Phycocyanobilin Synthesis in the Unicellular Rhodophyte Cyanidium Caldarium by ROBERT F

Total Page:16

File Type:pdf, Size:1020Kb

Phycocyanobilin Synthesis in the Unicellular Rhodophyte Cyanidium Caldarium by ROBERT F Biochem. J. (1978) 172, 569-576 569 Printed in Great Britain Phycocyanobilin Synthesis in the Unicellular Rhodophyte Cyanidium caldarium By ROBERT F. TROXLER Department ofBiochemistry, Boston University School of Medicine, Boston, MA 02118, U.S.A. and PATRICK KELLY School of Chemistry, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K. and STANLEY B. BROWN Department ofBiochemistry, University ofLeeds, 9 Hyde Terrace, Leeds LS2 9LS, U.K. (Received 10 October 1977) Light is required for synthesis of the accessory photosynthetic pigment phycocyanin in cells of the unicellular rhodophyte Cyanidium caldarium. Phycocyanin is a conjugated protein composed of polypeptide subunits to which the light-absorbing bile pigment chromophore phycocyanobilin is covalently attached. Dark-grown cells of C. caldarium are unable to make phycocyanin, but when incubated in the dark with 5-aminolaevulinate the cells synthesize and excrete a protein-free phycobilin (algal bile pigment) into the suspending medium. The electronic absorption spectrum, electron impact mass spectrum, chromatographic properties and imide products obtained after chromic acid degradation of the excreted phycobilin were identical with those of phycocyanobilin cleaved from phycocyanin in boiling methanol. This establishes the structural identity between the excreted phycobilin, which is the end product of bile-pigment synthesis in vivo, and the chromophore cleaved from phycocyanin in boiling methanol. The significance of the structure of the excreted phycobilin with respect to the events surrounding the assembly of the phycocyanin molecule in vivo is discussed. Phycobiliproteins are accessory pigments found in lished (Chapman, 1973; O'Carra & hEocha, the photosynthetic apparatus of red (Rhodophyta), 1976). The classic studies by Lemberg (1928, 1930) blue-green (Cyanophyta) and cryptomonad (Crypto- demonstrated that algal bile pigments were released phyta) algae (O'Carra & hEocha, 1976). Allo- from phycobiliproteins in hot concentrated acid and phycocyanin, phycocyanin and phycoerythrin are the alkali, but, recognizing that the hydrolytic conditions principal phycobiliproteins in these organisms yielded bile-pigment artifacts, Lemberg (1928, 1930) (Bogorad, 1975). Phycocyanobilin is the light- referred to the native chromophores of phycocyanin absorbing chromophore of allophycocyanin and and phycoerythrin as phycocyanobilin and phyco- phycocyanin, and phycoerythrobilin is the major erythrobilin respectively. More recently, phycobilins chromophore of phycoerythrin (Bennett & Siegel- have been cleaved from apoproteins by hydrolysis in man, 1977). Phycocyanobilin and phycoerythrobilin concentrated acid at room temperature (O hEocha, are linear tetrapyrroles structurally related to mam- 1963; Rudiger & O'Carra, 1969) or by boiling malian bile pigments (Siegelman et al., 1968; Troxler, phycobiliproteins in methanol (Fujita & Hattori, 1977). Algal bile pigments (phycobilins) are syn- 1963; Cole et al., 1968; Siegelman et al., 1968; thesized from 5-aminolaevulinate via the porphyrin- Troxler, 1972). 0 hEocha (1963) showed that the synthetic pathway and ultimately arise from the phycobilin obtained by hydrolysis of phycocyanin in carbon skeleton of protoporphyrin IX, i.e. haem concentrated HCl at room temperature was spectrally (Troxler, 1972). Phycocyanobilin is derived from its identical with the covalently attached chromophore porphyrin precursor by a mechanism (Troxler & of phycocyanin in 8 M-urea, and he regarded the Brown, 1977) identical with that used for haem cleaved phycobilin as phycocyanobilin. This phyco- conversion into bile pigment in mammals (Brown & bilin has not been crystallized and its structure is not King, 1975). known (O'Carra & hEocha, 1976). The phycobilin Phycobilins are covalently linked to apoproteins in isolated from phycocyanin by boiling methanol has algal cells, but the exact nature of the