A Concentrated Outbreak of Tornadoes, Downbursts and Microbursts, and Implications Regarding Vortex Classification

Total Page:16

File Type:pdf, Size:1020Kb

A Concentrated Outbreak of Tornadoes, Downbursts and Microbursts, and Implications Regarding Vortex Classification A Concentrated Outbreak of Tornadoes, Downbursts and Microbursts, and Implications Regarding Vortex Classification G REGORY S. F ORBES Department of Meteorology, The Pennsylvania State University, University Park, PA 16802 R OGER M . W AKIMOTO Department ofthe Geophysical Sciences, The University of Chicago, Chicago, IL 60637 Reprinted from MONTHLY WEATH ER REVIEW, Vol. 111, No. I, January 1983 American Metcoro1ogical Society Printed in U. S. A. Reprinted from MONTHLY WEATHER REV IEW, Vol. 111, No. I, January 1983 American Meteorological Socie1 y Prin«d in U. S. A. A Concentrated Outbreak of Tornadoes, Downbursts and Microbursts, and Implications Regarding Vortex Classification GREGORY S. FORBES Department of Meteorology, The Pennsylvania State University, University Park, PA 16802 R OGER M. W AKIMOTO Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (Manuscript received 6 November 1981 , in final form 13 August 1982) ABSTRACT A remarkable case of severe weather occurred near Springfield, Illinois on 6 August 1977. Aerial and ground surveys revealed that 17 cyclonic vortices, an anticyclonic vortex, I 0 down bursts and 19 microbursts occurred in a limited (20 km X 40 km) area, associated with a bow-shaped radar echo. About half of the vortices appeared to have occurred along a gust front. Some of the others appear to have occurred within the circulation of a mesocyclone accompanying the bow echo, but these vortices seem to have developed specifically in response to localized boundary-layer vorticity generation associated with horizontal and vertical wind shears on the periphery of microbursts. Some of these vortices, and other destructive vortices in the literature, do not qualify as tornadoes as defined in the Glossary ofMeteorology. A more pragmatic defi nition of a tornado is suggested. 1. Introduction Burgess and Davies-Jones, 1979; Burgess and Don­ aldson, 1979; Lemon et al., 1980). In this paper we A significant research effort in recent years has in­ present additional evidence of tornadoes associated volved the development of Doppler radar techniques with a gust front and with downbursts. We also pre­ to identify thunderstorms which produce tornadoes. sent evidence which suggests that some tornadoes T he efforts have been rather successful, identifying may be associated with microbursts. the mesocyclone and tornado vortex signatures as Fujita ( l 976b) originated the term " downburst" to indicators of storms which produce major tornadoes describe the intense downdraft involved in an air­ (Lemon et al., 1977; Burgess and Devore, 1979). plane crash. In association with damage near the Lemon and Doswell ( 1979) have described the de­ ground, Fujita ( 1978) defined the down burst as a velopment of these tornadoes. "strong downdraft inducing an outward burst ofd am­ Not every tornado which develops is associated aging winds on or near the ground." Microbursts are with a thunderstorm possessing a mesocyclone sig­ small downbursts with horizontal dimensions less nature, however. Burgess and Donaldson ( 1979) than 4 km (Fujita, 1981 ). found that several weak and short-lived tornadoes The damage paths of 8 of the I 0 down bursts, 18 occurred in developing echoes without detectable of the 19 microbursts, and 18 tornadoes which oc­ mesocyclone circulations or supercell characteristics. curred on 6 August 1977 are shown in Fig. l. The Later in their lifetimes these echoes developed me­ remaining downbursts and microbursts occurred be­ socyclones and strong tornadoes. Weak tornadoes yond the east and west edges of the figure. The paths also can form outside of the mesocyclone circulation were located usi ng techniques described in Section along the gust front and flanking li ne of a supercell 2. Description of the damage is presented in Sections thunderstorm (Burgess et al., 1977; Brandes, 1978, 3-5. A complete report on this case study (including 198 1) and along gust fronts and downbursts from 40 damage photographs) is given by Forbes and Wak­ non-supercell thunderstorms (Burgess and Donald­ imoto ( 1978). son, 1979; Fujita, 1979; Wilson et al., 1980; Testud The presence or absence of damaging winds was et al., 1980). Additionally, weak tornadoes can form determined essentially unambiguously over the entire under a flanking cloud line behind or to the right of region shown in Fig. 1, as the area was extensively the main cumulonimbus, where radar echoes are covered by 2 m high corn (readily susceptible to dam­ weak or absent (Bates, 1968; Barnum et al., 1970; age). The paths of the 18 tornadoes were unmistak- © 1983 American Meteorological Society N N SPRINGFIELD TORNADOES and DOWNBURSTS August 6, 1977 -::::-- 4::- ~- 9§::::::: m7~ ~ · Na5-..