54Th EUROPEAN MARINE BIOLOGY SYMPOSIUM DUBLIN, IRELAND | 25-29 AUGUST 2019

Total Page:16

File Type:pdf, Size:1020Kb

54Th EUROPEAN MARINE BIOLOGY SYMPOSIUM DUBLIN, IRELAND | 25-29 AUGUST 2019 54th EUROPEAN MARINE BIOLOGY SYMPOSIUM DUBLIN, IRELAND | 25-29 AUGUST 2019 BOOK OF ABSTRACTS SPONSORS EMBS54 would like to acknowledge and thank our symposium sponsors for their generous support. Contents Plenary presentations 9 Armstrong, It’s the ecology, stupid – Willingness to pay to protect cold-water coral 10 Johnston et al, The Great Speeding Up of our Coasts and Oceans 11 Poloczanska, Biodiversity redistribution in a changing climate 12 Webb, Traits in Space: Enriching species occurrence data with species attributes for traits- based marine macroecology 13 Whelan, Atlantic Salmon lost at sea 14 Rapid Change 15 Rilov, Two opposing climate change threats: sea level rise and extreme desiccation events threaten Mediterranean vermetid reef communities 16 Gorska et al, Influence of melting glaciers on size spectra and functioning of zoobenthic communities in Arctic fjords 17 Vascotto et al, Deciphering long-term variability of the phytoplankton community in a highly variable coastal sea (Gulf of Trieste) 18 Capdevila et al, Are marine species more resilient to global change than terrestrial ones? 19 Bonzi et al, From desert to sea: mechanisms Arabian pupfish use to acclimate to high salinities in the Red Sea 20 White et al, Multiple stressors and the stability of marine ecosystems 21 Farina et al, Ocean acidification effects on top-down control of the functional species Paracentrotus lividus in marine benthic ecosystems 22 Ferrario et al, A fuzzy model to detect Mediterranean marinas at high-risk of marine bioinvasion 23 Ferreira et al, Combining 10-years in-situ data with a satellite remote sensing dataset to help evaluate climate change effects on Antarctic phytoplankton communities 24 Kotta et al, Assessing effects of cumulative impacts of human pressures on nature assets 25 Murase et al, Counter-directional body size clines within a Japanese amphidromous fish inferred from otolith analysis 26 Navarro et al, Local environmental conditions experienced by marine bivalves determine their physiological response to warming and high levels of pCO2. 27 Pack et al, Long-term physiological tolerance of a non-indigenous species to near-future warming and ocean acidification 28 Pyko et al, Microplastic pollution as a possible threat for an arctic reef system and its association of ecosystem engineers 29 1 Reddin et al, From short-term experiments to ancient hyperthermal events: marine clade sensitivities to climate change conform across time scales 30 Talijančić et al, Human-mediated marine environments induce rapid phenotypic changes in wild fishes 31 Turicchia et al, How is the increasing frequency of thermal anomalies change the extent and functioning of gorgonian forests in the Mediterranean Sea? 32 Van Colen et al, Clam feeding plasticity alleviate herbivore sensitivity to ocean warming and acidification 33 White et al, The multifaceted contributions of individual species to the stability of ecosystems 34 Detree et al, Effect of temperature and food limitation on the energy metabolism of two species of sea urchins from high lattitude. 35 Mangan et al, Shining light on the importance of intertidal benthic primary productivity to estuarine ecosystem function 36 Pilditch et al, Can biodiversity-ecosystem function relationships predict tipping points in soft sediments? Insights from a multi-stressor national field experiment 37 Hadjioannou et al, Cladocora caespitosa in a rapidly changing environment: effects from eutrophication, windstorm and warming event 38 Zalota et al, Observing an ongoing aggressive invasion of a large predatory crab in the pristine Arctic Kara Sea. 39 Wiltshire et al, Phytoplankton and Warming of the North Sea: a summary 40 Cunningham et al, Microplastics in aquatic systems – genuine threat or over exaggeration? 41 Ferrario et al, High occurrence of non-indigenous species travelling in the Mediterranean Sea by recreational boats 42 Kolyuchkina et al, Long-term changes of the northeastern Black Sea coastal macrozoobenthos in the XXI century 43 Lopez et al, Warming effects on biogeochemical cycling of algal wrack subsidies in Antarctic shores 44 White et al, Heat waves as a driver of change in mudflat macroinvertebrate communities 45 Movement and redistribution of species 46 Leclerc et al, Age of recipient assemblages determines bio-invasion under realistic assembly rules 47 Basset et al, Space use behaviour, spatial distribution of populations and organisation models in marine guilds 48 Coleman et al, Limpets in the rough: Manipulating habitat topography to understand animal orientation decisions 49 Dawson et al, Population connectivity of humpback whales (Megaptera novaeangliae) recorded in the breeding grounds of the Pitcairn Islands, central South Pacific. 