phycobilin- been purified as the dimethyl ester derivative, and its apoprotein linkages has not been definitively estab- structure has been determined by degradative tech- Vol. 172 570 R. F. TROXLER, P. KELLY AND S. B. BROWN CO2H CO2H CH3 CH2 CH2 CH3 IlI CH3 CH CH3 CH2 CH2 CH3 CH3 CH2 H - IIII III IV 0 CN C N C,N C N H H H H H H Phycocyanobilin CO2H CH3 CH2 CH3 CH3 CH CH3 CH2 CH3 CH2 H H N 0~~ N 0 N H H H Ethylidinemethylsuccinimide Haematinic acid Ethylmethylmaleimide Fig. 1. Structures ofphycocyanobilin and imides derived from phycocyanobilin The imides were obtained by degradation of phycocyanobilin in 1% (w/v) CrO3/lM-H2SO4 at 100°C for 30min (see the text). niques (Rudiger, 1968; Rudiger & O'Carra, 1969), grown in the dark. Dark-grown cells synthesize mass spectrometry and n.m.r. spectroscopy (Cole photosynthetic pigments, however, when placed et al., 1968; Crespi et al., 1968; Schram & Kroes, in the light. C. caldarium mutant III-D-2 was used 1971; Beuhler et al., 1976). This phycobilin has been in the present investigation because this strain considered in some laboratories to be synonymous produces more pigment per cell in the light than with phycocyanobilin (Fig. 1) (Siegelman et al., does the wild-type (Troxler & Bogorad, 1966). 1968; Troxler, 1972; Beuhler et al., 1976) and is referred to as such below. Culture conditions Troxler & Bogorad (1966) found that cells of the Algal cells were grown from a small inoculum on a unicellular rhodophyte Cyanidium caldarium excreted rotary shaker in 1500ml of medium supplemented a protein-free phycobilin into the growth medium with 1 % (w/v) glucose (Allen, 1959) in 3-litre when incubated with 5-aminolaevulinate, the first Fernbach flasks at 370C in the dark for 7-10 days committed intermediate in the porphyrin pathway. (standard conditions). Dark-grown cells were sub- The excreted phycobilin was considered to be the sequently treated in one of two ways. (a) Dark-grown linear tetrapyrrole (i.e. bile pigment), which becomes algal cells were collected by centrifugation (15OOOg covalently attached to apoprotein during phyco- for 15min), resuspended in medium (I500ml) minus cyanin biosynthesis in vivo (Troxler & Lester, 1967; glucose and 5-aminolaevulinate, and incubated for Troxler, 1972). 72h under standard conditions in the light (General In the present paper, the properties of the excreted Electric fluorescent tubes, F17PG, CW; approx. phycobilin are compared with those of phycocyano- 54001x). The cells produced chlorophyll a and bilin cleaved from phycocyanin by boiling methanol, phycobiliproteins in the light. Phycocyanin was and the relationship between the excreted phycobilin isolated and purified from these pigmented cells as and phycocyanin biosynthesis in vivo is discussed. described below. (b) Algal cells were collected by centrifugation at 15000g for 5min, and 1 ml of Experimental packed cells was placed in 9ml of medium containing 1 % glucose and 50mM-5-aminolaevulinate (Sigma Organism Chemical Co., St. Louis, MO, U.S.A.), and several Cyanidium caldarium (Allen, 1959) is a unicellular such suspensions were incubated in 25 ml Erlenmeyer rhodophyte that synthesizes chlorophyll a, allo- flasks for 72h in the dark. The phycobilin synthesized phycocyanin and phycocyanin in the light, but is from 5-aminolaevulinate under these conditions was unable to make these photosynthetic pigments when isolated and purified as described below. 1978 ALGAL BILE-PIGMENT BIOSYNTHESIS 571 Preparation ofphycocyanin College, PA, U.S.A.) was added and the solution was After illumination, algal cells were collected by refluxed for 2 min. The solution was cooled to room centrifugation at 15000g for 5min, resuspended in temperature, 50ml of water was added and the algal 0.1 M-phosphate buffer (KH2PO4/K2HPO4), pH 7.0 bile-pigment diesters were extracted into chloroform. (1 ml of cells/10ml of buffer), and disrupted by sonica- The chloroform solution was washed with water, tion with a Branson sonic oscillator (model W 185) filtered through chloroform-moistened filter paper, for 10min as described by Brown & Troxler (1977). evaporated to dryness under