•• ..,._.....-.-.- --... 0ol'l'IOQf DOWNIUlltST MICfll09URST F·KOI• Conto11u TORHAOO Sr.ietiot1 Vorlk n Sfltoks , I f 1 I ! I ~ IO I 12 14 JC1i.,..• ••~ 1 0 I t .S 4 S • l' e t WdH ~ 0801•1 ~ 3:: 0 / / z / ,... -· -l :i:: V Edinburg r -< / :;: m > -l :i:: m IS O ~~7· / ;i:i ~ V Kincoid .,, ;i:i ... m < .,.. o m A :;: L•Y'" ~.O· CHRISTIAN COUNTY M 0 R GA N ....CJ n., .. c!}• .. - ,. ---------- - --- MAC-----OUPI N-- --- - -----0~.~ .,~ >tS<J 9':l00' 8</YJ' I et/!O' ot.'ISf FIG. I. Maoo;,__ ,..1g ot the damage from tornadoes (identified by "No."), downbursts (identified by large numeral), and microbursts (identified by "m") on 6 August 1977. "Streamlines" of damage and F-scale contours are mapped. See figure legend for additional symbol explanation. < 0 r :s:c m JANUARY 1983 GREG 0 RY S. FORBES AND R 0 GER M . WA KIMOTO 222 ably clear. Thus, it is noteworthy that 18 tornadoes these are based upon experience gained during past occurred within a 20 km X 40 km area. This tornado damage surveys performed by the authors, studies by density is roughly a factor of I 0 greater than that of Fujita ( 1978), and discussions with farmers and agri­ the 3 April 1974 "super outbreak" (Fujita, 1975). The culture experts. A rule of thumb invoked during the average spacing between tornadoes 1, 4, 6 and 8 of 6 August 1977 surveys was that some corn is damaged Fig. I, occurring essentially simultaneously, was by winds at the low end of the FO category ( - 20 m 1 about 4 km, whereas the lateral separation between s- ). and damage becomes extensive as the winds ap­ simultaneously-occurring tornadoes on 3 April 1974 proach Fl. was about 45 km. Clearly, the tornadoes of 6 August If the tornado path contains suction vortex swaths, 1977 were not part of a typical outbreak of family then the speed of revolution of suction vortices about tornadoes, such as those presented by Fujita et al. the tornado axis can be estimated from the swath (1970), Fujita (1974) and Galway (1981 ). In fact, the shape, if the speed of tornado translation U can be density of vortex occurrences on 6 August 1977 raises estimated. Using the technique presented by Fujita some questions about the criteria for tornado clas­ et al. (l 970), the shape of the swath (cycloid) deter­ sification. These criteria are disc ussed in Section 6. mines the ratio of revolution and translation veloci­ 1 ties, vu- • The maximum wind speed occurs on the right side of the tornado (facing in the direction to­ 2. Techniques for classifying damage from tornadoes, ward which the tornado is translating) and is ap­ downbursts and microbursts proximately V + U, neglecting radial velocity and neglecting the speed of winds rotating about the axis Damaging wind speeds on 6 August 1977 were of the suction vortex. Forbes ( 1978) calculated speeds estimated using the Fujita ( 1973) scale, referred to as of rotation averaging 39 m s- 1 in well-developed suc­ F-scale. Fujita ( 1981) presents details of the estima­ tion vortices, however. Thus, total wind speed may 1 tion off-scale on the basis of damage to trees, vehicles exceed V + U by more than 39 m s- • 1 and structures. For example, FO (18-32 m s- ) winds Tornado 9 was classified as F3, on the basis of both produce some damage to chimneys, antennas, bill­ damage to structures and the shape of looping marks boards and tree branches. A few shallow-rooted trees in the suction swath patterns. These loops were more 1 may be uprooted. Fl (33-49 m s- ) winds normally broad and more pronounced than in any of the other damage roofs, overturn mobile homes and uproot tornadoes, and suggested that vu- 1 = 3. With a trees. Some trees may be snapped. Once winds reach translation speed of about 15 m s- 1 and the rotation 1 1 F3 category (70-92 m s- ) , roofs are removed and about the suction vortex axis estimated at 20 m s- , some walls are torn off well-constructed frame homes, the maximum wind speed in tornado 9 was estimated and most trees are uprooted or snapped. as 80 m .s- 1 (sum of translation, revolution and suc­ Tornado path lengths and path widths were based tion vortex rotation). Looping marks in suction upon the extent of the FO damage. Scales for path swaths observed by the authors on other occasions length and average path width were assigned using suggest that vu- 1 can be as large as 3 or 4 in tor­ the Pearson scales (Fujita, 1973). All reported tor­ nadoes translating 20 m s- 1 or slightly faster. Thus, nadoes are now rated by the National Severe Storms extreme structural damage is not necessary for cate­ Forecast Center using these Fujita and Pearson scales, gorizing a tornado as F4 or even F5, though present the FPP scheme (Kelly et al., 1978). tornado statistics certainly contain that classification Wind speeds deduced on the basis of damage ap­ bias. pearance must be considered only estimates of the In the absence of suction vortex swaths, easterl y true wind speed.
