Loyalty Islands, New Caledonia Author(S): Juan D

Total Page:16

File Type:pdf, Size:1020Kb

Loyalty Islands, New Caledonia Author(S): Juan D Reptile Remains from Tiga (Tokanod), Loyalty Islands, New Caledonia Author(s): Juan D. Daza, Aaron M. Bauer, Christophe Sand, Ian Lilley, Thomas A. Wake and Frédérique Valentin Source: Pacific Science, 69(4):531-557. Published By: University of Hawai'i Press DOI: http://dx.doi.org/10.2984/69.4.8 URL: http://www.bioone.org/doi/full/10.2984/69.4.8 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Reptile Remains from Tiga (Tokanod), Loyalty Islands, New Caledonia 1 Juan D. Daza , 2,3 Aaron M. Bauer , 2,8 Christophe Sand , 4 Ian Lilley ,5 Thomas A. Wake , 6 and Fr é d é rique Valentin 7 Abstract: Archaeological ex ca va tions on Tiga provide the fi rst vouchered her- pe to log i cal re cords for this small island be tween Lifou and Mar é in the Loyalty Islands. Eighty - three skel e tal el e ments from four sites yielded mate rial assign - able to skinks (Emoia loyaltiensis, Lioscincus nigrofasciolatus ), geckos (Bavayia crassi- collis, B . sp., Gehyra georgpotthasti, Nactus pelagicus ), and a boid snake (Candoia bibroni ) all known from else where in the Loyalties, as well as un de ter mined ma te rial consis tent with these and other Loyalties liz ards. Diagnostic fea tures of geckos ver sus skinks for el e ments commonly re cov ered from ar chae o log i cal sites and from owl pellets are discussed. Gehyra georgpotthasti has a lim ited dis tri bu- tion in the Loyalties and its occur rence on Tiga clarifi es its range. The boid snake is the only rep tile likely to have been harvested by hu man in hab i tants of Tiga. The presence of gekkonid geckos in pre - Eu ro pean times is con fi rmed and con trasts with the sit u a tion of Grande Terre fos sil sites, where only diplodac- tylid geckos have been recov ered. Although it is antic ipated that all spe cies re- cov ered from archae o log i cal sites are still present on the island, a modern herpetofaunal sur vey is need ed. T he Loyalty Islands lie on the Norfolk Rise (2 km 2 ), ap prox i ma tely 160 km southeast of the in a line roughly par al lel to the long axis of the main chain. All of the is lands are rela tively low Grande Terre of New Caledonia, sepa rated ly ing. Their raised rims are uplifted coral from it by about 110 km across the Loyalty reefs, whereas the lower el e va tion in te rior re- Basin, which has a max i mum depth of approx- gions are uplifted la goons or reef fl ats, prob a- i ma tely 2,000 m. The Loyalties ( Figure 1) ex- bly emer gent only since the Pleis to cene (Paris tend from Ouv é a (160 km 2 ), at the northwest 1981). The highest point (138 m) in the chain is ex tent of the chain, through Lifou (1,150 km 2 ), on Mar é , where basal tic out crops rep re sent the Tiga (10 km2 ), and a se ries of smaller islands, emergent por tions of the vol ca nic base un der- Mar é (650 km 2 ), and on to Ile Walpole ly ing the Mio cene reef (Paris 1981, Kroenke 1 Funding for this re search was pro vided by the Loy- 3 Current address: Department of Biological Sciences, alty Islands Province, the Government of New Caledo- Sam Houston State University , Huntsville, Texas 77341. nia, the University of Queensland (Australia), the Centre 4 Institut d ’ arch é ologie de la Nouvelle - Cal é donie et National de la Recherche Scientifi que (CNRS), the Ger- du Pacifi que , 65, Rue Teyssandier de Laubar è de, BP: ald M. Lemole Endowed Chair funds (Villanova Uni- 11423, 98802 Noum é a Cedex, Nouvelle - Cal é donie, versity), and Grant Nos. DEB 0844523 and DEB 1019443 New Caledonia. from the U.S. National Science Foundation. Manuscript 5 Aboriginal and Torres Strait Islander Studies Unit, ac cepted 31 March 2015. The University of Queensland, Q 4072, Brisbane, Aus- 2 Department of Biology, Villanova University , tralia. 800 Lancaster Avenue, Villanova, Pennsylvania 19085. 6 University of California — Los Angeles Cotsen In- stitute of Archaeology , Box 951510, A210 Fowler, Los Angeles, California 90095 - 1510. 