THE NINJA's GUIDE to PRITE 2019 Question Book

Total Page:16

File Type:pdf, Size:1020Kb

THE NINJA's GUIDE to PRITE 2019 Question Book THE NINJA'S GUIDE TO PRITE 2019 Question Book 12TH EDITION LOMA LINDA UNIVERSITY DEPARTMENT OF PSYCHIATRY WHO WE ARE TO PSYCHIATRY RESIDENTS AND FACULTY EVERYWHERE: Loma Linda University Medical Center is located in sunny Southern California. about 60 miles east of Los Angeles. A part of the Adventist Health System, we provide patient care in one of the largest non-profit health systems in the nation. Loma Linda's mission is to excel in medical education, global healthcare, and community outreach, all under a central tenant: "To Make Man Whole." At the Loma Linda Department of Psychiatry, our residents are trained in many diverse patient care settings. As an official World Health Organization Collaboration Center, our department funds resident electives in Global Mental Health at locations around the world. Additionally, our residents can participate in national and international disaster relief on the LLU Behavioral Health Trauma Team. We were proud to welcome our first group of Child and Adolescent Psychiatry fellows in the Summer of 2019, and work collaboratively with 3 other residency programs within the region. Our residency didactic education is constantly evolving based upon resident feedback, and our residents have the opportunity to aid in course development. More than anything, our residency fosters an environment where residents and faculty treat each other like family. Our faculty are dedicated to resident education and professional development. We believe in "taking 'No' off the table", encouraging innovative change, and passionately supporting our residents to achieve anything they set their minds to. For over a decade our residents have volunteered their time to create The Ninja's Guide to PRITE at our Annual Ninja PRITE Workshop. We are excited to present this 12th edition with new content contributed directly by our residents. Also, meet our new cover ninja drawn by Monique Harrison, MD! WHO WE ARE THANK YOU TO ALL THE RESIDENTS WHO HAVE CONTRIBUTED TO “THE NINJA’S GUIDE TO PRITE” SINCE 2007: - Class of 2008: Andy Hayton, Bryan Wick, - Class of 2019: Rajiv Johnson, Aaron Heffner, Lucia Cheng, Tao Yan, Melissa Pereau Neil Abidi, Andrew Dornan, Sam Althauser, - Class of 2009: Serina Srikureja, Katie Roman Rayek Naliz, Rachel Huso - Class of 2010: Timothy Lee, Christoff Le - Class of 2020: Hans von Walter, Aaron Roux, Aimee Ellison, Daman Brar Gilmore, Kevin Nowrangi, Anthony Yeo, - Class of 2011: Nick Mahaffey, Taujai Mark Ard, Eric McDonald, Sam Lee, Neal Williams, Nabi Latif, Carolina Osorio Christopher - Class of 2012: Frank Randall. Serafin Lalas - Class of 2021: Tyler Cottrell, Blaire Heath, - Class of 2013: Claudia Carmona, Joseph Liu Jeeyoon Jung, Rosa Chung, Bianca - Class of 2015: Darcy Trenkle, Jared Gorsuch Rebolledo, Tom Parisi. Tonie Beltran, - Class of 2016: Piotr Pelc, JD Lii, Martin Wu Monique Harrison, Amanda Lim, Mamdouh - Class of 2017: Melissa Urquhart, Shannon Hanna Remick, Laura Obit, Rachel Nguyen, - Class of 2022: David Sheely, Joy Launio, Rebecca White, Tagbo Arene Caleb Ho-a-Shoo, Vivian Nguyen - Class of 2018: Jamian Reed, Maryellen Eller, - Class of 2023: Gretchen Ascher, Elizabeth Brent Willard, Tanya Josic, Mohsin Rajani, Ma, Nate Hoyt, Chetan Bhat, Sith Riantawan Pharez Rolle, Mona Mojtahedzadeh THANK YOU TO THE LOMA LINDA MEDICAL STUDENT PRITE WORKSHOP: Joellyn Sheehy (Leader), Mikyla Cho, Sue-Jean Yu, Valerie Pooudomsak, Alexis Carnduff, Hyein Ji ABOUT THIS GUIDE This guide contains all PRITE questions from 2001-2018. It is divided into sections based on relevance and further categorized by frequency of questions. If a question has been featured more than once, a (#x) appears at the end of the question. Thus, a question with (4x) means the question has been featured in 4 PRITE exams. All questions that were disputed or have more than one accepted answer have been deleted. While the questions are summaries of the PRITE questions, the answers are the actual answers from the PRITE exams. Therefore, some of these do not make good flashcards (e.g. Question: A risk factor for child abuse? Answer: Financial stress). These should be read through, especially the ones with multipliers, for exposure and priming of recall. HAPPY STUDYING! -THE NINJA 4 Table of Contents Neuroscience ............................................................................................................................................................................................................................................................. 6 Neuroanatomy ................................................................................................................................................................................................................................................ 6 Neurophysiology ......................................................................................................................................................................................................................................... 10 Neurotransmitters ...................................................................................................................................................................................................................................... 11 Neurology ................................................................................................................................................................................................................................................................ 13 Brain Lesions ................................................................................................................................................................................................................................................ 