Recommended publications
  • Causes and Behavior of a Tornadic Fire-Whirlwind
    61 §OUTHWJE§T FOJRJE§T & JRANGJE JEXlPJEJREMlE '"'"T § TAT1,o~ 8 e r k e I e y , C a I i f o '{"1'~qiNNT':l E_ ;:;;~"~~~1 ,;i,.,. ..t"; .... ~~ :;~ ·-:-; , r~-.fi... .liCo)iw:;-;sl- Central Reference File II ....·~ 0 ........................................(). 7 ;s_ .·············· ··········· Causes and Behavior of a Tornadic Fire-Whirlwind ARTHUR R.PIRSKO, LEO M.SERGIUS, AND CARL W.HICKERSON ABSTRACT: A destructive whirlwind of tor­ Normally an early March nadic force was formed in a 600-acre brush fire burning on the lee side o f a ridge brush fire would not be much near Santa Barbara on March 7, 1964. The of a problem for experienced fire whirlwind, formed in a post-frontal unstable air mass, cut a mile long path, firefighters in the Santa Bar- injured 4 people, destroyed 2 houses, a barn, · bara area of the Los Padres and 4 automobiles, and wrecked a 100-tree avocado orchard. National Forest in southern California. But the Polo fire of March 7, 1964, spread several times faster than expected and culminated in a fire -whirl­ wind of tornadic violence (fig. 1). It represents a classic case of such fire behavior and was unusually well documented by surface and upper air observations. This fire damaged 600 acres of prime watershed land, and the fire -induced tornado injured 4 persons; destroyed 2 homes, a barn, and 3 automobiles; and toppled almost 100 avocado trees. BURNING CONDITIONS FUELS The fire area was predominantly 50-year old ceanothus (Cea­ nothus sp.) that stood 10 to 15 feet high (fig. 2). Minor amounts of California sagebrush (Artemisia californica) and scrub oak (Quer­ cus dumosa) were intermixed with the ceanothus.
    [Show full text]
  • Kármán Vortex Street Energy Harvester for Picoscale Applications
    Kármán Vortex Street Energy Harvester for Picoscale Applications 22 March 2018 Team Members: James Doty Christopher Mayforth Nicholas Pratt Advisor: Professor Brian Savilonis A Major Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Cover Picture Credit: [1] Abstract The Kármán Vortex Street, a phenomenon produced by fluid flow over a bluff body, has the potential to serve as a low-impact, economically viable alternative power source for remote water-based electrical applications. This project focused on creating a self-contained device utilizing thin-film piezoelectric transducers to generate hydropower on a pico-scale level. A system capable of generating specific-frequency vortex streets at certain water velocities was developed with SOLIDWORKS modelling and Flow Simulation software. The final prototype nozzle’s velocity profile was verified through testing to produce a velocity increase from the free stream velocity. Piezoelectric testing resulted in a wide range of measured dominant frequencies, with corresponding average power outputs of up to 100 nanowatts. The output frequencies were inconsistent with predicted values, likely due to an unreliable testing environment and the complexity of the underlying theory. A more stable testing environment, better verification of the nozzle velocity profile, and fine-tuning the piezoelectric circuit would allow for a higher, more consistent power output.