7 UMR 7041 – ArScAn, CNRS, Maison de Pacifi c Science (2015), vol. 69, no. 4:531–557 l ’ Arch é ologie et de l ’ Ethnologie, 21 all é e de l ’ Universit é , doi:10.2984/69.4.8 F - 92023 Nanterre cedex, France. © 2015 by University of Hawai‘i Press 8 Corresponding au thor (e - mail: aaron.bauer @ All rights re served villanova.edu). 531 532 PACIFIC SCIENCE · Oc to ber 2015 Figure 1. Location of Tiga Island in the Loyalty Islands archi pel a go. 1984). Rainfall is rel a tively low on the Loy- Grande Terre, vis ited Mar é and north ern alties, rang ing from 1,700 mm per annum in Lifou, and stopped briefl y on Ouvé a. Roux’ s north ern Lifou to un der 1,300 mm on Ouvé a (1913) resulting mono graph summa rized the (Sautter 1981), and the vege ta tion is highly de- en tire ter res trial and ma rine herpetofauna of pau per ate rel a tive to mainland New Caledo- New Caledonia and the Loyalty Islands. Sub- nia, with < 400 plant spe cies (Jaffr é 1993), sequently, very little her pe to log i cal re search consisting largely of coastal strand veg e ta tion has been conducted (ma te rial evalu ated by sim i lar to that on the main land and in land Sadlier and Bauer [1997]). Virtually all re- hu mid for ests (D ä niker 1931, Schmid 1981). search has been conducted on the three main The herpetofauna of the Loyalties has been is lands of the group. Very recent ly, the larg- rel a tively lit tle - stud ied, al though its over all est gecko in the Loyalties, long con sid ered spe cies com po si tion is be lieved to be well con spe cifi c with Gehyra vorax Girard, 1858, of known (Sadlier and Bauer 1997, Bauer and Fiji, has been de scribed as new based partly on Sadlier 2000). The nineteenth - cen tury Mar- ma te rial from Î le Dudun, a small sat el lite off ist mis sion ary Xavier Montrouzier (1820– of north ern Mar é (Flecks et al. 2012), but 1897) fi rst noted the pres ence of the Loyalty other small is lands, most no ta bly Tiga, have Island boa, which he re ferred to as Boa austra- not been ex plored herpetologically and are lis (Montrouzier 1860). Bavay (1869), who represented by no mate rial in mu seum col lec- cata logued the fauna of New Caledonia, de- tions. Interestingly, how ev er, both Tiga and scrib ing many of the endemic species, was re mote Walpole have been sites of some paleo- based on the Grande Terre, but he did ob tain herpetological work on the ex tinct meiola- snakes from E. Dubois, who collected in the niid tur tles (Gaffney et al. 1984, Balouet 1991). Loyalty Islands. In 1911 – 1912, Fritz Sarasin Although the herpetofaunal tally of the and Jean Roux trav eled through much of the Grande Terre con tin ues to grow as more and Reptile Remains from Tiga, Loyalty Islands · Daza et al. 533 more microendemic geckos and skinks are larg est island in the Loyalties, but it also lies dis cov ered, chiefl y at higher el e va tions (Bauer im me di ately north of Mar é and may be ex- and Sadlier 2000, Bauer and Jackman 2006, pected to help re solve the distri bu tional lim- Sadlier 2010), the herpetofaunal inven tory of its of the Mar é area en dem ics. the Loyalty Islands has remained quite sta ble We here re port on the her pe to log i cal fi nd- and has ac tu ally de creased. Sadlier and Bauer ings of an archeological study on Tiga car- (1997) and Bauer and Sadlier (2000) reported ried out by the Institut d ’ arch é ologie de la 20 ter res trial squa mates. One of these has Nouvelle - Cal é donie et du Pacifi que in col lab- since been recog nized as syn on y mous with o ra tion with the University of Queensland an other on the list, leaving only 19 spe cies. Six and the Centre National de la Recherche Sci- of these are wide spread through out much of entifi que in Par is. The study fo cused on the the Pacifi c, in clud ing New Caledonia, and in te gra tion be tween in dig e nous Ka nak sev eral of these are known or suspected to knowl edge about Tiga ’ s past and clas sic sur- have reached the re gion through hu man vey / ex ca va tion stud ies around the island.