a stream of N2 and the Particulate matter was removed by centrifugation at product stored at -20°C until used. 36000g for 30min and the resulting supernatant was made 50% saturated with (NH4)2SO4. The pre- Thin-layer chromatography cipitated phycocyanin (and small quantities of allo- The bile-pigment dimethyl esters were dissolved in phycocyanin) were collected by centrifugation, chloroform, applied to 20cm x 20cm silica-gel dialysed overnight against water (50 vol.) at 4°C and plates (Absorbosil-5; Applied Science Laboratories) the dialysed samples were centrifuged at 1000OOg and chromatographed in one of the following solvent for 1h to remove traces of chlorophyll a. Phyco- systems (Cole et al., 1968): (1) methylene dichloride/ cyanin in the supernatant was purified by ion- ethyl acetate (4:1, v/v); (2) benzene/ethanol (9:1, exchange chromatography on brushite columns v/v); (3) carbon tetrachloride/methyl acetate (2:1, (2.5 cm x 20cm) developed with potasium phosphate v/v). The band of purified bile-pigment diester was buffers (pH 7.0) of increasing ionic strength as scraped off the chromatogram, eluted from silica gel described by Brown & Troxler (1977). Phycocyanin, with chloroform or ethanol, which was evaporated to which was eluted from the columns in 0.01-0.025M- dryness, and the methylated bile pigments were stored potassium phosphate buffer, was precipitated by at -20°C until used. adding solid (NH4)2SO4 to 80% saturation, and the precipitate was dialysed overnight
Recommended publications
  • Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr
    Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr. 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 38 c, 753-757 (1983); received May 4, 1983 Semisynthetic Bile Pigments, Urobiliverdin III, Coprobiliverdin III, Biliverdin IX, Uroporphyrin III 5-Aminolevulinic acid is incubated with a crude enzyme extract from Rhodopseudomonas spheroides, mutant R 26. The formed porphyrins (main product: uroporphyrin III) are isolated. Incorporation of iron, ring-splitting by coupled oxydation and subsequent iron removal leads to a mixture of pigments, from which urobiliverdin, a new bile pigment with eight carboxylic acid side chains, is isolated. It is characterized by its chromatographic behaviour, chromic acid degra­ dation and UV-vis spectroscopy. Introduction the photosynthetic bacteria, Rhodopseudomonas spheroides, mutant R26 was a gift from Prof. Naturally occurring open chained tetrapyrrolic H. Scheer, Munich. Marker porphyrins were pur­ systems (bile pigments) usually bear two carboxylic chased from Porphyrin products (Logan, USA). acid side chains, namely propionic acid side chains. Chromic acid degradation was performed accord­ Examples are phycocyanobilin [1-5], phycoerythro- ing to the procedure developed by Rüdiger [21]; the bilin [5, 6], phytochromobilin [7, 8], the biliar pig­ degradation products were separated on silicagel 60 ment bilirubin ([9], here older literature) and sterco- coated HPTLC plates (E. Merck, Darmstadt, FRG) bilin [9] which is encountered in the faeces. using the solvent system chloroform-ethyl acetate- All of these pigments probably derive from proto­ cyclohexane = 6:3:1. The imides formed were heme as has been shown experimentally in a identified by comparison with authentic standards.
    [Show full text]
  • Ecological and Physiological Studies on Freshwater Autotrophic Picoplankton
    Durham E-Theses Ecological and physiological studies on freshwater autotrophic picoplankton Hawley, Graham R.W. How to cite: Hawley, Graham R.W. (1990) Ecological and physiological studies on freshwater autotrophic picoplankton, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6058/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Ecological and physiological studies on freshwater autotrophic picoplankton by Graham R.W. Hawley B.Sc. (DI.melm) A thesis submdtted for the degree of Doctor of Philosophy in the university of Durham, England. Department of Biological Sciences, August 1990 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. w~ 1 8 AUG 1992 2 This thesis is entirely the result of my~~ work.