    [Show full text]
  • Polarimetric Radar Characteristics of Tornadogenesis Failure in Supercell Thunderstorms
    atmosphere Article Polarimetric Radar Characteristics of Tornadogenesis Failure in Supercell Thunderstorms Matthew Van Den Broeke Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; [email protected] Abstract: Many nontornadic supercell storms have times when they appear to be moving toward tornadogenesis, including the development of a strong low-level vortex, but never end up producing a tornado. These tornadogenesis failure (TGF) episodes can be a substantial challenge to operational meteorologists. In this study, a sample of 32 pre-tornadic and 36 pre-TGF supercells is examined in the 30 min pre-tornadogenesis or pre-TGF period to explore the feasibility of using polarimetric radar metrics to highlight storms with larger tornadogenesis potential in the near-term. Overall the results indicate few strong distinguishers of pre-tornadic storms. Differential reflectivity (ZDR) arc size and intensity were the most promising metrics examined, with ZDR arc size potentially exhibiting large enough differences between the two storm subsets to be operationally useful. Change in the radar metrics leading up to tornadogenesis or TGF did not exhibit large differences, though most findings were consistent with hypotheses based on prior findings in the literature. Keywords: supercell; nowcasting; tornadogenesis failure; polarimetric radar Citation: Van Den Broeke, M. 1. Introduction Polarimetric Radar Characteristics of Supercell thunderstorms produce most strong tornadoes in North America, moti- Tornadogenesis Failure in Supercell vating study of their radar signatures for the benefit of the operational and research Thunderstorms. Atmosphere 2021, 12, communities. Since the polarimetric upgrade to the national radar network of the United 581. https://doi.org/ States (2011–2013), polarimetric radar signatures of these storms have become well-known, 10.3390/atmos12050581 e.g., [1–5], and many others.
    [Show full text]
  • Electrical Role for Severe Storm Tornadogenesis (And Modification) R.W
    y & W log ea to th a e m r li F C o r Armstrong and Glenn, J Climatol Weather Forecasting 2015, 3:3 f e o c l a a s n t r i http://dx.doi.org/10.4172/2332-2594.1000139 n u g o J Climatology & Weather Forecasting ISSN: 2332-2594 ReviewResearch Article Article OpenOpen Access Access Electrical Role for Severe Storm Tornadogenesis (and Modification) R.W. Armstrong1* and J.G. Glenn2 1Department of Mechanical Engineering, University of Maryland, College Park, MD, USA 2Munitions Directorate, Eglin Air Force Base, FL, USA Abstract Damage from severe storms, particularly those involving significant lightning is increasing in the US. and abroad; and, increasingly, focus is on an electrical role for lightning in intra-cloud (IC) tornadogenesis. In the present report, emphasis is given to severe storm observations and especially to model descriptions relating to the subject. Keywords: Tornadogenesis; Severe storms; Electrification; in weather science was submitted in response to solicitation from the Lightning; Cloud seeding National Science Board [16], and a note was published on the need for cooperation between weather modification practitioners and academic Introduction researchers dedicated to ameliorating the consequences of severe weather storms [17]. Need was expressed for interdisciplinary research Benjamin Franklin would be understandably disappointed. Here on the topic relating to that recently touted for research in the broader we are, more than 260 years after first demonstration in Marly-la-Ville, field of meteorological sciences [18].
    [Show full text]
  • A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy Tech Library Kafb, Nm
    I A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY TECH LIBRARY KAFB, NM OL3042b NASA TN D-3767 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center SUMMARY A concept for the calculation of the vortex lift of sharp-edge delta wings is pre­ sented and compared with experimental data. The concept is based on an analogy between the vortex lift and the leading-edge suction associated with the potential flow about the leading edge. This concept, when combined with potential-flow theory modified to include the nonlinearities associated with the exact boundary condition and the loss of the lift component of the leading-edge suction, provides excellent prediction of the total lift for a wide range of delta wings up to angles of attack of 20° or greater. INTRODUCTION The aerodynamic characteristics of thin sharp-edge delta wings are of interest for supersonic aircraft and have been the subject of theoretical and experimental studies for many years in both the subsonic and supersonic speed ranges. Of particular interest at subsonic speeds has been the formation and influence of the leading-edge separation vor­ tex that occurs on wings having sharp, highly swept leading edges.