50 2 Doogan et al, Early migration behaviour and mortality of Atlantic salmon (Salmo salar) from the Burrishoole River, western Ireland 51 Doogan et al, Early migration behaviour and mortality of Atlantic salmon (Salmo salar) from the Burrishoole River, western Ireland 52 Juanes et al, Database of macroalgae presence data: OCLE 53 Loher, Connectivity of Pacific halibut in North American waters: scales of movement and relevance to fishery management 54 Mancinelli et al, Predicting the potential distribution of the Lessepsian blue swimmer crab Portunus segnis in the Mediterranean Sea 55 McGinty et al, Projected copepod community changes and trait re-structuring in the North Atlantic due to changing climate 56 McInturf et al, Use of a hydrodynamic model to examine behavioral response of broadnose sevengill sharks (Notorynchus cepedianus) to an estuarine energy landscape 57 Norrie et al, Larval subsidies from bivalve aquaculture may assist with restoration programmes. 58 Ponti et al, Can environmental gradients promote non-indigenous species recruitment? The case study of the Ravenna channel-port 59 Rodriguez-Perez et al, Open or closed populations? The larval behaviour of the European oyster and why it matters 60 Roman-Torres et al, Effects of climate change on the sea turtles feeding ecology 61 Sinopoli et al, The role of FADs (Fish Aggregating Devices) in the dispersal of fish in Sicilian coast 62 Strickler et al, Ciliate epibionts - a symbiotic solution to nutrient diffusion limitation in large diatoms 63 Tray et al, Investigating scale trace element microchemistry as a tool to track adult North Atlantic salmon populations. 64 Wichmann et al, Distribution & growth of stocked European glass eels released in the eastern German Baltic Sea 65 Jackson et al, Can changing distributions of benthic species be tracked using long-term datasets from volunteer divers? 66 McIlroy et al, Subtropical thermal variation supports persistence of corals but limits productivity of coral reefs 67 Vandepitte et al, 15 years of the European Ocean Biogeographic Information System (EurOBIS) 68 Allegra et al, A method for assessing the distribution of the alien jellyfish Cassiopea andromeda (Forsskal, 1775) in areas of difficult access. 69 Ellrich et al, Mechanisms underlying predator-driven biotic resistance against introduced barnacles on the Pacific coast of Hokkaido, Japan 70 Ponti et al, A baseline of epibenthic species distribution on the northern Adriatic mesophotic biogenic reefs 71 3 Reddin et al, Marine invertebrate distributions trace climate change over 450 million years 72 Srinivasan et al, A Tool to Rapidly Assess Spatiotemporal Changes in Species Distributions 73 Irie, Dispersal footprint on water: Availability of Sr concentration of larval shells in widely distributed gastropods 74 Andrews et al, Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland 75 Fundamental Biological Traits 76 Dekeyzer et al, Marine species traits in the LifeWatch Taxonomic Backbone 77 Hammock et al, Aggregated trait data for global questions: coverage and fitness for use 78 Lockley et al, Maternal effects buffer biased sex ratios in species with temperature dependent sex determination – the case of the loggerhead turtle 79 Barker et al, Securing the future of the Critically Endangered Angelshark (Squatina squatina) through multidisciplinary approaches to study this rare, cryptic elasmobranch 80 Sealey et al, Investigation of juvenile Angelshark (Squatina squatina) habitat in the Canary Islands to inform protection of this Critically Endangered species 81 Vesal et al, Effects of sewage discharge on macrofaunal communities nearby the underwater sewage duct of Trieste (northern Adriatic Sea) on temporal scale 82 Lobov et al, Gametic isolation proteins in the model of intertidal snails sibling species. 83 Vargas et al, Have we underestimated the effects of ocean acidification on different biological traits? 84 Käß et al, Functional patterns of macrofauna at the Arctic deep-sea observatory HAUSGARTEN 85 Maltseva et al, Littorina snails and environmental stress: the first to measure the second. 