    [Show full text]
  • PDF File Includes: Main Text Figures 1 to 4 Supplemental Text Supplemental Figures S1 to S8 Supplemental Tables
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.414581; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE Takayuki Nagaea, Masashi Unnob, Taiki Koizumic, Yohei Miyanoirid, Tomotsumi Fujisawab, Kento Masuif, Takanari Kamof, Kei Wadae, Toshihiko Ekif, Yutaka ItoC, Yuu Hirosef and Masaki Mishimac aSynchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan; bDepartment of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan; cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; dInstitute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan; eDepartment of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan; fDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan 1To whom correspondence should be addressed 1Masaki Mishima Email: [email protected] 1Yuu Hirose Email: [email protected] 1 Masashi Unno Email: [email protected] Takayuki Nagae: 0000-0001-7016-5183 Tomotsumi Fujisawa: 0000-0002-3282-6814 Masashi Unno: 0000-0002-5016-6274 Yohei Miyanoiri: 0000-0001-6889-5160 Yuu Hirose: 0000-0003-1116-8979 Kei Wada: 0000-0001-7631-4151 Yutaka Ito: 0000-0002-1030-4660 Masaki Mishima: 0000-0001-7626-7287 Classification Biological Sciences Keywords cyanobacteriochrome, phytochrome, bilin, NMR, crystallography Author Contributions MM, YH, and MU designed the research and wrote the manuscript.
    [Show full text]
  • View Article
    Cronicon OPEN ACCESS EC Microbiology Review Article Spirulina Rising: Microalgae, Phyconutrients, and Oxidative Stress Mark F McCarty1 and Nicholas A Kerna2,3* 1Catalytic Longevity, USA 2SMC-Medical Research, Thailand 3First InterHealth Group, Thailand *Corresponding Author: Nicholas A Kerna, (mailing address) POB47 Phatphong, Suriwongse Road, Bangrak, Bangkok, Thailand 10500. Contact: [email protected] Received: August 22, 2019; Pubished: June 30, 2021 DOI: 10.31080/ecmi.2021.17.01135 Abstract Oxidative stress provokes the development of many common diseases and contributes to the aging process. Also, oxidative stress is a critical factor in common vascular disorders and type 2 diabetes. It plays a role in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amytrophic lateral sclerosis, multiple sclerosis, and cancer. Oxidative stress contributes to the healthy regulation of cell function. However, excessive oxidative stress results in pathological processes. Antioxidant vitamins have a limited from oxidative stress, and inhibits NOX. PhyCB, a component of the microalgae Spirulina, shares a similar structure with biliverdin, influence on oxidative stress as most oxidative stress results from the cellular production of superoxide. Bilirubin protects cells a biosynthetic precursor of bilirubin. Thus, the oral administration of PhyCB, phycocyanin, or whole Spirulina shows promise for preventing and or treating human disorders that have resulted from excessive oxidative stress. Keywords: Microalgae; Oxidative Stress; Phycocyanobilin; Phyconutrients; Singlet Oxygen; Spirulina; Superoxide Abbreviations DHA: Docosahexaenoic Acid; HO-1: Heme Oxygenase-1; O2: Oxygen; PhyCB: Phycocyanobilin Introduction To understand how phyconutrients, found abundantly in microalgae, can provide preventive and therapeutic effects, it is fundamental to understand how oxidative stress triggers or contributes to the development of many common diseases—and how microalgae, such as Spirulina can help inhibit oxidative stress in the human body.
    [Show full text]
  • Myoglobin with Modified Tetrapyrrole Chromophores: Binding Specificity and Photochemistry ⁎ Stephanie Pröll A, Brigitte Wilhelm A, Bruno Robert B, Hugo Scheer A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1757 (2006) 750–763 www.elsevier.com/locate/bbabio Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry ⁎ Stephanie Pröll a, Brigitte Wilhelm a, Bruno Robert b, Hugo Scheer a, a Department Biologie I-Botanik, Universität München, Menzingerstr, 67, 80638 München, Germany b Sections de Biophysique des Protéines et des Membranes, DBCM/CEA et URA CNRS 2096, C.E. Saclay, 91191 Gif (Yvette), France Received 2 August 2005; received in revised form 2 March 2006; accepted 28 March 2006 Available online 12 May 2006 Abstract Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark. © 2006 Elsevier B.V.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Indicators of Iron
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Indicators of Iron Metabolism in Marine Microbial Genomes and Ecosystems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Shane Lahman Hogle Committee in charge: Katherine Barbeau, Chair Eric Allen Bianca Brahamsha Christopher Dupont Brian Palenik Kit Pogliano 2016 Copyright Shane Lahman Hogle, 2016 All rights reserved . The Dissertation of Shane Lahman Hogle is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION Mom, Dad, Joel, and Marie thank you for everything iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures ................................................................................................................... vii List of Tables ..................................................................................................................... ix Acknowledgements ..............................................................................................................x Vita ..................................................................................................................................
