Petrography and the Volcanic Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Petrography and the Volcanic Rocks Geochemical Journal, Vol. 18, pp. 217 to 232, 1984 Petrography and major element chemistry of the volcanic rocks of the Andes, southern Peru SHIGEO ARAMAKI,' NAOKI ONUMA2 and FELIX PORTILLO3 Earthquake Research Institute, University of Tokyo , Bunkyo-ku, Tokyo 113,' Department of Earth Sciences, Ibaraki University, Mito 3102 and Instituto Geologica Minero y Metalurgico, Lima, Peru3 (Received December 12, 1983: Accepted May 29, 1984) More than 200 samples of late Tertiary to Quaternary volcanic rocks have been collected from the northern sector of the central volcanic zone of the Andean belt occupying southern Peru. The most abun dant rock type is the pyroxene andesite. Many of the rock samples carry hornblende and/or biotite pheno crysts. Small amounts of shoshonites occur on the back arc side near Puna and Siquani and olivine-augite basanites occur on the western shore of Lake Titicaca. The SiO2 frequency has, a mode in the 60-65% range which is about 5% higher than the Quaternary volcanic rocks of Japan. The K20 content shows a distinct tendency to increase away from the front, while the Na20 content tends to decrease in the same direction. The K, Sr and Ba contents of the late Tertiary to Quaternary volcanic rocks of the northern part of the central zone of the Andean volcanic belt (southern Peru) show regular increase away from the volcanic front. At the same time, a slight northwestward increase along the arc is detected. The Na content regularly decreases away from the front making a strong contrast to the Japanese Quaternary volcanic arcs, which does not show any regular change. The Na content is conspicuously higher in the northwestern frontal zone than the rest. Prediction, Tohoku University, seismology) and INTRODUCTION N. FUJn (Department of Earth Sciences, Kobe A cooperative project on the geochemical University, volcano physics). The Peruvian study of central Andean volcanic zone was research group consisted of the staff of carried out during the period from May, 1980 INGEMMET, C. GUEVARA (Chief, Geology through March, 1982, including the field work section), F. PORTILLO (geology), M. MONTOYA and laboratory analyses. The project was co (geology) and J. A. LAJO (geology). sponsored by the Overseas Scientific Research, Our objective was to elucidate the processes Ministry of Education (Mombusho) of Japan and of generation and evolution of the magma Instituto Geologico Minero y Metalurgico formed through the chemical interactions (INGEMMET) of Peru. The Japanese research between the subducting Nazca plate and the group consisted of N. ONUMA (Project leader, mantle at depths on the basis of the geochemical Department of Earth Sciences, Ibaraki Uni studies of Andean andesties in the central Andes versity, trace element geochemistry), S. volcanic belt (southern Peru) where volcanism is ARAMAKI (Earthquake Research Institute, Uni taking place over the crust which is the thickest versity of Tokyo, geology and major element (about 70km) in the world. geochemistry), K. NOTSU (Institute of Chem The main field work took place in the sum istry, University of Tsukuba, Sr isotope geo mer of 1980 for about 70 days and the area chemistry), I. KANEOKA (Geophysical Institute, covered ranged from 14'S to 18'S crossing the University of Tokyo, K-Ar dating), A. whole width of the Andean volcanic belt (Fig. HASEGAWA(Observation Center for Earthquake 1). The area is located at the northernmost 217 218 S. ARAMAKI et al. sector of the central zone of the Andean vol straints stated above. canic belt which overlies the Nazca plate sub ducting eastward, and corresponds to a transi SAMPLE COLLECTION tion zone between the normal and abnormal subduction segments of the Nazca plate (HASE Selection of the sampling locality depended GAWA and SACKS, 1981). The northern limit of totally on the extensive information already the central zone roughly corresponds to the collected by INGEMMET, Peru. Based on the northern limit of the part of the Nazca plate published and unpublished geologic quadrangle subducting at an angle of about 30 degrees maps and reports, sites were selected for the (normal subduction). To the north of this, the representative Quaternary volcanic suites in Nazca plate dips at about 30 degrees for the southern Peru. In principle, rocks designated first 100km of the descent from the trench, as