Recommended publications
  • Two New Species of the Genus Bavayia (Reptilia: Squamata: Diplodactylidae) from New Caledonia, Southwest Pacific!
    Pacific Science (1998), vol. 52, no. 4: 342-355 © 1998 by University of Hawai'i Press. All rights reserved Two New Species of the Genus Bavayia (Reptilia: Squamata: Diplodactylidae) from New Caledonia, Southwest Pacific! AARON M. BAUER, 2 ANTHONY H. WHITAKER,3 AND Ross A. SADLIER4 ABSTRACT: Two new species ofthe diplodactylid gecko Bavayia are described from restricted areas within the main island ofNew Caledonia. Both species are characterized by small size, a single row of preanal pores, and distinctive dorsal color patterns. One species is known only from the endangered sclerophyll forest of the drier west coast of New Caledonia, where it was collected in the largest remaining patch of such habitat on the Pindai" Peninsula. The second species occupies the maquis and adjacent midelevation humid forest habitats in the vicinity of Me Adeo in south-central New Caledonia. Although relation­ ships within the genus Bavayia remain unknown, the two new species appear to be closely related to one another. BAVAYIA IS ONE OF THREE genera of carpho­ tion of the main island. The two most wide­ dactyline geckos that are endemic to the New spread species, B. cyclura and B. sauvagii, are Caledonian region. Seven species are cur­ both probably composites of several mor­ rently recognized in the genus (Bauer 1990). phologically similar, cryptic sibling species. Three of these, B. crassicollis Roux, B. cy­ Recent field investigations on the New Cale­ clura (Giinther), and B. sauvagii (Boulenger), donian mainland have revealed the presence are relatively widely distributed, with popula­ of two additional species of Bavayia. Both tions on the Isle of Pines (Bauer and Sadlier are small, distinctively patterned, and appar­ 1994) and the Loyalty Islands (Sadlier and ently restricted in distribution.
    [Show full text]
  • A New Locality for Correlophus Ciliatus and Rhacodactylus Leachianus (Sauria: Diplodactylidae) from Néhoué River, Northern New Caledonia
    Herpetology Notes, volume 8: 553-555 (2015) (published online on 06 December 2015) A new locality for Correlophus ciliatus and Rhacodactylus leachianus (Sauria: Diplodactylidae) from Néhoué River, northern New Caledonia Mickaël Sanchez1, Jean-Jérôme Cassan2 and Thomas Duval3,* Giant geckos from New Caledonia (Pacific Ocean) We observed seven native gecko species: Bavayia are charismatic nocturnal lizards. This paraphyletic (aff.) cyclura (n=1), Bavayia (aff.) exsuccida (n=1), group is represented by three genera, Rhacodactylus, Correlophus ciliatus (n=1), Dierrogekko nehoueensis Correlophus and Mniarogekko, all endemic to Bauer, Jackman, Sadlier and Whitaker, 2006 (n=1), New Caledonia (Bauer et al., 2012). Rhacodactylus Eurydactylodes agricolae Henkel and Böhme, 2001 leachianus (Cuvier, 1829) is largely distributed on the (n=1), Mniarogekko jalu Bauer, Whitaker, Sadlier and Grande Terre including the Île des Pins and its satellite Jackman, 2012 (n=1) and Rhacodactylus leachianus islands, whereas Correlophus ciliatus Guichenot, 1866 (n=1). Also, the alien Hemidactylus frenatus Dumeril is mostly known in the southern part of the Grande and Bibron, 1836 (n=3) has been sighted. The occurrence Terre, the Île des Pins and its satellite islands (Bauer of C. ciliatus and R. leachianus (Fig. 2 and 3) represent et al., 2012). Here, we report a new locality for both new records for this site. Both gecko species were species in the north-western part of Grande Terre, along observed close to the ground, at a height of less than the Néhoué River (Fig. 1). 1.5 m. The Néhoué River is characterized by gallery forests It is the first time that R. leachianus is recorded in the growing on deep alluvial soils.