86 Skinner et al, Prevalence of pelagic dependence among coral reef predators across an atoll seascape. 87 Žužul et al, Combination of molecular and morphological characteristics to assess different origins 88 Mavraki et al, Feeding preferences of seven dominant fouling species: trophic specialists or generalists? 89 Gladstone-Gallagher et al, Linking traits across ecological scales determines functional resilience to disturbance 90 Mancinelli et al, The tufted ghost crab Ocypode cursor in the Mediterranean Sea: an updated overview of its distribution 91 Campos et al, The ecology of yellow gurnard Trigla lucerna in a temperate estuary 92 Cilenti et al, Impacts of the invasive
Recommended publications
  • The Role of Temperature in Survival of the Polyp Stage of the Tropical Rhizostome Jelly®Sh Cassiopea Xamachana
    Journal of Experimental Marine Biology and Ecology, L 222 (1998) 79±91 The role of temperature in survival of the polyp stage of the tropical rhizostome jelly®sh Cassiopea xamachana William K. Fitt* , Kristin Costley Institute of Ecology, Bioscience 711, University of Georgia, Athens, GA 30602, USA Received 27 September 1996; received in revised form 21 April 1997; accepted 27 May 1997 Abstract The life cycle of the tropical jelly®sh Cassiopea xamachana involves alternation between a polyp ( 5 scyphistoma) and a medusa, the latter usually resting bell-down on a sand or mud substratum. The scyphistoma and newly strobilated medusa (5 ephyra) are found only during the summer and early fall in South Florida and not during the winter, while the medusae are found year around. New medusae originate as ephyrae, strobilated by the polyp, in late summer and fall. Laboratory experiments showed that nematocyst function, and the ability of larvae to settle and metamorphose change little during exposure to temperatures between 158C and up to 338C. However, tentacle length decreased and ability to transfer captured food to the mouth was disrupted at temperatures # 188C. Unlike temperate-zone species of scyphozoans, which usually over-winter in the polyp or podocyst form when medusae disappear, this tropical species has cold-sensitive scyphistomae and more temperature-tolerant medusae. 1998 Elsevier Science B.V. Keywords: Scyphozoa; Jelly®sh; Cassiopea; Temperature; Life history 1. Introduction The rhizostome medusae of Cassiopea xamachana are found throughout the Carib- bean Sea, with their northern limit of distribution on the southern tip of Florida. Unlike most scyphozoans these jelly®sh are seldom seen swimming, and instead lie pulsating bell-down on sandy or muddy substrata in mangroves or soft bottom bay habitats, giving rise to the common names ``mangrove jelly®sh'' or ``upside-down jelly®sh''.
    [Show full text]
  • Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia Sp at Kenya’S Gazi Bay
    American Journal of Life Sciences 2014; 2(6): 395-399 Published online December 31, 2014 (http://www.sciencepublishinggroup.com/j/ajls) doi: 10.11648/j.ajls.20140206.20 ISSN: 2328-5702 (Print); ISSN: 2328-5737 (Online) Population and spatial dynamics mangrove jellyfish Cassiopeia sp at Kenya’s Gazi bay Tsingalia H. M. Department of Biological Sciences, Moi University, Box 3900-30100, Eldoret, Kenya Email address: [email protected] To cite this article: Tsingalia H. M.. Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia sp at Kenya’s Gazi Bay. American Journal of Life Sciences. Vol. 2, No. 6, 2014, pp. 395-399. doi: 10.11648/j.ajls.20140206.20 Abstract: Cassiopeia, the upside-down or mangrove jellyfish is a bottom-dwelling, shallow water marine sycophozoan of the phylum Cnidaria. It is commonly referred to as jellyfish because of its jelly like appearance. The medusa is the dominant phase in its life history. They have a radial symmetry and occur in shallow, tropical lagoons, mangrove swamps and sandy mud falls in tropical and temperate regions. In coastal Kenya, they are found only in one specific location in the Gazi Bay of the south coast. There are no documented studies on this species in Kenya. The objective of this study was to quantify the spatial and size-class distribution, and recruitment of Cassiopeia at the Gazi Bay. Ten 50mx50m quadrats were randomly placed in an estimated study area of 6.4ha to cover about 40 percent of the total study area. A total of 1043 individual upside-down jellyfish were sampled. In each quadrat, all jellyfish encountered were sampled individually.
