Bit MIPS Processor for Multi-Core
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Performance Optimizations on Tiled Many-Core Embedded Systems: a Matrix Multiplication Case Study
J Supercomput (2013) 66:431–487 DOI 10.1007/s11227-013-0916-9 High-performance optimizations on tiled many-core embedded systems: a matrix multiplication case study Arslan Munir · Farinaz Koushanfar · Ann Gordon-Ross · Sanjay Ranka Published online: 5 April 2013 © Springer Science+Business Media New York 2013 Abstract Technological advancements in the silicon industry, as predicted by Moore’s law, have resulted in an increasing number of processor cores on a single chip, giving rise to multicore, and subsequently many-core architectures. This work focuses on identifying key architecture and software optimizations to attain high per- formance from tiled many-core architectures (TMAs)—an architectural innovation in the multicore technology. Although embedded systems design is traditionally power- centric, there has been a recent shift toward high-performance embedded computing due to the proliferation of compute-intensive embedded applications. The TMAs are suitable for these embedded applications due to low-power design features in many of these TMAs. We discuss the performance optimizations on a single tile (processor core) as well as parallel performance optimizations, such as application decompo- sition, cache locality, tile locality, memory balancing, and horizontal communica- tion for TMAs. We elaborate compiler-based optimizations that are applicable to A. Munir () · F. Koushanfar Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA e-mail: [email protected] F. Koushanfar e-mail: [email protected] A. Gordon-Ross Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA e-mail: [email protected]fl.edu A. Gordon-Ross NSF Center for High-Performance Reconfigurable Computing (CHREC), University of Florida, Gainesville, FL, USA S. -
Tile Processor Architecture Overview for the Tilepro Series
TILE PROCESSOR ARCHITECTURE OVERVIEW FOR THE TILEPRO SERIES RELEASE 1.2 DOC. NO. UG120 MARCH 2011 TILERA CORPORATION Copyright © 2008-2011 Tilera Corporation. All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as may be expressly permitted by the applicable copyright statutes or in writing by the Publisher. The following are registered trademarks of Tilera Corporation: Tilera and the Tilera logo. The following are trademarks of Tilera Corporation: Embedding Multicore, The Multicore Company, Tile Processor, TILE Architecture, TILE64, TILEPro, TILEPro36, TILEPro64, TILExpress, TILExpress-64, TILExpress-20G, TILExpressPro-22G, iMesh, TileDirect, TILEmpower, TILEncore, TILE-Gx, TILE-Gx16, TILE-Gx36, TILE-Gx64, TILE-Gx100, DDC, Multicore Development Environment, Gentle Slope Programming, iLib, TMC (Tilera Multicore Components), hardwall, Zero Overhead Linux (ZOL), MiCA (Multistream iMesh Crypto Accelerator), and mPIPE (multicore Programmable Intelligent Packet Engine). All other trademarks and/or registered trademarks are the property of their respective owners. Third-party software: The Tilera IDE makes use of the BeanShell scripting library. Source code for the BeanShell library can be found at the BeanShell website (http://www.beanshell.org/developer.html). This document contains advance information on Tilera products that are in development, sampling or initial production phases. This information and specifications contained herein are subject to change without notice at the discretion of Tilera Corporation. No license, express or implied by estoppels or otherwise, to any intellectual property is granted by this document. -
Parallelized Benchmark-Driven Performance Evaluation of Smps and Tiled Multi-Core Architectures for Embedded Systems
Parallelized Benchmark-Driven Performance Evaluation of SMPs and Tiled Multi-Core Architectures for Embedded Systems Arslan Munir Ann Gordon-Ross*, and Sanjay Ranka+ Department of Electrical and Computer Engineering *Department of Electrical and Computer Engineering Rice University, Houston, Texas +Department of Computer and Email: [email protected] Information Science and Engineering University of Florida, Gainesville, Florida, USA Email: [email protected]fl.edu, [email protected]fl.edu Abstract—With Moore’s law supplying billions of transistors necessitates comparison and evaluation of these disparate on-chip, embedded systems are undergoing a transition from architectures for different embedded domains (e.g., distributed, single-core to multi-core to exploit this high transistor density for real-time, reliability-constrained). high performance. However, there exists a plethora of multi-core architectures and the suitability of these multi-core architectures Contemporary multi-core architectures are not designed for different embedded domains (e.g., distributed, real-time, to deliver high performance for all embedded domains, reliability-constrained) requires investigation. Despite the diver- but are instead designed to provide high performance for sity of embedded domains, one of the critical applications in many a subset of these domains. The precise evaluation of embedded domains (especially distributed embedded domains) multi-core architectures for a particular embedded domain is information fusion. Furthermore, many other applications consist of various kernels, such as Gaussian elimination (used requires executing complete applications prevalent in that in network coding), that dominate the execution time. In this domain. Despite the diversity of embedded domains, the paper, we evaluate two embedded systems multi-core architec- critical application for many embedded domains (especially tural paradigms: symmetric multiprocessors (SMPs) and tiled distributed embedded domains of which embedded wireless multi-core architectures (TMAs). -
Characterizing and Optimizing the Performance of the MAESTRO 49-Core Processor Eric W
Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-14-2014 Characterizing and Optimizing the Performance of the MAESTRO 49-core Processor Eric W. Mote Follow this and additional works at: https://scholar.afit.edu/etd Recommended Citation Mote, Eric W., "Characterizing and Optimizing the Performance of the MAESTRO 49-core Processor" (2014). Theses and Dissertations. 615. https://scholar.afit.edu/etd/615 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. CHARACTERIZING AND OPTIMIZING THE PERFORMANCE OF THE MAESTRO 49-CORE PROCESSOR THESIS Eric W. Mote, Captain, USAF AFIT-ENG-14-M-55 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, the Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-14-M-55 CHARACTERIZING AND OPTIMIZING THE PERFORMANCE OF THE MAESTRO 49-CORE PROCESSOR THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Eric W. -
A Survey of Multicore Processors
[ Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge] A Survey of Multicore Processors [A review of their common attributes] eneral-purpose multicore processors are being accepted in all segments of the industry, including signal processing and embedded space, as the need for more performance and general-pur- Gpose programmability has grown. Parallel process- ing increases performance by adding more parallel resources while maintaining manageable power characteristics. The implementations of multicore processors are numerous and diverse. Designs range from conventional multiprocessor machines to designs that consist of a “sea” of programmable arithmetic logic units (ALUs). In this article, we cover some of the attributes common to all multi- core processor implementations and illustrate these attributes with current and future commercial multi- © PHOTO F/X2 core designs. The characteristics we focus on are applica- tion domain, power/performance, processing elements, memory system, and accelerators/integrated peripherals. INTRODUCTION Parallel processors have had a long history going back at least scalar processor that could be easily programmed in a conven- to the Solomon computer of the mid-1960s. The difficulty of tional manner, and the vector programming paradigm was not programming them meant they have been primarily employed as daunting as creating general parallel programs. Recently by scientists and engineers who understood the application the evolution of parallel machines has changed dramatically. domain and had the resources and skill to program them. For the first time, major chip manufacturers—companies Along the way, a surprising number of companies created par- whose primary business is fabricating and selling microproces- allel machines. They were largely unsuccessful since their dif- sors—have turned to offering parallel machines, or single chip ficulty of use limited their customer base, although, there were multicore microprocessors as they have been styled.