13 CVA .................................................................................................................................................................................................................................................................... 17 Dementia ........................................................................................................................................................................................................................................................ 19 Headache ....................................................................................................................................................................................................................................................... 22 Memory/Amnesia ...................................................................................................................................................................................................................................... 23 Miscellaneous Medicine ........................................................................................................................................................................................................................ 25 Muscle/Nerve .............................................................................................................................................................................................................................................. 26 Neuropharmacology .................................................................................................................................................................................................................................. 33 Radiology ........................................................................................................................................................................................................................................................ 34 Seizure/EEG .................................................................................................................................................................................................................................................. 35 Sleep ................................................................................................................................................................................................................................................................. 37 Movement/Tic Disorders ........................................................................................................................................................................................................................ 40 Diagnoses .................................................................................................................................................................................................................................................................. 43 ADHD ................................................................................................................................................................................................................................................................. 43 Anxiety ............................................................................................................................................................................................................................................................. 45 Bereavement/Loss ......................................................................................................................................................................................................................................
Recommended publications
  • A Syndrome-Based Clinical Approach for Clerkship Students General Comments 1. This Is Not an All-Inclusive “Cookbook” for Ev
    A Syndrome-Based Clinical Approach for Clerkship Students General Comments 1. This is not an all-inclusive “cookbook” for every Neurology patient, but a set of guidelines to help you rationally approach patients with certain syndromes (sets of signs and symptoms which suggest a lesion in particular parts of the nervous system). 2. As you obtain a history and perform a neurological physical exam, try initially to localize all the patient’s signs and symptoms to one, single lesion in the nervous system. It may be surprising that a variety of signs and symptoms, at first glance apparently unrelated, on second thought can localize accurately to a single lesion. If this approach fails, then consider multiple, separate lesions for the patient’s signs and symptoms. 3. The tempo or rate at which signs and symptoms develop or occur often suggests the underlying pathological process. a. sudden onset---favors stroke (ischemia or hemorrhage), seizure, migraine (or other headache syndromes), and trauma b. subacute onset---favors inflammatory, infectious or immune-mediated disorders c. chronic onset---favors degenerative disorders, tumors Toximetabolic disorders, potentially treatable and reversible, may mimic lesions in the nervous system, and can evolve at variable tempos. Hereditary conditions may be congenital (present at birth) and nonprogressive or static, or develop later in life, with variable rates of progression. Family members affected by the same genetic disorder may be remarkably similar with regards to onset and clinical severity, while some genetic disorders vary widely regarding when and how severely family members are affected. 4. In the central nervous system, “positive symptoms or phenomena,” such as flashes of light, or a tingling sensation, suggest “excitation” or increased activity in the nervous system: migraine or seizure.
    [Show full text]
  • Inherited Neuropathies
    407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs.