    [Show full text]
  • The Puzzling Occurrence of the Upside-Down Jellyfish Cassiopea
    ZOOLOGIA 37: e50834 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE The puzzling occurrence of the upside-down jellyfishCassiopea (Cnidaria: Scyphozoa) along the Brazilian coast: a result of several invasion events? Sergio N. Stampar1 , Edgar Gamero-Mora2 , Maximiliano M. Maronna2 , Juliano M. Fritscher3 , Bruno S. P. Oliveira4 , Cláudio L. S. Sampaio5 , André C. Morandini2,6 1Departamento de Ciências Biológicas, Laboratório de Evolução e Diversidade Aquática, Universidade Estadual Paulista “Julio de Mesquita Filho”. Avenida Dom Antônio 2100, 19806-900 Assis, SP, Brazil. 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14 101, 05508-090 São Paulo, SP, Brazil. 3Instituto do Meio Ambiente de Alagoas. Avenida Major Cícero de Góes Monteiro 2197, 57017-515 Maceió, AL, Brazil. 4Instituto Biota de Conservação, Rua Padre Odilon Lôbo, 115, 57038-770 Maceió, Alagoas, Brazil 5Laboratório de Ictiologia e Conservação, Unidade Educacional de Penedo, Universidade Federal de Alagoas. Avenida Beira Rio, 57200-000 Penedo, AL, Brazil. 6Centro de Biologia Marinha, Universidade de São Paulo. Rodovia Manoel Hypólito do Rego, km 131.5, 11612-109 São Sebastião, SP, Brazil. Corresponding author: Sergio N. Stampar ([email protected]) http://zoobank.org/B879CA8D-F6EA-4312-B050-9A19115DB099 ABSTRACT. The massive occurrence of jellyfish in several areas of the world is reported annually, but most of the data come from the northern hemisphere and often refer to a restricted group of species that are not in the genus Cassiopea. This study records a massive, clonal and non-native population of Cassiopea and discusses the possible scenarios that resulted in the invasion of the Brazilian coast by these organisms.
    [Show full text]
  • Cassiopea Andromeda (Forsskål, 1775) [Cnidaria: Scyphozoa: Rhizostomea]
    Aquatic Invasions (2006) Volume 1, Issue 3: 196-197 DOI 10.3391/ai.2006.1.3.18 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Short communication A new record of an alien jellyfish from the Levantine coast of Turkey - Cassiopea andromeda (Forsskål, 1775) [Cnidaria: Scyphozoa: Rhizostomea] Cem Çevik*, Itri Levent Erkol and Benin Toklu Çukurova University, Faculty of Fisheries,Department of Marine Biology, Adana, 01330, Turkey Email: [email protected] *Corresponding author Received 17 July 2006; accepted in revised form 5 September 2006 Abstract To date, three alien scyphozoan species were reported from the Eastern Mediterranean, but only one, Rhopilema nomadica, was reported from the Turkish coast. Recently, a second alien scyphozoan, Cassiopea andromeda, was collected on 20 July 2005 in Iskenderun Bay, SE Turkey. Key words: Cassiopea andromeda, Scyphozoa, Levant Sea, Turkey, Iskenderun Bay, alien species Cassiopea andromeda (Forsskål, 1775) is the Factory (36°11.200'N and 36°43.100'E) on first Erythrean scyphomedusan species reported 20.07.2005. The site was sampled monthly since from the Mediterranean following the opening of 2002. the Suez Canal. It had been collected in the Suez Two of the six individuals found which have a Canal in 1886 (Galil et al. 1990), and soon after mean umbrella length of 5 cm were taken for from Cyprus (Maas 1903). Nearly half a century further investigation in the laboratory, and were later it was found in Neokameni, a small determined as C. andromeda (Figure 1) volcanic island near Thira, in the southern according to the identification key given by Galil Aegean Sea (Schäffer 1955), and later in et al.
    [Show full text]
  • R on Anew British Sea Anemone. by T
    [ 880 ~ r On aNew British Sea Anemone. By T. A~ Stephenson, D.Se., Department of Zoology, University Oollege, London With 1 Figure in the Text. IT is a curious fact that the majority of the British anemones had been discovered by 1860, and that half of them, as listed at that date, had been established during a burst of energy on the part of Gosse and his collectingfriends. Gosseadded 28 speciesto the BritishFauna himself. It is still more surprising that since Gosse ceased work, no authentic new ones have been added, other than more or less offshore forms, with'the ex- ception of Sagartia luci()3,'and this species appears to have been imported from abroad. There is, however, an anemone which occurs on the Break- water and Pier at Plymouth, which has not yet been described. Dr. Allen tells me it has been on the Breakwater as long as he can remember, and to him I am indebted for the details of its habitat given further on. Whether it occurs elsewhere than in the Plymouth district and has been seen but mistaken for the young of Metridiurn dianthus, is as yet unknown. The anemone in question, which is the subject of this paper, is a small creature, bright orange or fawn in colour, and presenting at first sight some resemblance to. young specimens of certain colour-varieties of Metridium. When the two forms are observed carefully, however, and irnder heaJ:thy conditions, it becomes evident that they are perfectly distinct from each other; and a study of their anatomy bears out this fact.