    [Show full text]
  • Southwest Pacific Islands: Samoa, Fiji, Vanuatu & New Caledonia Trip Report 11Th to 31St July 2015
    Southwest Pacific Islands: Samoa, Fiji, Vanuatu & New Caledonia Trip Report 11th to 31st July 2015 Orange Fruit Dove by K. David Bishop Trip Report - RBT Southwest Pacific Islands 2015 2 Tour Leaders: K. David Bishop and David Hoddinott Trip Report compiled by Tour Leader: K. David Bishop Tour Summary Rockjumper’s inaugural tour of the islands of the Southwest Pacific kicked off in style with dinner at the Stamford Airport Hotel in Sydney, Australia. The following morning we were soon winging our way north and eastwards to the ancient Gondwanaland of New Caledonia. Upon arrival we then drove south along a road more reminiscent of Europe, passing through lush farmlands seemingly devoid of indigenous birds. Happily this was soon rectified; after settling into our Noumea hotel and a delicious luncheon, we set off to explore a small nature reserve established around an important patch of scrub and mangroves. Here we quickly cottoned on to our first endemic, the rather underwhelming Grey-eared Honeyeater, together with Nankeen Night Herons, a migrant Sacred Kingfisher, White-bellied Woodswallow, Fantailed Gerygone and the resident form of Rufous Whistler. As we were to discover throughout this tour, in areas of less than pristine habitat we encountered several Grey-eared Honeyeater by David Hoddinott introduced species including Common Waxbill. And so began a series of early starts which were to typify this tour, though today everyone was up with added alacrity as we were heading to the globally important Rivierre Bleu Reserve and the haunt of the incomparable Kagu. We drove 1.3 hours to the reserve, passing through a stark landscape before arriving at the appointed time to meet my friend Jean-Marc, the reserve’s ornithologist and senior ranger.
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Ecography E5383
    Ecography E5383 Hamilton, A. M., Hartman, J. H. and Austin, C. C. 2009. Island area and species diversity in the southwest Pacific Ocean: is the lizard fauna of Vanuatu depauperate? – Ecography 32: 247– 258. Supplementary material Appendix 1. Species lists of lizards for island groups included in this analysis. Hemidactylus frenatus, H. garnotii, and Lepidodactylus lugubris are considered introduced to all island groups included in this comparison and therefore are not included below. This list represents a conservative estimate of the true native reptile diversity within each island group as we did not include currently undescribed taxa, and considered a species introduced if a previous worker indicated the distribution was likely the result of an introduction and provided supporting data. Endemic species have a distribution restricted to a single archipelago. We used published literature (published prior to 1 August 2008), personal field observations, and unpublished molecular data to develop this list; the primary source(s) for each record is included with the record and references are provided below the table. Solomon Fiji Archipelago Vanuatu Samoan Tongan New Caledonia Loyalty Islands Taxon Islands Archipelago Islands Archipelago AGAMIDAE Hypsilurus godeffroyi Native (1) DIPLODACTYLIDAE Bavayia crassicollis Native (18) Native (18) Bavayia cyclura Native (18) Native (18) Bavayia exsuccida Endemic (18) Bavayia geitaina Endemic (18) Bavayia goroensis Endemic (2) Bavayia madjo Endemic (18) Bavayia montana Endemic (18) Bavayia ornata Endemic
    [Show full text]
  • WAPA Reptile Survey 2001 Final Report