    [Show full text]
  • Scienti®C Review Spastic Movement Disorder
    Spinal Cord (2000) 38, 389 ± 393 ã 2000 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/00 $15.00 www.nature.com/sc Scienti®c Review Spastic movement disorder V Dietz*,1 1Paracare, Paraplegic Centre of the University Hospital Balgrist, ZuÈrich, Switzerland This review deals with the neuronal mechanisms underlying spastic movement disorder, assessed by electrophysiological means with the aim of ®rst, a better understanding of the underlying pathophysiology and second, the selection of an adequate treatment. For the patient usually one of the ®rst symptoms of a lesion within the central motor system represents the movement disorder, which is most characteristic during locomotion in patients with spasticity. The clinical examination reveals exaggerated tendon tap re¯exes and increased muscle tone typical of the spastic movement disorder. However, today we know that there exists only a weak relationship between the physical signs obtained during the clinical examination in a passive motor condition and the impaired neuronal mechanisms being in operation during an active movement. By the recording and analysis of electrophysiological and biomechanical parameters during a functional movement such as locomotion, the signi®cance of, for example, impaired re¯ex behaviour or pathophysiology of muscle tone and its contribution to the movement disorder can reliably be assessed. Consequently, an adequate treatment should not be restricted to the cosmetic therapy and correction of an isolated clinical parameter but should be based on the pathophysiology and signi®cance of the mechanisms underlying the disorder of functional movement which impairs the patient. Spinal Cord (2000) 38, 389 ± 393 Keywords: spinal cord injury; spasticity; electrophysiological recordings; treatment Introduction Movement disorders are prominent features of impaired strength of electromyographic (EMG) activation of function of the motor systems and are frequently best antagonistic leg muscles as well as intrinsic and passive re¯ected during gait.
    [Show full text]
  • THE NEUROLOGY Exam & Clinical Pearls
    THE NEUROLOGY Exam & Clinical Pearls Gaye McCafferty, RN, MS, NP-BC, MSCS, SCRN NPANYS-SPHP Education Day Troy, New York April 7, 2018 Objectives I. Describe the core elements of the neurology exam II. List clinical pearls of the neuro exam Neurology Exam . General Physical Exam . Mental Status . Cranial Nerves . Motor Exam . Reflex Examination . Sensory Exam . Coordination . Gait and Station 1 General Systemic Physical Exam Head Trauma Dysmorphism Neck Tone Thyromegaly Bruits MSOffice1 General Systemic Physical Exam .Cardiovascular . Heart rate, rhythm, murmur; peripheral pulses, JVD .Pulmonary . Breathing pattern, cyanosis, Mallampati airway .General Appearance Hygiene, grooming, weight (signs of self neglect) .Funduscopic Exam Mental Status Level of Consciousness . Awake . Drowsy . Somnolent . Comatose 2 Slide 5 MSOffice1 , 6/14/2009 Orientation & Attention . Orientation . Time . Place . Person Orientation & Attention . Attention . Digit Span-have the patient repeat a series of numbers, start with 3 or 4 in a series and increase until the patient makes several mistakes. Then explain that you want the numbers backwards. Normal-seven forward, five backward Hint; use parts of telephone numbers you know Memory Immediate recall and attention Tell the patient you want him to remember a name and address – Jim Green – 20 Woodlawn Road, Chicago Note how many errors are made in repeating it and how many times you have to repeat it before it is repeated correctly. Normal: Immediate registration 3 Memory . Short-term memory . About 5 minutes after asking the patient to remember the name and address, ask him to repeat it. Long –term memory . Test factual knowledge . Dates of WWII . Name a president who was shot dead Memory Mini-Mental State Exam – 30 items Mini-Cog – Rapid Screen for Cognitive Impairment – A Composite of 3 item recall and clock drawing – Takes about 5 minutes to administer Mini-Cog Mini-Cog Recall 0 Recall 1-2 Recall 3 Demented Non-demented Abnormal Clock Normal Clock Demented Non-demented 4 Memory .