    [Show full text]
  • Seasearch Seasearch Wales 2012 Summary Report Summary Report
    Seasearch Wales 2012 Summary Report report prepared by Kate Lock, South and West Wales coco----ordinatorordinator Liz MorMorris,ris, North Wales coco----ordinatorordinator Chris Wood, National coco----ordinatorordinator Seasearch Wales 2012 Seasearch is a volunteer marine habitat and species surveying scheme for recreational divers in Britain and Ireland. It is coordinated by the Marine Conservation Society. This report summarises the Seasearch activity in Wales in 2012. It includes summaries of the sites surveyed and identifies rare or unusual species and habitats encountered. These include a number of Welsh Biodiversity Action Plan habitats and species. It does not include all of the detailed data as this has been entered into the Marine Recorder database and supplied to Natural Resources Wales for use in its marine conservation activities. The data is also available on-line through the National Biodiversity Network. During 2012 we continued to focus on Biodiversity Action Plan species and habitats and on sites that had not been previously surveyed. Data from Wales in 2012 comprised 192 Observation Forms, 154 Survey Forms and 1 sea fan record. The total of 347 represents 19% of the data for the whole of Britain and Ireland. Seasearch in Wales is delivered by two Seasearch regional coordinators. Kate Lock coordinates the South and West Wales region which extends from the Severn estuary to Aberystwyth. Liz Morris coordinates the North Wales region which extends from Aberystwyth to the Dee. The two coordinators are assisted by a number of active Seasearch Tutors, Assistant Tutors and Dive Organisers. Overall guidance and support is provided by the National Seasearch Coordinator, Chris Wood.
    [Show full text]
  • Biochemical Characterization of Cassiopea Andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea
    marine drugs Article Biochemical Characterization of Cassiopea andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea Gianluca De Rinaldis 1,2,† , Antonella Leone 1,3,*,† , Stefania De Domenico 1,4 , Mar Bosch-Belmar 5 , Rasa Slizyte 6, Giacomo Milisenda 7 , Annalisa Santucci 2, Clara Albano 1 and Stefano Piraino 3,4 1 Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; [email protected] (G.D.R.); [email protected] (S.D.D.); [email protected] (C.A.) 2 Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy; [email protected] 3 Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy; [email protected] 4 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy 5 Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, 90128 Palermo, Italy; [email protected] 6 Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway; [email protected] 7 Centro Interdipartimentale della Sicilia, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo, 90142 Palermo, Italy; [email protected] Citation: De Rinaldis, G.; Leone, A.; * Correspondence: [email protected]; Tel.: +39-0832-422615 De Domenico, S.; Bosch-Belmar, M.; † These authors contributed equally to this work. Slizyte, R.; Milisenda, G.; Santucci, A.; Albano, C.; Piraino, S.
    [Show full text]
  • On Methods of Reproduction As Specific Characters
    [ 131 ] On Methods of Reproduction as Specific Characters. By T. A. Stephenson, D.Se., Zoology Department, University College, London." " With 11 Figures in the Text. CONTENTS. PAGE Introduction. 131 1. The methods of reproduction prevalent among Actinians 132 2. Data relating to the subject collected by W. E. Evans 137 3. Account of experiments at Plymouth . 139 4. Evidence derived from the literature 154 5. The effect of the mode of reproduction upon the morphology. 157 6. Reproduction in the British species as a whole 158 7. Discussion 159 8. Summary. 166 Literature 167 INTRODUCTION. THE primary aim of this paper is to show tha~ among certain Actinians investigated, the species are sharply differentiated by their divers methods of reproduction; and to point out that the general question of species is one which is worthy of the attention of experimental biologists. Arguments supporting these contentions will be found in Section 7. I should like to make the following acknowledgments. I have received a grant, which has made the work described possible, from the Department of Scientific and Industrial Research. I have received interest and advice from Prof. Watson, and invaluable assistance (detailed below) from Mr. W. Edgar Evans. The whole cultural side of the work was carried out by my wife, who also provided Text-Figs. 2 and 3, and the sections from which they were drawn. I am very much indebted also to the Plymouth staff and to Miss M. Delap, of Valencia, and Mr. Ehnhirst, of Millport, for the collection of the large amount of material required. LIBRARY M.B.A.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
    W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.