    [Show full text]
  • Three Types of Horizontal Vortices Observed in Wildland Mass And
    1624 JOURNAL OF CLIMATE AND APPLIED METEOROLOGY VOLUME26 Three Types of Horizontal Vortices Observed in Wildland Mas~ and Crown Fires DoNALD A. HAINES U.S. Department ofAgriculture, Forest Service, North Central Forest Experiment Station, East Lansing, Ml 48823 MAHLON C. SMITH Department ofMechanical Engineering, Michigan State University, East Lansing, Ml 48824 (Manuscript received 25 October 1986, in final form 4 May 1987) ABSTRACT Observation shows that three types of horizontal vortices may form during intense wildland fires. Two of these vortices are longitudinal relative to the ambient wind and the third is transverse. One of the longitudinal types, a vortex pair, occurs with extreme heat and low to moderate wind speeds. It may be a somewhat common structure on the flanks of intense crown fires when burning is concentrated along the fire's perimeter. The second longitudinal type, a single vortex, occurs with high winds and can dominate the entire fire. The third type, the transverse vortex, occurs on the upstream side of the convection column during intense burning and relatively low winds. These vortices are important because they contribute to fire spread and are a threat to fire fighter safety. This paper documents field observations of the vortices and supplies supportive meteorological and fuel data. The discussion includes applicable laboratory and conceptual studies in fluid flow and heat transfer that may apply to vortex formation. 1. Introduction experiments showed that when air flowed parallel to a heated metal ribbon that simulated the flank of a crown The occurrence of vertical vortices in wildland fires fire, a thin, buoyant plume capped with a vortex pair has been well documented as well as mathematically developed above the ribbon along its length.
    [Show full text]
  • Weather Numbers Multiple Choices I
    Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2.
    [Show full text]
  • Mapping of Climate Change Threats and Human Development Impacts in the Arab Region
    Arab Human Development Report Research Paper Series Mapping of Climate Change Threats and Human Development Impacts in the Arab Region Balgis Osman Elasha United Nations Development Programme Regional Bureau for Arab States United Nations Development Programme Regional Bureau for Arab States Arab Human Development Report Research Paper Series 2010 Mapping of Climate Change Threats and Human Development Impacts in the Arab Region Balgis Osman Elasha The Arab Human Development Report Research Paper Series is a medium for sharing recent research commissioned to inform the Arab Human Development Report, and fur- ther research in the field of human development. The AHDR Research Paper Series is a quick-disseminating, informal publication whose titles could subsequently be revised for publication as articles in professional journals or chapters in books. The authors include leading academics and practitioners from the Arab countries and around the world. The findings, interpretations and conclusions are strictly those of the authors and do not neces- sarily represent the views of UNDP or United Nations Member States. The present paper was authored by Balgis Osman Elasha. * * * Balgis Osman-Elasha is a Climate Change Adaptation Expert at the African Development Bank. She holds a Bachelor’s Degree (with Honours) and a Doctorate in Forestry Science, and a Master’s Degree in Environmental Science. She has extensive experience in climate change research, with a focus on the human dimensions of global environmental change (GEC) and sustainable development. She is a winner of the UNEP Champions of the Earth award, 2008, and a member of the IPCC Lead Authors Nobel Peace Prize winners in 2007.
    [Show full text]
  • Delayed Tornadogenesis Within New York State Severe Storms Article
    Wunsch, M. S. and M. M. French, 2020: Delayed tornadogenesis within New York State severe storms. J. Operational Meteor., 8 (6), 79-92, doi: https://doi.org/10.15191/nwajom.2020.0806. Article Delayed Tornadogenesis Within New York State Severe Storms MATTHEW S. WUNSCH NOAA/National Weather Service, Upton, NY, and School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY MICHAEL M. FRENCH School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY (Manuscript received 11 June 2019; review completed 21 October 2019) ABSTRACT Past observational research into tornadoes in the northeast United States (NEUS) has focused on integrated case studies of storm evolution or common supportive environmental conditions. A repeated theme in the former studies is the influence that the Hudson and Mohawk Valleys in New York State (NYS) may have on conditions supportive of tornado formation. Recent work regarding the latter has provided evidence that environments in these locations may indeed be more supportive of tornadoes than elsewhere in the NEUS. In this study, Weather Surveillance Radar–1988 Doppler data from 2008 to 2017 are used to investigate severe storm life cycles in NYS. Observed tornadic and non-tornadic severe cases were analyzed and compared to determine spatial and temporal differences in convective initiation (CI) points and severe event occurrence objectively within the storm paths. We find additional observational evidence supporting the hypothesis the Mohawk and Hudson Valley regions in NYS favor the occurrence of tornadogenesis: the substantially longer time it takes for storms that initiate in western NYS and Pennsylvania to become tornadic compared to storms that initiate in either central or eastern NYS.
