Boron–Oxygen Complex Yields N-Type Surface Layer in Semiconducting Diamond
Boron–oxygen complex yields n-type surface layer in semiconducting diamond Xiaobing Liua,b,1, Xin Chena,b,1, David J. Singhc, Richard A. Sternd, Jinsong Wue, Sylvain Petitgirardf, Craig R. Binab, and Steven D. Jacobsenb,1 aSchool of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China; bDepartment of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208; cDepartment of Physics and Astronomy, University of Missouri, Columbia, MO 65211; dCanadian Centre for Isotopic Microanalysis, Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada; eNorthwestern University Atomic and Nanoscale Characterization Experimental, Northwestern University, Evanston, IL 60208; and fBayerisches Geoinstitut, University of Bayreuth, 95444 Bayreuth, Germany Edited by Ho-kwang Mao, Carnegie Institution for Science, Washington, DC, and approved March 5, 2019 (received for review December 19, 2018) Diamond is a wide-bandgap semiconductor possessing exceptional predicted to form shallow donor states (Ed ∼ ECBM − 0.38 eV) physical and chemical properties with the potential to miniaturize (9, 12); however, the electronic characteristics of S-doped di- − high-power electronics. Whereas boron-doped diamond (BDD) is a amond with low carrier content (∼1012–1016 cm 3) are inadequate well-known p-type semiconductor, fabrication of practical diamond- for most devices (13). Psub has emerged as the most successful based electronic devices awaits development of an effective n-type n-type dopant in diamond (Ed ∼ ECBM − 0.5 eV) (1, 14, 15). dopant with satisfactory electrical properties. Here we report the However, phosphorus donors are relatively inefficient with low − synthesis of n-type diamond, containing boron (B) and oxygen (O) carrier concentration (below 1019 cm 3), low conductivity (below − − − − − complex defects.
[Show full text]