Barroso group (see KANEOKA and GUEVARA, but remains nearly horizontal for the next 1984, Fig. 2) were our main target while those 300km and then dips again at about 30 degrees of the Senca and Tacaza were excluded. It (abnormal subduction). The horizontal portion was hoped that by restricting the geologic age roughly corresponds to the northern extension 800 60° W of the central volcanic zone. The virtual absence of the young volcanic activity in this area may 1 be due to the shallow depth of the subducting Nazca plate and the very thick (about 70km, 000OS CUMMINGS and SCHILLER, 1971) crust acting PLATE r together to restrict the amount of the astheno sphere edge below this area (HASEGAWA and 0° SOUTH 0° SACKS,in preparation). Galapagos AMERICAN Is. This report is one of a series of papers result PLATE ing from the current project and deals with the \ summary of petrography, major element geo N A Z C A chemistry and chemical mapping of the volcanic rocks. PLATE R-S Abundant volcanic centers and volcanic 200S 20° nI materials occur in the studied area spanning in die II r-I age from early Tertiary to historic time. Strati tioa MR graphy has been extensively studied by the INGEMMET scientists but radiometric dating has been so far very limited (KANEOKA and zl i GUEVARA, 1984). Therefore one of the main Chile 21 difficulties in characterizing the Andean vol Rise i 400 400 Ig canism in comparison with more well-defined I volcanic arcs such as those in the Japanese islands is to distinguish the spatial variation of ANTARCTIC Ia PLATE 0 the volcanic materials from the temporal one. Major and minor element data published by `ae LEFEVRE (1973, 1979) cover the southern half of the area of the present study. He demon 1000 800 strated a clear tendency of increasing K content Fig. 1. Index map of the Andean volcanic belt. Dots away from the volcanic front but his results indicate the distribution of the Quaternary volcanoes. also cannot escape from the temporal con Obliquely ruled area corresponds to Fig. 2. Volcanic rocks of the Andes 219 CZ-03 ,CZ 02 PERU SICUANI N PPD-30• •PPD-10 1 PP0-56•. 1 PPD-4 OP 03 0P 01 1 PPD-47 f OP 0 4 OP 05 PPD-108• AYAVIRI S •PPD-101OP O 6 / CM-03 OF O / CM-04/CM-02 k OF -08 CM-05 CORACORAPA-04 COTAHUASI ' CAILLOMA PU-04 CS-04 PU-03 d._-f~.0102 -02 OF -09 \CS CS-01 *.~OP 10 ' •CM-O1 PA-06 I PA-03 1 OP II CV-02 PU-01 / PA-05 CS-O( ' ~OP12 CV-04 JULIACA ACo3 f-' CS~ 05 OF 13 CV 08 CS 07 CS-03\ OF14 M• .-CV-06 CS 08 OP-15 AC CS 09 •CS-15 CV-OS-~V-07 CS 10 CV-03 AR-08 1 ACCAC-0102 ~H-o1 ~ PU-05 ; ~ CS CV-01 AR-09 CH-01 ~~L.TITICACA CH AR-10 -02 PU-10/~ '-Y % CS 12 AR-02-01 CS 13 C14-03 PU-09 -AC-05 Q CS AR 02-02 AR O AR 0 ,~/L-O v AR 05 /•TU1 // CH-05 PU'07 J1-01~JULIx-03\-*.~iCH-06 OM ~ • /IA 4AR .• /CTU-0 PU-08 -14 JL-02 AR 0 OUIPA ~/. OM - AR 0 3/ / OM-i6I •MC-02 AR 1 _~ OM-08 I/t CAMANA -12 -os AR 15 AR-13OM-04 OM-10 MAZOCRUZ0M-03 R-17 AR 16 4 A AR ~ OM-II 1 8 i -01•MC-03 AR-I -1 0M-05 Z MC AR-01 OM-06---. I OM-13 MC-05 OM-02r r '~0M-12 ~MC-04./ OM-01/i' . .ETA-12 -MC-06 PACIFIC OCEAN OM-07 .__-TA-II . -MC-07 TA-03 TA-08 .~ MC-08 MOQUEGUA TA-02 TA-09 j MC-09 TA-01 TA-10 BOLIVIA TA-04TA-05 • Rt\C-12~NC-I-10MC-1 1 TA-07 TA-06 \ \ MC-14,'IMC-13I /-20 ` 0 20 40 60 80 1,00k. TACNA CHILE ~1 Fig. 2. Map showing the locality of the sample. Numbers refer to Appendices 1 and 2. of the samples as close as possible, the spatial samples was over 200. The most recent mate characterization of the magma chemistry may be rials apparently form snow-clad high peaks and best achieved. it was impossible to cover them in the limited During the field work, the impression of one time of our expedition. One of the youngest of the authors (S.A.) who has an intimate samples we were able to collect was from a acquaintance with wet and temperate environ block lava flow issuing from Nevado Coropuna ments of Japanese islands but is quite unfamiliar southwestwards (CS-12). This lava may very with the arid environment of Altiplano, was the well be a historic flow. Block lava flows in the difficulty of assessing the age of the volcanic Siquani region (CZ-01 through CZ-03) dated edifices from their state of erosion. For ex by KANEOKA and GUEVARA (1984) as <0.027 ample, inspections of aerial photographs gave us Ma show a very fresh topography and un a very young age estimate (say less than several doubtedly are among the youngest of all the tens of thousand years) of the pyroclastic volcanic products in southern Peru.
