MRGPRX4 Is a G Protein-Coupled Receptor Activated by Bile Acids That May Contribute to Cholestatic Pruritus

Total Page:16

File Type:pdf, Size:1020Kb

MRGPRX4 Is a G Protein-Coupled Receptor Activated by Bile Acids That May Contribute to Cholestatic Pruritus MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus James Meixionga, Chirag Vasavdaa, Solomon H. Snydera,b,c,1, and Xinzhong Donga,d,e,f,1 aSolomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; bDepartment of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; cDepartment of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; dDepartment of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; eDepartment of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and fHoward Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Contributed by Solomon H. Snyder, April 5, 2019 (sent for review February 26, 2019; reviewed by Hongzhen Hu and Gil Yosipovitch) Patients suffering from cholestasis, the slowing or stoppage of bile BA-induced itch is likely not TGR5 dependent in humans, a flow, commonly report experiencing an intense, chronic itch. scenario different from mice. Numerous pruritogens are up-regulated in cholestatic patient sera, Cholestatic pruritus is classified as nonhistaminergic itch. including bile acids (BAs). Acute injection of BAs results in itch in Cholestatic patients do not exhibit classic signs of histamine re- both mice and humans, and BA-modulating therapy is effective in lease, such as erythema or swelling (3). Moreover, antihistamines controlling patient itch. Here, we present evidence that human are ineffective in treating cholestatic pruritus, with only a few sensory neuron-expressed Mas-related G protein-coupled receptor patients reporting clinical improvement in their symptoms (3, X4 (MRGPRX4), an orphan member of the Mrgpr family of GPCRs, 2+ 19). The Mas-related family of G protein-coupled receptors is a BA receptor. Using Ca imaging, we determined that pathophy- (MRGPRs) are GPCRs that mediate nonhistaminergic itch. In siologically relevant levels of numerous BAs activated MRGPRX4. No mice, MRGPRs are expressed in small-diameter sensory neurons mouse Mrgpr orthologs were activated by BAs. To assess the in vivo that code exclusively for itch and not pain (20). Over the years, relevance of BA activation of MRGPRX4, we generated a humanized increasingly more members of the MRGPR family have been mouse with targeted expression of MRGPRX4 in itch-encoding sen- + identified as receptors for known pruritogens (21). sory neurons. BAs activated MRGPRX4 sensory neurons at higher In mice, there are 27 expressed Mrgprs, only a few of which NEUROSCIENCE levels compared with WT neurons. Compared with control animals, + have known ligands (22). In humans, there are eight expressed MRGPRX4 mice scratched more upon acute injection of BAs and in a – – model of cholestatic itch. Overall, these data suggest that targeting Mrgprs (MRGPRX1 X4 and -D G). MRGPRX1 and MRGPRD MRGPRX4 is a promising strategy for alleviating cholestatic itch. have been implicated in nonhistaminergic itch as receptors for pruritic compounds. MRGPRX1, -X3, -X4, -D, and -E are cholestasis | itch | pruritus | MRGPRX4 | bile acids expressed in human dorsal root ganglia (DRG) and trigeminal ganglia (TG), while MRGPRX2 has been detected in human – n the United States, hundreds of thousands of patients report mast cells (23 26). Recently, we have identified murine receptor Iexperiencing a severe, generalized pruritus (itch) due to cho- Mrgpra1 and human receptor MRGPRX4 as receptors for bili- lestasis, or the slowing or stoppage of bile flow. Cholestatic itch is rubin that may mediate a component of cholestatic itch (27). often nonresponsive to standard pharmacological treatments (1– 3) and instead requires physically removing the causative ob- Significance struction (such as gallstones), draining the bile, or transplanting the liver to alleviate itch (1, 4, 5). Because these procedures are Cholestatic itch is a debilitating symptom that affects hundreds often curative, the responsible pruritogens are hypothesized to of thousands of patients every year, drastically decreasing originate from the liver and bile. Numerous candidate pruri- patient quality of life. Additional therapeutic targets are togens are present in bile and up-regulated in cholestatic pa- needed, as current therapies are ineffective for many patients. tients, including opioids, lysophosphatidic acid, bilirubin, and In recent years, the Mas-related G protein-coupled receptor bile acids (BAs). Therapies targeting these mechanisms, such as (MRGPR) family of receptors has been linked to itch. Here, we opioid antagonists, rifampicin, and BA-binding resins like cho- determine that MRGPRX4 is specifically activated by numerous lestyramine, are frontline therapy for cholestatic itch (6–9). bile acids (BAs) up-regulated