    [Show full text]
  • Clinical Neurophysiology Board Review Q&A
    Clinical Neurophysiology Board Review Board Clinical Neurophysiology Clinical Neurophysiology Board Review Q&A Clinical Puneet K. Gupta, MD, MSE • Pradeep N. Modur, MD, MS • Srikanth Muppidi, MD his high-yield, illustrated clinical neurophysiology board review is a comprehen- Neurophysiology sive resource for assessing and refining the knowledge tested on multiple board Texaminations. Written by authors who are collectively board certified in all of the areas covered, the book is a valuable study tool for candidates preparing for certifica- tion or recertification in clinical neurophysiology, neuromuscular medicine, epilepsy, Board Review sleep medicine, and neurology. Using structured question formats typically encountered on boards, this comprehensive review allows users to assess their knowledge in a wide range of topics, provides rationales for correct answers, and explains why the other choices are incorrect. A unique “Pearls” section at the end of the book allows for quick review of the most important concepts prior to exam day. Clinical Neurophysiology Board Review Q&A contains 801 questions with answers and detailed explanations. The book is divided into eight chapters covering anatomy Q and physiology, electronics and instrumentation, nerve conduction studies and EMG, & EEG, evoked potentials and intraoperative monitoring, sleep studies, ethics and safety, and advanced topics including QEEG, MEG, TES, autonomic testing, and more. A Liberal use of image-based questions illustrating the full spectrum of neurophysiologic & tests and findings build interpretive skills. Questions are randomized and include Q A both case-related questions in series and stand-alone items to familiarize candidates Gu with the question types and formats they will find on the exam.
    [Show full text]
  • The Peripheral Nerves: Update on Ultrasound and Magnetic Resonance Imaging I
    The peripheral nerves: update on ultrasound and magnetic resonance imaging I. Möller1, M. Miguel2, D.A. Bong1, F. Zaottini3, C. Martinoli4 1Instituto Poal de Reumatologia, ABSTRACT of the nerve along its trajectory along University of Barcelona, Spain, The motor and sensory branches of with immediate one-to-one compari- and EULAR Working Group Anatomy the somatic peripheral nervous system son with the contralateral structures (6, for the Image; (PNS) can be visualised by different im- 7). In addition, US-guidance has led to 2Department of Pathology and Experimental Therapeutics, Human aging systems. This article focuses on the development of a variety of inter- Anatomy and Embryology Unit, imaging of peripheral nerves by mag- ventional procedures. The use of US is University of Barcelona, Spain; netic resonance imaging (MRI) and becoming widespread in providing ac- 3Department of Health Sciences, high-resolution ultrasound (US). The curate and safe regional anesthesia as DISSAL, University of Genoa; anatomic basis of the peripheral nerve well as focal and regional pain manage- 4 Department of Health Science, image, common pathologies and clini- ment. It has also becoming an increas- University of Genoa, Ospedale cal value of US and MRI imaging of pe- ingly important component of muscu- Policlinico San Martino, Genoa, Italy. ripheral nerves are reviewed. loskeletal specialties such as physical Ingrid Möller, MD medicine and rehabilitation and sports Maribel Miguel, MD David A. Bong, MD Introduction medicine. Federico Zaottini, MD Nerve pathology may be a cause of Carlo Martinoli, MD chronic pain and disability. The initial Anatomical considerations Please address correspondence to: diagnostic evaluation of the periph- The PNS includes spinal nerves that Dr David A.
    [Show full text]
  • Nonnekes Gait Upper Motor Neuron Syndrome Clean
    A review of the management of gait impairments in chronic unilateral upper motor neuron lesions Jorik Nonnekes MD PhD1, 2, Nathalie Benda MD PhD2, Hanneke van Duijnhoven MD1, Frits Lem MD2, Noël Keijsers PhD3, Jan Willem K. Louwerens MD PhD4, Allan Pieterse PT PhD1, Bertjo Renzenbrink MD,5 Vivian Weerdesteyn PT PhD,1,3 Jaap Buurke PT PhD,6,7 Alexander C.H. Geurts MD PhD1,2 1Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; 2Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands 3Research Department, Sint Maartenskliniek, Nijmegen, The Netherlands 4Department of Orthopaedics, Sint Maartenskliniek, Nijmegen, The Netherlands 5Rijndam Rehabilitation Center, Rotterdam, The Netherlands 6Roessingh Research and Development, Enschede, the Netherlands 7Biomedical Signals and Systems, MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands Running title: Gait impairments in supratentorial upper motor neuron syndromes Word count: 3497 Corresponding author Jorik Nonnekes, MD, PhD Radboud University Medical Centre Department of Rehabilitation PO Box 19101, 6500 HB Nijmegen The Netherlands E-mail: [email protected] ABSTRACT Importance: A variety of neurological disorders can damage the corticospinal tract in the supratentorial region of the brain. Gait impairments are common in patients with chronic supratentorial upper motor neuron lesions, and are a source of great disability. Clinical management aimed at improving the gait pattern in these patients is generally perceived as a challenging task, as many possible abnormalities may interact. Moreover, a multitude of treatment options exist – ranging from assistive devices and muscle stretching to pharmacological and surgical interventions – but evidence is inconclusive for most approaches and there is a lack of clear treatment guidelines.