Recommended publications
  • ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito De Tarata – Región Tacna)
    ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito de Tarata – Región Tacna) Informe Técnico N°010-2021/IGP CIENCIAS DE LA TIERRA SÓLIDA Lima – Perú Mayo, 2021 Instituto Geofísico del Perú Presidente Ejecutivo: Hernando Tavera Director Científico: Edmundo Norabuena Informe Técnico Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni - Casiri (2020 – 2021). Distrito de Tarata – Región Tacna Autores Yanet Antayhua Lizbeth Velarde Katherine Vargas Hernando Tavera Juan Carlos Villegas Este informe ha sido producido por el Instituto Geofísico del Perú Calle Badajoz 169 Mayorazgo Teléfono: 51-1-3172300 Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI - CASIRI (2020 – 2021) Distrito de Tarata – Región Tacna Lima – Perú Mayo, 2021 2 Instituto Geofísico del Perú Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) RESUMEN Este estudio analiza las características sismotectónicas de la actividad sísmica ocurrida en el entorno de la falla Pacollo y volcanes Purupuruni- Casiri (distrito de Tarata – región Tacna), durante el periodo julio de 2020 a mayo de 2021. Desde mayo de 2020 hasta mayo de 2021, en el área de estudio se ha producido dos periodos de crisis sísmica separados por otro en donde la ocurrencia de sismos era constante, pero con menor frecuencia. El primer periodo de crisis sísmica ocurrió en el periodo del 15 al 30 de julio del 2020 con la ocurrencia de 3 eventos sísmicos que alcanzaron magnitud de M4.2.
    [Show full text]
  • 1.CEINTURE DE FEU, Paris
    Cette ligne est matérialisée par une rainure dans la façade, dans laquelle sera logée une ligne de néons rouge/orangé, couleurd’origine dugaznéon. danslafaçade, danslaquelleseralogéeunelignedenéonsrouge/orangé, Cette ligneestmatérialisée parunerainure estla plus intense que l’activitéterrestre Ce qui projet, se déploie sur les 4 façades du bâtiment central de est la de la Ceinture Feu, représentation ligne qui par imaginaire relie, 352 points, tous les volcans le émergés long de la plaque Pacifique. C’est dans cette zone ontdatél’originedusystèmesolaire. del’IPGPqui,lespremiers, etàsonétudescientifique.Cesontleschercheurs àlaTerre dePhysiqueduGlobe,rueCuvieràParis,estundes10lieuxaumondeconsacrés L’Institut Vinson Murphy Takahe Toney Frakes Steere Siple Hampton Sidley Waesche Andrus Moulton Berlin Morning Discovery Terror Erebus - · · Melbourne autre. Overlord DE FEU. JUIN 2009 Burney Lautaro Hudson Macá AGENCE PIECES MONTEES Melimoyu Corcovado ANGELA DETANICO, RAFAEL LAIN Minchinmávida Tronador INSTITUT DE PHYSIQUE DU GLOBE, PARIS Osorno Nouvelle-Zélande dans le Pacifique Sud. LA CEINTURE DE FEU Puntiagudo Cette zone est également caractérisée par de l’Amérique Centrale et des zones côtières de Un très grand nombre des volcans mondiaux est plus de la moitié des volcans en activité au- Cette intense activité volcanique et sismique Lanín actifs sont situés dans la ceinture de feu, et d’enfoncement d’une plaque tectonique sous une l’Australie pour englober les îles Fidji et la La CEINTURE DE FEU est une ligne imaginaire qui Elle suit en grande partie la plaque pacifique. rassemblé sur cette ligne de 40 000 km de long. Parmi les 1500 volcans sur la planète, les plus dessus du niveau de la mer forme cette CEINTURE correspond à des zones de subduction, processus Cette longue guirlande d’îles volcaniques prend naissance à la pointe méridionale de l’Amérique relie les 452 volcans qui bordent l’Océan Pacifique.