    [Show full text]
  • Extractuion, Partial Pirificatuon and Anti
    J. Algal Biomass Utln. 2012, 3 (3): 7– 11 Purification, and antibacterial activity of phycocyanin from Spirulina © PHYCO SPECTRUM INC Extraction, partial purification, and antibacterial activity of phycocyanin from Spirulina isolated from fresh water body against various human pathogens M. Muthulakshmi, A. Saranya, M. Sudha, and G. Selvakumar* Department of Microbiology and Biochemistry, Nadar Saraswathi College of Arts & Science, Theni 625531, Tamil Nadu, India *Department of Microbiology, Department of Distance Education, Alagappa University, Karaikudi, Tamil Nadu, India ABSTRACT The phycobilin pigments are intensively fluorescence and water soluble. They are categorized into three types: pigments containing high energies (phycoerythrins), intermediate energies (phycocyanins), and low energies (allophycocyanins). Among them, crude-phycocyanin (c-pc) has been considered to be the most preferred one. The present study was undertaken to evaluate the antibacterial activity of c-pc which was isolated from the blue green algae Spirulina platensis. C-pc was extracted by sonication, followed by centrifugation and filtration. The crude form of phycocyanin was purified by ammonium sulphate precipitation, membrane filtration, and dialysis method. Antibacterial activities were obtained from various human pathogens. The results showed that all Spirulina maxima extracts exhibited great potential antibacterial activities against five bacterial strains with inhibition zones of range 7–13 mm. Key words: Spirulina maxima, c-phycocyanin, antibacterial activity INTRODUCTION the cells enclosed in a thin sheath. Spirulina has a Microalgae are a very diverse group of organisms very long history of being served as a source of food that consist of both prokaryotic and eukaryotic for human being. forms. Although most microalgae are phototropic some species are also capable of showing Spirulina is a spiral filament generally found in heterotrophic growth.
    [Show full text]
  • Phototrophic Pigment Production with Microalgae
    Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions.
    [Show full text]
  • Retrograde Bilin Signaling Enables Chlamydomonas Greening and Phototrophic Survival
    Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival Deqiang Duanmua, David Caserob,c, Rachel M. Dentd, Sean Gallahere, Wenqiang Yangf, Nathan C. Rockwella, Shelley S. Martina, Matteo Pellegrinib,c, Krishna K. Niyogid,g,h, Sabeeha S. Merchantb,e, Arthur R. Grossmanf, and J. Clark Lagariasa,1 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bInstitute for Genomics and Proteomics, cDepartment of Molecular, Cell and Developmental Biology, and eDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; dDepartment of Plant and Microbial Biology, gHoward Hughes Medical Institute, and hPhysical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and fDepartment of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 Contributed by J. Clark Lagarias, December 20, 2012 (sent for review October 30, 2012) The maintenance of functional chloroplasts in photosynthetic share similar mechanisms for light sensing and retrograde sig- eukaryotes requires real-time coordination of the nuclear and naling. However, many chlorophyte genomes lack phytochromes plastid genomes. Tetrapyrroles play a significant role in plastid-to- (21–24), a deficiency offset by a larger complement of flavin- and nucleus retrograde signaling in plants to ensure that nuclear gene retinal-based sensors (25–30). expression is attuned to the needs of the chloroplast. Well-known Despite the absence of phytochromes, all known chlorophyte sites of synthesis of chlorophyll for photosynthesis, plant chlor- genomes retain cyanobacterial-derived genes for the two key oplasts also export heme and heme-derived linear tetrapyrroles enzymes required for bilin biosynthesis (Fig. 1A): a heme oxygen- (bilins), two critical metabolites respectively required for essential ase (HMOX1) and a ferredoxin-dependent bilin reductase (PCYA).