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarSpace at University of Hawai'i at Manoa PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 169 Inventory of the reptiles of the War in the Pacific National Historical Park, Guam October 2001* Gordon H. Rodda1, and Kathy Dean-Bradley1 *Published on-line February 2010 1U.S. Geological Survey 2150 Centre Ave., Building C, Fort Collins, CO 80526-8118 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: U.S. Geological Survey 2150 Centre Ave., Building C, Fort Collins, CO 80526-8118, phone: (970) 226- 9471 http://www.fort.usgs.gov/ Recommended Citation: Rodda, G.H and K. Dean-Bradley. 2001. Inventory of the reptiles of the War in the Pacific National Historical Park Guam. Pacific Cooperative Studies Unit Technical Report 169. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 41 pg. Key words: Anolis carolinensis, Brown Treesnake Carlia fusca, Emoia caeruleocauda, Gehyra mutilata, Hemidactylus frenatus, Ramphotyphlops braminus, reptile inventory Place key words: War in the Pacific National Historical Park, Guam Editor: Clifford W. Morden, PCSU Deputy Director (e-mail: [email protected]) Executive summary – There are no native amphibians on Guam. Reptile species of offshore islets were reported in an earlier paper (Perry et al.1998). In February through April 2001 we intensively sampled the reptiles of the mainland portions of War in the Pacific National Historical Park (WAPA).
    [Show full text]
  • Reptiles of Ngulu Atoll, Yap State, Federated States of Micronesia1
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa Reptiles of Ngulu Atoll, Yap State, Federated States of Micronesia1 Donald W. Buden2 Abstract: Fourteen species of reptiles (two sea turtles, six geckos, six skinks) are recorded from Ngulu Atoll, Yap, Micronesia, all but the turtles for the first time. None is endemic and most occur widely in Oceania; the phylogenetic status of an undescribed species of Lepidodactylus is undetermined, and a phenotypically male Nactus cf. pelagicus is recorded from Micronesia for the first time. Lepido- dactylus moestus is the most common gecko on Ngulu Island, and Emoia caeruleo- cauda, E. impar, and E. jakati are the most abundant skinks. The islands are an important nesting site for green turtles, Chelonia mydas. Isolation, a small resi- dent human population, and traditional conservation practices contribute to sustaining turtle populations, although occasional poaching by outside visitors persists. The report of a small snake on Ylangchel Island, possibly a species of Ramphotyphlops, requires confirmation. Many of the west-central Pacific islands distribution and relative abundance of the composing Micronesia are poorly known bio- reptiles of Ngulu, and it is based largely on logically, especially the numerous, small, low- my personal observations and specimens that lying, and faunistically impoverished coralline I collected during approximately a month- atolls. These islands are difficult to reach. long field study, mainly on Ngulu Island, Those that have been studied appear to be in- and with brief visits to adjacent Ylangchel habited largely by widespread, weedy species and Wachlug islands.
    [Show full text]
  • Mechanics Explain Across-Species Scaling of Adhesion
    RESEARCH ARTICLE Geckos as Springs: Mechanics Explain Across- Species Scaling of Adhesion Casey A. Gilman1, Michael J. Imburgia2, Michael D. Bartlett2, Daniel R. King2, Alfred J. Crosby2*, Duncan J. Irschick1,3* 1 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, 01003, United States of America, 2 Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003, United States of America, 3 Department of Biology, University of Massachusetts at Amherst, Amherst, MA, 01003, United States of America * [email protected] (DJI); [email protected] (AJC) Abstract One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increas- OPEN ACCESS ing pad area. However, prior studies show that much of the variation in maximum adhesive Citation: Gilman CA, Imburgia MJ, Bartlett MD, King force remains unexplained, even when area is accounted for. We tested the hypothesis that DR, Crosby AJ, Irschick DJ (2015) Geckos as maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad Springs: Mechanics Explain Across-Species Scaling area, but also depends on the ratio of toepad area to gecko adhesive system compliance of Adhesion. PLoS ONE 10(9): e0134604. doi:10.1371/journal.pone.0134604 in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko’s adhesive system (C =dΔ/dF).