    [Show full text]
  • Jürgen Reinmüller
    JÜRGEN REINMÜLLER KLIMAVERHÄLTNISSE IN EXTREMEN HOCHGEBIRGEN DER ERDE Ergebnisse eines Sonderklimamessnetzes Diplomarbeit zur Erlangung des akademischen Grades „Magister der Naturwissenschaften“ an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Betreuung durch: Ao. UNIV. PROF. DR. REINHOLD LAZAR Institut für Geographie und Raumforschung 2010 Eidesstattliche Erklärung 2 Eidesstattliche Erklärung Ich, Jürgen Reinmüller, erkläre hiermit, dass die vorliegende Diplomarbeit von mir selbst und ohne unerlaubte Beihilfe verfasst wurde. Die von mir benutzten Hilfsmittel sind im Literaturverzeichnis am Ende dieser Arbeit aufgelistet und wörtlich oder inhaltlich entnommene Stellen wurden als solche kenntlich gemacht. Admont, im März 2010 Jürgen Reinmüller Vorwort 3 Vorwort Die höchstgelegenen Bereiche der Hochgebirge der Erde weisen bis dato eine außerordentlich geringe Dichte an Klimastationen und damit ein Defizit an verfügbaren Klimadaten auf. Aussagen zu den thermischen Aspekten in den Gipfellagen extremer Hochgebirge jenseits der 6000 m Grenze konnten bis dato nur unbefriedigend erörtert werden. Als staatlich geprüfter Berg- und Schiführer und begeisterter Höhenbergsteiger liegen die beeindruckenden, hochgelegenen Gipfel seit Jahren in meinem Interessensbereich. Zudem sehe ich mich in meinem bergführerischen Arbeitsbereich zunehmend mit den Zeichen des aktuellen Klimawandels konfrontiert. Schmelzende Gletscher oder auftauender Permafrost stellen für Bergsteiger ein nicht unwesentliches Gefahrenpotential dar. Die durch das von Univ. Prof. Dr. Reinhold Lazar ins Leben gerufene Projekt HAMS.net (High Altitude Meteorological Station Network) gewonnenen Daten können künftig bei der Tourenplanung diverser Expeditionen miteinbezogen werden und stellen eine wichtige Grundlage für klimatologische Hochgebirgsforschung in großen Höhen dar. Ich selbst durfte dieses interessante Projekt durch den Data-Logger-Tausch am Aconcagua im Februar 2007 ein wenig unterstützen und werde dem Projekt auch in Zukunft mit Rat und Tat zur Seite stehen.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • 31 a Preliminary Study Of
    31 A PRELIMINARY STUDY OF THE: TERTIARY VOLCANIC AND SEDIMENTARY ROCKS, GÜMELE, ESKİŞEHİR Eskişehir, Gümele Çevresindeki Tersiyer Volkanik ve Sedimanter Kayaçlarda Bir Ön Çalışma Taylan Lünel Middle East Technical University, Department of Geological Engineering Ankara ÖZ. — Seyitgazi-Eskişehir antiklinoriumu'nun çok fazla deforme olmuş ve metamorfizmaya uğramış kayaçlarının kuzey-kuzeybatısında bulunan sedimanter ve volkanik kayaçlar incelenmiştir. Karasal ve gölsel fasiyesde meydana gelen Tersi- yer sedimanter kayaçlar Güney Eskişehir küvetinde olunmuşlardır. Karasal fasiye- si meydana getiren kayaç birimlerini kaba kumtaşları, kumtaşları, bitki kalıntıları ihtiva eden kil ve marnlar ve serpantinit blokları taşıyan bazal konglomerası teşkil etmektedir. Gölsel fasiyes ise genellikle killi ve tüflü kalkerler, kalkerler, marnlar, kon- glomeralar ve tüflerden meydana gelmiştir. Küvetteki en eski sedimanlar ve piroklas- tikler Alt Miosen'de oluşmuşlardır. Yataya yakın konumlanmış bazik-intermediyar lav akıntıları Pliosen yaşlı olup Altüst Neojen sedimantasyon kesikliğinde meyda- na gelmiştir. Üst Neojen sedimanter kayaçları intermediyar-basaltik volkaniklerin üzerinde ince bandlar şeklinde bulunurlar. Bu birim marn ve kalkerlerden meyda- na gelmiştir. Alt Miosen’de asid volkanik faaliyetler neticesinde meydana gelen sil- lar (unweldd tuffs) oligomikt konglomeralardan evvel teşekkül etmiştir. Bu volkanik aktitivite muhtemelen kesikli ve kısıtlı olarak devam etmiş ve tüflü kalkerleri mey- dana getirmiştir. Pliosen yaşlı bazik-intermediyar