    [Show full text]
  • Nobel Lecture by Roger Y. Tsien
    CONSTRUCTING AND EXPLOITING THE FLUORESCENT PROTEIN PAINTBOX Nobel Lecture, December 8, 2008 by Roger Y. Tsien Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0647, USA. MOTIVATION My first exposure to visibly fluorescent proteins (FPs) was near the end of my time as a faculty member at the University of California, Berkeley. Prof. Alexander Glazer, a friend and colleague there, was the world’s expert on phycobiliproteins, the brilliantly colored and intensely fluorescent proteins that serve as light-harvesting antennae for the photosynthetic apparatus of blue-green algae or cyanobacteria. One day, probably around 1987–88, Glazer told me that his lab had cloned the gene for one of the phycobilipro- teins. Furthermore, he said, the apoprotein produced from this gene became fluorescent when mixed with its chromophore, a small molecule cofactor that could be extracted from dried cyanobacteria under conditions that cleaved its bond to the phycobiliprotein. I remember becoming very excited about the prospect that an arbitrary protein could be fluorescently tagged in situ by genetically fusing it to the phycobiliprotein, then administering the chromophore, which I hoped would be able to cross membranes and get inside cells. Unfortunately, Glazer’s lab then found out that the spontane- ous reaction between the apoprotein and the chromophore produced the “wrong” product, whose fluorescence was red-shifted and five-fold lower than that of the native phycobiliprotein1–3. An enzyme from the cyanobacteria was required to insert the chromophore correctly into the apoprotein. This en- zyme was a heterodimer of two gene products, so at least three cyanobacterial genes would have to be introduced into any other organism, not counting any gene products needed to synthesize the chromophore4.
    [Show full text]
  • Scalable Production of Biliverdin Ixα by Escherichia Coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2*
    Chen et al. BMC Biotechnology 2012, 12:89 http://www.biomedcentral.com/1472-6750/12/89 RESEARCH ARTICLE Open Access Scalable production of biliverdin IXα by Escherichia coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2* Abstract Background: Biliverdin IXα is produced when heme undergoes reductive ring cleavage at the α-methene bridge catalyzed by heme oxygenase. It is subsequently reduced by biliverdin reductase to bilirubin IXα which is a potent endogenous antioxidant. Biliverdin IXα, through interaction with biliverdin reductase, also initiates signaling pathways leading to anti-inflammatory responses and suppression of cellular pro-inflammatory events. The use of biliverdin IXα as a cytoprotective therapeutic has been suggested, but its clinical development and use is currently limited by insufficient quantity, uncertain purity, and derivation from mammalian materials. To address these limitations, methods to produce, recover and purify biliverdin IXα from bacterial cultures of Escherichia coli were investigated and developed. Results: Recombinant E. coli strains BL21(HO1) and BL21(mHO1) expressing cyanobacterial heme oxygenase gene ho1 and a sequence modified version (mho1) optimized for E. coli expression, respectively, were constructed and shown to produce biliverdin IXα in batch and fed-batch bioreactor cultures. Strain BL21(mHO1) produced roughly twice the amount of biliverdin IXα than did strain BL21(HO1). Lactose either alone or in combination with glycerol supported consistent biliverdin IXα production by strain BL21(mHO1) (up to an average of 23. 5mg L-1 culture) in fed-batch mode and production by strain BL21 (HO1) in batch-mode was scalable to 100L bioreactor culture volumes.
    [Show full text]
  • Surprising Roles for Bilins in a Green Alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland
    COMMENTARY COMMENTARY Surprising roles for bilins in a green alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland It is well established that the origin of plastids which serves as chromophore of phyto- can be traced to an endosymbiotic event in chromes (Fig. 1). An intriguing feature of which a free-living photosynthetic prokaryote all sequenced chlorophyte genomes is that, invaded a eukaryotic cell more than 1 billion although they lack phytochromes, their years ago. Most genes from the intruder genomes encode two HMOXs, HMOX1 were gradually transferred to the host nu- andHMOX2,andPCYA.InPNAS,Duanmu cleus whereas a small number of these genes et al. (6) investigate the role of these genes in were maintained in the plastid and gave the green alga Chlamydomonas reinhardtii rise to the plastid genome with its associated and made unexpected findings. protein synthesizing system. The products of Duanmu et al. first show that HMOX1, many of the genes transferred to the nucleus HMOX2, and PCYA are catalytically active were then retargeted to the plastid to keep it and produce bilins in vitro (6). They also functional. Altogether, approximately 3,000 demonstrate in a very elegant way that these nuclear genes in plants and algae encode proteins are functional in vivo by expressing plastid proteins, whereas chloroplast ge- a cyanobacteriochrome in the chloroplast Fig. 1. Tetrapyrrole biosynthetic pathways. The heme nomes contain between 100 and 120 genes of C. reinhardtii, where, remarkably, the and chlorophyll biosynthetic pathways diverge at pro- (1). A major challenge for eukaryotic pho- photoreceptor is assembled with bound toporphyrin IX (ProtoIX).
    [Show full text]