    [Show full text]
  • Phytogeography and Zoogeography—Rafting Vs Continental Drift
    JOURNAL OF CREATION 29(1) 2015 || PAPERS Phytogeography and zoogeography—rafting vs continental drift Dominic Statham Evolutionists have great difficulties explaining the global distributions of plants and animals. Accepted models of continental drift are inadequate to explain both trans-Atlantic and trans-Pacific disjunctions. At the same time, evolutionary biogeographers are unable to provide an adequate mechanism by which these distribution patterns could have arisen by dispersal. In contrast, the data fit well within a creationist model where plants and animals were rafted to the places they now inhabit on log mats left over from the Genesis Flood. The more raftable animals tend to have the most numerous transoceanic disjunctions and areas of high endemism/biodiversity tend to be concentrated in coastal regions where ocean currents intersect with land masses. Areas of high plant endemism/biodiversity often coincide with areas of high animal endemism/biodiversity, suggesting that the plants and animals were transported to these places by the same means. “ he pattern of geographical distribution [of plants haven’t changed significantly over such a long period of Tand animals] is just what you would expect if time. Furthermore, according to evolution theory, many evolution had happened.” (Richard Dawkins, Oxford plants and animals with transoceanic disjunct distributions University 1) originated millions of years after the continents are said to “Biogeography (or geographical distribution of have drifted apart.6–11 organisms) has not
    [Show full text]
  • 2008 Board of Governors Report
    American Society of Ichthyologists and Herpetologists Board of Governors Meeting Le Centre Sheraton Montréal Hotel Montréal, Quebec, Canada 23 July 2008 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 31 May 2008 The ASIH Board of Governor's is scheduled to meet on Wednesday, 23 July 2008 from 1700- 1900 h in Salon A&B in the Le Centre Sheraton, Montréal Hotel. President Mushinsky plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. We will cover the proposed consititutional changes following discussion of reports. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Montreal. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Montréal on 20 July 2008 so try to contact me before that date if possible. I will arrive late on the afternoon of 22 July 2008. The Annual Business Meeting will be held on Sunday 27 July 2005 from 1800-2000 h in Salon A&C. Please plan to attend the BOG meeting and Annual Business Meeting. I look forward to seeing you in Montréal. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2008 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W.
    [Show full text]
  • A Revision of the New Caledonian Genera
    Revision of the giant geckos of New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus) AARON M. BAUER1,4, TODD R. JACKMAN1, ROSS A. SADLIER2, & ANTHONY H. WHITAKER3 1 Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. E-mail: [email protected]; [email protected] 2 Department of Herpetology, Australian Museum, 6 College Street, Sydney 2010, New South Wales, Australia. E-mail: [email protected] 3Whitaker Consultants, 270 Thorpe-Orinoco Road, Orinoco, R.D. 1, Motueka 7196, New Zealand. E-mail: [email protected] 4Corresponding author Short Title: Rhacodactylus Revision Corresponding Author: Aaron M. Bauer Department of Biology, Villanova University 800 Lancaster Avenue, Villanova, Pennsylvania 19085-1699 Phone: 1-610-519-4857 Fax: 1-610-519-7863 email: [email protected] Revision of the giant geckos of New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus) AARON M. BAUER1,4, TODD R. JACKMAN1, ROSS A. SADLIER2, & ANTHONY H. WHITAKER3 1 Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA. E-mail: [email protected]; [email protected] 2 Department of Herpetology, Australian Museum, 6 College Street, Sydney 2010, New South Wales, Australia. E-mail: [email protected] 3Whitaker Consultants, 270 Thorpe-Orinoco Road, Orinoco, R.D. 1, Motueka 7196, New Zealand. E-mail: [email protected] 4Corresponding author Abstract We employed a molecular phylogenetic approach using the mitochondrial ND2 gene and five associated tRNAs (tryptophan, alanine, asparagine, cysteine, tyrosine) and the nuclear RAG1 gene to investigate relationships within the diplodactylid geckos of New Caledonia and particularly among the giant geckos, Rhacodactylus, a charismatic group of lizards that are extremely popular among herpetoculturalists.
    [Show full text]