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Tracing a Major Crustal Domain Boundary Based on the Geochemistry of Minor Volcanic Centres in Southern Peru
    7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts: 298-301 Tracing a major crustal domain boundary based on the geochemistry of minor volcanic centres in southern Peru Mirian Mamani1, Gerhard Wörner2, & Jean-Claude Thouret3 1 Georg-August University, Goldschmidstr. 1, 37077 Göttingen, Germany ([email protected], [email protected]) 2 Université Blaise Pascal, Clermont Ferrand, France ([email protected]) KEYWORDS : minor volcanic centres, crust, tectonic erosion, Central Andes, isotopes Introduction Geochemical studies of Tertiary to Recent magmatism in the Central Volcanic Zone have mainly focused on large stratovolcanoes. This is because mafic minor volcanic centres and related flows that formed during a single eruption are relatively rare and occur in locally clusters (e.g. Andagua/Humbo fields in S. Peru, Delacour et al., 2007; Negrillar field in N. Chile, Deruelle 1982) or in the back arc region (Davidson and de Silva, 1992). These studies showed that the "monogenetic" lavas are high-K calc-alkaline and their major, trace, and rare elements, as well as Sr-, Nd- and Pb- isotopes data display a range comparable to those of the Central Volcanic Zone composite volcanoes (Delacour et al., 2007). It has been argued that the eruptive products of these minor centers bypass the large magma chamber systems below Andean stratovolcanoes and thus may represent magmas that were derived from a deeper level in the crust (Davidson and de Silva, 1992; Ruprecht and Wörner, 2007). This study represents a continuation of our work to understand the regional variation in erupted magma composition in the Central Andes (Mamani et al., 2008; Wörner et al., 1992).
    [Show full text]
  • Geology of the South-Central Pueblo Mountains, Oregon-Nevada
    AN ABSTRACT OF THE THESIS OF WINTHROP ALLEN ROWE for the MASTER OF SCIENCE (Name) (Degree) in GEOLOGY presented on lurd IL 1q4() Major) (Sate) Title: GEOLOGY OF THE SOUTH-CENTRAL PUEBLO MOUNTAINS, OREGON-NEVADA Abstract approved: Redacted for Privacy Dr. Harold E. En lows The thesis area consists of 33 square miles in the south-central Pueblo Mountains of Humboldt County, Nevada and Harney County, Oregon.The Pueblo Mountains are tilted fault block mountains found in the extreme northwestern part of the Basin and Range province and were produced during Early Tertiary Basin and Range orogeny. Northwest and northeast trending faults of Late Tertiary time have since cut the entire stratigraphic sequence. The oldest rocks exposed are metamorphosed Permian to Triassic eugeosynclinal sedimentary rocks.The metamorphic sequence is intruded by several granitic plutons of Late Jurassic to Middle Cretaceous age. A thick sequence of Miocene basalt flows unconformably overlies the pre- Tertiary rocks. A slight angular unconformity separates the basalt sequence from overlying Miocene tuffaceous sedimentary rocks, sillar flows, and welded tuffs. Unconsolidated deposits of Quaternary alluvium include alluvial fan and lacustrine sediments. Mineralization within the area includes several gold prospects, a mercury prospect, and a possible copper deposit.The copper prospect consists of a large gossan (6, 000 feet by 3, 000 feet). Mineralization and alteration from a Cretaceous porphyritic quartz monzonite intrusion has produced potassic and quartz sericite
    [Show full text]
  • Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (Dems) from ASTER Remote Sensing Data and Contour Maps