    [Show full text]
  • Balanced Flow Natural Coordinates
    Balanced Flow • The pressure and velocity distributions in atmospheric systems are related by relatively simple, approximate force balances. • We can gain a qualitative understanding by considering steady-state conditions, in which the fluid flow does not vary with time, and by assuming there are no vertical motions. • To explore these balanced flow conditions, it is useful to define a new coordinate system, known as natural coordinates. Natural Coordinates • Natural coordinates are defined by a set of mutually orthogonal unit vectors whose orientation depends on the direction of the flow. Unit vector tˆ points along the direction of the flow. ˆ k kˆ Unit vector nˆ is perpendicular to ˆ t the flow, with positive to the left. kˆ nˆ ˆ t nˆ Unit vector k ˆ points upward. ˆ ˆ t nˆ tˆ k nˆ ˆ r k kˆ Horizontal velocity: V = Vtˆ tˆ kˆ nˆ ˆ V is the horizontal speed, t nˆ ˆ which is a nonnegative tˆ tˆ k nˆ scalar defined by V ≡ ds dt , nˆ where s ( x , y , t ) is the curve followed by a fluid parcel moving in the horizontal plane. To determine acceleration following the fluid motion, r dV d = ()Vˆt dt dt r dV dV dˆt = ˆt +V dt dt dt δt δs δtˆ δψ = = = δtˆ t+δt R tˆ δψ δψ R radius of curvature (positive in = R δs positive n direction) t n R > 0 if air parcels turn toward left R < 0 if air parcels turn toward right ˆ dtˆ nˆ k kˆ = (taking limit as δs → 0) tˆ R < 0 ds R kˆ nˆ ˆ ˆ ˆ t nˆ dt dt ds nˆ ˆ ˆ = = V t nˆ tˆ k dt ds dt R R > 0 nˆ r dV dV dˆt = ˆt +V dt dt dt r 2 dV dV V vector form of acceleration following = ˆt + nˆ dt dt R fluid motion in natural coordinates r − fkˆ ×V = − fVnˆ Coriolis (always acts normal to flow) ⎛ˆ ∂Φ ∂Φ ⎞ − ∇ pΦ = −⎜t + nˆ ⎟ pressure gradient ⎝ ∂s ∂n ⎠ dV ∂Φ = − dt ∂s component equations of horizontal V 2 ∂Φ momentum equation (isobaric) in + fV = − natural coordinate system R ∂n dV ∂Φ = − Balance of forces parallel to flow.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Hurricane Vortex Dynamics During Atlantic Extratropical Transition
    714 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 65 Hurricane Vortex Dynamics during Atlantic Extratropical Transition CHRISTOPHER A. DAVIS National Center for Atmospheric Research,* Boulder, Colorado ϩ SARAH C. JONES AND MICHAEL RIEMER Universität Karlsruhe, Forschungszentrum Karlsruhe, Karlsruhe, Germany (Manuscript received 2 April 2007, in final form 6 July 2007) ABSTRACT Simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET). The simulations were performed in real time using the Advanced Research Weather Research and Forecasting (WRF) model (ARW), using a moving, storm-centered nest of either 4- or 1.33-km grid spacing. The six simulations, ranging from 45 to 96 h in length, provide realistic evolution of asymmetric precipitation structures, implying control by the synoptic scale, primarily through the vertical wind shear. The authors find that, as expected, the magnitude of the vortex tilt increases with increasing shear, but it is not until the shear approaches 20 m sϪ1 that the total vortex circulation decreases. Furthermore, the total vertical mass flux is proportional to the shear for shears less than about 20–25 m sϪ1, and therefore maximizes, not in the tropical phase, but rather during ET. This has important implications for predicting hurricane-induced perturbations of the midlatitude jet and its consequences on downstream predictability. Hurricane vortices in the sample resist shear by either adjusting their vertical structure through preces- sion (Helene 2006), forming an entirely new center (Irene 2005), or rapidly developing into a baroclinic cyclone in the presence of a favorable upper-tropospheric disturbance (Maria 2005).
    [Show full text]