    [Show full text]
  • Download and Streaming), and Products (Analytics and Indexes)
    BOOK OF ABSTRACTS 53RD EUROPEAN MARINE BIOLOGY SYMPOSIUM OOSTENDE, BELGIUM 17-21 SEPTEMBER 2018 This publication should be quoted as follows: Mees, J.; Seys, J. (Eds.) (2018). Book of abstracts – 53rd European Marine Biology Symposium. Oostende, Belgium, 17-21 September 2018. VLIZ Special Publication, 82. Vlaams Instituut voor de Zee - Flanders Marine Institute (VLIZ): Oostende. 199 pp. Vlaams Instituut voor de Zee (VLIZ) – Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium Tel. +32-(0)59-34 21 30 – Fax +32-(0)59-34 21 31 E-mail: [email protected] – Website: http://www.vliz.be The abstracts in this book are published on the basis of the information submitted by the respective authors. The publisher and editors cannot be held responsible for errors or any consequences arising from the use of information contained in this book of abstracts. Reproduction is authorized, provided that appropriate mention is made of the source. ISSN 1377-0950 Table of Contents Keynote presentations Engelhard Georg - Science from a historical perspective: 175 years of change in the North Sea ............ 11 Pirlet Ruth - The history of marine science in Belgium ............................................................................... 12 Lindeboom Han - Title of the keynote presentation ................................................................................... 13 Obst Matthias - Title of the keynote presentation ...................................................................................... 14 Delaney Jane - Title
    [Show full text]
  • Translation Series No.1813
    1.1 :1-‘,:RounTE;s- FISHERIES RESEARCH BOARD OF CANADA Trans1atjo x. No. 1813 • Actiniarian nqmatocysts and their importance for classification by H. Schmidt Original title: Die Nesselkapseln der Aktinien und ihre differentialdiagnostische Bedeutung • From: Helgolander wiss. Meeresunters, 19: 284-317, 1969 Translated by the Translation Bureag(VNN) Foreign Languages Division Department of the Secretary of State of Canada Fisheries Research Board of Canada Biological Station Nanaimo, B. C. 1971. 63 pages typescript f \ DE1PARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU BUREAU DES TRADUCTIONS FOREIGN LANGUAGES DIVISION DES LANGUES DIVISION CANADA ÉTRANGÈRES TRANSLATED FROM - TRADUCTION DE INTO - EN German English AUTHOR - AUTEUR H. SCHELDT TITLE IN ENGLISH - TITRE ANGLAIS Actiniarian nematocysts and their importance • for c1aseification Title in foreign lamguage- (tr-ansliterate forelek-choulactere) Die Nesse1kapeeln der Aktinien und ihre differentia1diagnoetische Bedeutung R EFRENCE‘ IN FOREIGNI,ANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CHAIRACTERS. REFERENCE EN LANGUE ETRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET.TRANSCRIRE EN CARACTERES PHONÉTIQUES. Helgordader wiss. Meeresunters. 19, 284 - 317, 1969 REFERENCE IN ENGLISH - RÉFÉRENCE EN ANGLAIS PUBL ISH ER - ÉDITEUR PAGE.NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMEROS DES PAGES DANS DATE DE PUBLICATION L'ORIGINAL YEAR ISSUE NO. 284 - 317 VOLUME ANNEE NUMÉRO PLACE OF PUBLICATION NUMBER OF TYPED PAGES • LIEU.DE PUBLICATION NOMBRE DE PAGES DACTYLOGRAPHIÉES 1969 63 0448 REQUESTING DEPARTMENT Fisheries and Forestry TRANSLATION BUREAU NO. MINISTÉRE-CLIENT NOTRE . DOSSIER NO VNN BRANCH OR DIVISION Fisheries Research Board TRANSLATOR (INITIALS) DIRECTION OU DIVISION TRADUCtEUR (INITIALES) Dr. M. Arai, 1911 PERSONf;EQUESTING Biological Station, DATE SOMPLETED Lail.
    [Show full text]