    Geomorphometry of Cerro Sillajhuay (Andes, Chile/Bolivia): Comparison of Digital Elevation Models (DEMs) from ASTER Remote Sensing Data and Contour Maps Ulrich Kamp Department of Geography and Environmental Science Program, DePaul University 990 W Fullerton Ave, Chicago, IL 60614-2458, U.S.A. E-mail: [email protected] Tobias Bolch Department of Geography, Humboldt University Berlin Rudower Chausse 16, Unter den Linden 6, 10099 Berlin, Germany E-mail: [email protected] Jeffrey Olsenholler Department of Geography and Geology, University of Nebraska - Omaha 6001 Dodge Street, Omaha, NE 68182-0199, U.S.A. [email protected] Abstract Digital elevation models (DEMs) are increasingly used for visual and mathematical analysis of topography, landscapes and landforms, as well as modeling of surface processes. To accomplish this, the DEM must represent the terrain as accurately as possible, since the accuracy of the DEM determines the reliability of the geomorphometric analysis. For Cerro Sillajhuay in the Andes of Chile/Bolivia two DEMs are compared: one derived from contour maps, the other from a satellite stereo-pair from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). As both DEM procedures produce estimates of elevation, quantative analysis of each DEM was limited. The original ASTER DEM has a horizontal resolution of 30 m and was generated using tie points (TPs) and ground control points (GCPs). It was then resampled to 15 m resolution, the resolution of the VNIR bands. Five parameters were calculated for geomorphometric interpretation: elevation, slope angle, slope aspect, vertical curvature, and tangential curvature. Other calculations include flow lines and solar radiation.
    [Show full text]
  • Neogene Ignimbrites in the Area of Arequipa Southern Peru
    NEOGENE IGNIMBRITES IN THE AREA OF AREQUIPA, SOUTHERN PERU: CORRELATIONS BASED ON FIELD OBSERVATIONS, GEOCHElVIISTRY AND GEOCHRONOLOGY Perrine PAQUEREAU (1), Jean-Claude THOURET (1), Gerhard WORNER (2), and Michel FORNARl (3) (1) Laboratoire Magmas et Volcans, Universite Blaise Pascal et CNRS, 63038 Clermont-Ferrand, France ([email protected]) ([email protected] -bpclermont.fr) (2) GZG, Abt. Geochemie, Goldschmidstrasse 1, Universitat Gottingen, 37077 Gottingen, Germany ([email protected]) (3) IRD, UMR Geosciences Azur, Sophia Antipolis, Pare Valrose, 06108 Nice cedex 2, France ([email protected]) KEY WORDS: ignimbrite, Arequipa, Peru, correlation, mineralogy, chronology. INTRODUCTION In the area of Arequipa, the ignimbrites termed "sillars" (Fenner, 1948; Jenks and Goldich, 1956) are indurated, generally nonwelded pyroclastic-flow deposits of dacitic and rhyolitic composition and middle Miocene to late Pliocene in age (this study). They encompass incipiently welded or sintered vitric tuffs, indurated by vapor-phase crystallisation, and previously welded but devitrified tuffs. They mantle an area of roughly 600 km2 around the quaternary stratovolcanoes of Chachani and Misti and they fill the depression of Arequipa with a thickness of 100 m to as much as 200 m in the Rio Chili canyon (Fig. 1). Similar ignimbrites 461 have flowed downvalley the Rio Chili and Rio Yura at least 30 km south and southwest of Arequipa beyond the confluence ofthe three rivers into the Rio Vitor canyon. Figure 2 shows two stratigraphic sections in the valley of Rio Chili that cuts the flank of the Western Cordi1lera. They encompass COMPOSITE SECTION RIOCHILl, EASTSIDE,CHARCANI two ignimbrite _'" cooling units above lyJ fT' Misti lava flows 0.83 Ma T, 00000 scona flow deposit the Jurassic ~----- nonwelded ignimbrite "pre-Misti" basement: the lavallOW .....
    [Show full text]