502219603 Abstract: In silico target fishing, whose aim is to identify possible protein targets for a query molecule, is an emerging approach used in drug discovery due its wide variety of applications. This strategy allows the clarification of mechanism of action and biological activities of compounds whose target is still unknown. Moreover, target fishing can be employed for the identification of off targets of drug candidates, thus recognizing and preventing their possible adverse effects. For these reasons, target fishing has increasingly become a key approach for polypharmacology, drug repurposing, and the identification of new drug targets. While experimental target fishing can be lengthy and difficult to implement, due to the plethora of interactions that may occur for a single small-molecule with different protein targets, an in silico approach can be quicker, less expensive, more efficient for specific protein structures, and thus easier to employ. Moreover, the possibility to use it in combination with docking and virtual screening studies, as well as the increasing number of web-based tools that have been recently developed, make target fishing a more appealing method for drug discovery.