    [Show full text]
  • Movement Disorders in the Elderly
    MOVEMENT DISORDERS IN THE ELDERLY Eugene C. Lai, M.D., Ph.D. Michael E. DeBakey VA Medical Center Baylor College of Medicine Houston, Texas MOVEMENT DISORDERS Neurologic dysfunctions in which there is either a paucity of voluntary and automatic movements (HYPOKINESIA) or an excess of movement (HYPERKINESIA) or uncontrolled movements (DYSKINESIA) typically unassociated with weakness or spasticity HYPOKINESIAS • Parkinson‟s disease • Secondary Parkinsonism • Parkinson‟s plus syndromes HYPERKINESIAS • Akathisia • Hemifacial spasm • Athetosis • Myoclonus • Ballism • Restless leg syndrome • Chorea • Tics • Dystonia • Tremor COMMON MOVEMENT DISORDERS IN THE ELDERLY • Parkinsonism • Tremor • Gait disorder • Restless leg syndrome • Drug-induced syndrome PARKINSONISM • Parkinson‟s disease • Secondary parkinsonism • Drug-induced parkinsonism • Vascular parkinsonism • Parkinson‟s plus syndromes • Multiple system atrophy • Progressive supranuclear palsy PARKINSON’S DISEASE PARKINSON’S DISEASE Classical Clinical Features • Resting Tremor • Cogwheel Rigidity • Bradykinesia • Postural Instability PARKINSON’S DISEASE Associated Clinical Features • Micrographia • Hypophonia • Hypomimia • Shuffling gait / festination • Drooling • Dysphagia NON-MOTOR COMPLICATIONS IN PARKINSON’S DISEASE • Sleep disturbances • Autonomic dysfunctions • Sensory phenomena • Neuropsychiatric manifestations • Cognitive impairment PARKINSON’S DISEASE General Considerations • The second most common progressive neurodegenerative disorder • The most common neurodegenerative movement
    [Show full text]
  • EMG (Electromyography) And/Or NCS (Nerve Conduction Studies)
    Tempe ñ Phoenix ñ Gilbert ñ Scottsdale ñ Peoria ñ Show Low PHONE: (480) 962-0071 www.SonoranSpine.com ñ www.SpineResearch.org Patient Name: Date: Date of Birth: S O N O R A N S P I N E -- R E F E R E N C E Electromyography and Nerve Conduction Studies An electromyogram (EMG) measures the electrical The electrode will be moved a number of times to activity of muscles at rest and during contraction. record the activity in different areas of the muscle or in Nerve conduction studies (NCS) measure how well and different muscles. how fast the nerves can send electrical signals. Nerve conduction studies If you have leg pain or numbness, you may undergo Several electrodes are attached to your skin. Several these tests to determine how much your nerves are quick electrical pulses are given to the nerve, and the being affected. These tests check how well the spinal time it takes for the muscle to contract in response to nerves and the nerves in your arms and legs are the electrical pulse is recorded. The speed of the working and whether there is nerve irritation or response is called the conduction velocity. The same damage. They do not test for pain. nerves on the other side of the body may be studied for comparison. When the test is done, the electrodes Why It Is Done are removed. An EMG is done to determine muscle tissue or nerve damage. It can find the cause of weakness, paralysis, How It Feels or muscle twitching.
    [Show full text]
  • Movement Disorders After Brain Injury
    Movement Disorders After Brain Injury Erin L. Smith Movement Disorders Fellow UNMC Department of Neurological Sciences Objectives 1. Review the evidence behind linking brain injury to movement disorders 2. Identify movement disorders that are commonly seen in persons with brain injury 3. Discuss management options for movement disorders in persons with brain injury Brain Injury and Movement Disorders: Why They Happen History • James Parkinson’s Essay on the Shaking Palsy • Stated that PD patients had no h/o trauma • “Punch Drunk Syndrome” in boxers (Martland, 1928) • Parkinsonian features after midbrain injury (Kremer 1947) • 7 pts, Varying etiology of injury • Many more reports have emerged over time History Chronic Traumatic Encephalopathy (CTE) • Dementia pugilistica (1920s) • Chronic, repeated head injury (30%) • Football players • Mike Webster, 2005 • Boxers • Other “combat” sports • Domestic violence • Military background • Many neurological sx • Dx on autopsy • Taupoathy Linking Brain Injury to Movement Disorders Timeline Injury Anatomy Severity Brain Injury and Movement Disorders Typically severe injury • Neurology (2018) • Rare after mild-moderate • 325,870 veterans injury • Half with TBI (all severities) Pre-existing movement • 12-year follow-up disorders may be linked • 1,462 dx with PD • Parkinson’s Disease (PD) • 949 had TBI • Caveats: • Mild TBI = 56% increased • Incidence is overall low risk of PD • Environmental factors • Mod-Severe TBI = 83% also at play increased risk of PD • Not all data supports it Timeline: Brain Injury
    [Show full text]
  • Nerve Conduction Studies: Essentials and Pitfalls in Practice
    NERVE CONDUCTION STUDIES: J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.069138 on 16 June 2005. Downloaded from ESSENTIALS AND PITFALLS IN PRACTICE A Mallik, A I Weir ii23 J Neurol Neurosurg Psychiatry 2005;76(Suppl II):ii23–ii31. doi: 10.1136/jnnp.2005.069138 neurologist has sent a patient for nerve conduction studies (NCS) and has received the report, but what does it mean? We hope to remove some of the mysteries that may Asurround NCS. The techniques and how they are affected by disease are described in general terms. These principles can be applied to specific conditions discussed elsewhere. We also discuss the numerous pitfalls that may be encountered with NCS. Understanding these basic concepts will allow you to get the most from your clinical neurophysiology department. NCS are only part of a complete peripheral neurophysiological examination (PNE) and are frequently accompanied by a needle electromyogram (EMG). The combination of both techniques and those detailed in other articles in this issue are often required for a complete diagnostic study. The process of choosing the appropriate tests is the responsibility of the clinical neurophysiologist (CN) and not the referring doctor and is planned as a dynamic series of steps designed to answer specific questions about nervous system function raised by the clinical picture. c ABBREVIATIONS Clinical neurophysiologists can employ a confusing number of terms and abbreviations. Box 1 lists the ones we use frequently. WHAT DO YOU TELL THE PATIENT ABOUT THE TESTS? NCS involve activating nerves electrically with small safe pulses over several points on the skin of copyright.
    [Show full text]
  • Patient Education Electromyogram (EMG) Nerve Conduction Study
    Patient Education Electromyogram (EMG) Nerve Conduction Study Explanation of Test Your doctor has ordered a test called an EMG. EMG stands for electromyogram which loosely translated means electrical testing of muscles, but it has come to mean electrical testing of nerves and muscles. A specialist, the electromyographer, who has specialized training in the field of electromyography, performs the EMG. EMG is an in-office procedure that does not require hospitalization. On average, an EMG takes anywhere between 30 minutes and 2 hours, depending on how extensive your test is ordered to be. It can be done at any time during the day and, with few exceptions, does not require any special preparation. Sometimes EMGs are thought to be a treatment of some sort, or a type of acupuncture. This is not true. An EMG is only a test, much like an EKG or an x-ray. EMGs are usually ordered when you are having problems with your muscles or nerves. EMG’s test the muscles and nerves of your arms and legs to identify problems. Weakness of your muscles or “fatigue” (tiredness) may indicate nerve or muscle disease and require an EMG. Usually combined with nerve conduction studies (NCS), EMG’s are the most important diagnostic tests for the evaluation of neuropathy and myopathy (nerve and muscle disease). These tests are performed on motor and sensory nerves, but only large myelinated fibers can be evaluated by nerve conduction studies. EMG’s help diagnose conditions such as in carpal tunnel syndrome, polyneuropathy (as seen with diabetes), nutritional deficiencies, autoimmune processes, or degradation of the myelin (a type of coating around the nerve axon which allows the electrical signal to travel faster), as seen in Guillan Barre´ Syndrome.
    [Show full text]