in cholestatic patient sera. To test the relevance of these findings in vivo, we generated human- BAs are amphipathic cholesterol derivatives synthesized in + ized mice expressing MRGPRX4 in sensory neurons. MRGPRX4 liver. BAs have previously defined roles as detergents, hormones, humanized mice display higher levels of itch in response to and antiinflammatory agents (10–13). Primary BA synthesis aids injection of BAs and in a mouse model of cholestasis, indicating in biliary secretion of phospholipids, drugs, and toxins. In liver, that MRGPRX4 could play a role in cholestatic itch. BAs are conjugated with taurine or glycine for biliary secretion. Secreted BAs can be reabsorbed in the ileum and retrogradely Author contributions: J.M. designed research; J.M. and C.V. performed research; J.M. and transported to liver where they inhibit synthesis in an inhibitory C.V. analyzed data; J.M., C.V., S.H.S., and X.D. wrote the paper; and S.H.S. and X.D. feedback loop. In cholestatic patients, BAs accumulate in both supervised the research. serum and tissue because bile flow is abrogated. Reviewers: H.H., Washington University School of Medicine in St. Louis; and G.Y., Univer- BAs are pruritic as injecting BAs in humans evokes itch (14, sity of Miami Miller School of Medicine. 15). In mice, TGR5, a G protein-coupled receptor (GPCR) with Conflict of interest statement: J.M. is a consultant for Escient Pharmaceuticals, a company focused on developing small molecule inhibitors for MRGPRs. X.D. is a co-founder of micromolar affinity toward BAs (16, 17), is expressed in itch Escient Pharmaceuticals. −/− sensory neurons (10). TGR5 mice scratched less in response Published under the PNAS license. to injection of multiple activating BAs, indicating that the re- 1To whom correspondence may be addressed. Email: [email protected] or xdong2@jhmi. ceptor mediates a component of acute BA-associated itch (10). edu. However, recent clinical trials have found that TGR5-specific This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. agonists do not elicit pruritus, suggesting that activating TGR5 1073/pnas.1903316116/-/DCSupplemental. alone is not sufficient to evoke itch in humans (18). Accordingly, Published online May 8, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1903316116 PNAS | May 21, 2019 | vol. 116 | no. 21 | 10525–10530 Downloaded by guest on October 1, 2021 + Another published MRGPRX4 agonist, nateglinide, is a clini- MRGPRX4-induced Ca2 signal was dependent on intracellular + cally approved type 2 diabetes drug that causes itch as a prom- Ca2 stores. Previous studies have identified MRGPRX4 as be- inent side effect (28, 29), further implicating MRGPRX4 as an ing Gαq linked (27, 29). In line with this, DCA-associated 2+ itch receptor. In this study, we screened major bile constituents Ca flux appears to be similarly Gαq linked, since both the against a panel of both mouse and human MRGPRs. From this Gαq inhibitor, YM254890, and the PLC inhibitor, U73122, + screen, we determined that numerous BAs specifically activated inhibited Ca2 signal (Fig. 1 G and H). MRGPRX4. Of all mouse and human receptors tested, BAs only Of the BAs tested, DCA and ursodeoxycholic acid (UDCA) activated MRGPRX4. Using newly generated humanized mice displayed the highest potency in terms of MRGPRX4-associated + in which we express MRGPRX4 selectively in itch-sensing neu- Ca2 signal (Fig. 1C and SI Appendix, Fig. S1F). Both DCA and rons, we demonstrated that MRGPRX4 contributed to the BA- UDCA had EC50sof∼5 μM, similar to their activity toward induced component of cholestatic itch. previously published receptors like TGR5 (17). Unlike TGR5, however, MRGPRX4 exhibited a larger range of potency for Results various BAs. For example, cholic acid (CA) displayed much In liver hepatocytes, cholesterol is metabolized via cytochrome lower potency against MRGPRX4 (EC50 ∼430 μM), well outside P450 (CYP) to primary BAs (Fig. 1A). Primary BAs are sub- physiologic range. In contrast, the EC50 of CA toward TGR5 is sequently metabolized to other BAs, after which they are con- ∼10 μM (17). jugated to either glycine or taurine for more efficient biliary Primary bile acids can be conjugated to either glycine or taurine secretion. In the intestine, bacteria metabolize BAs to form to form water-soluble bile salts. We tested three tauro-conjugated secondary BAs, which can return to the bloodstream and liver bile acids, tauro-DCA (TDCA), tauro-CDCA (TCDCA), and through enterohepatic circulation (Fig. 1A). We recently iden- tauro-cholic acid (TCA) against MRGPRX4. All conjugated bile tified
Recommended publications
  • Applying Screening Techniques to Two Orphan Gpcrs
    Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Mestrado Integrado em Ciências Farmacêuticas 2019 Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Monografia de Mestrado Integrado em Ciências Farmacêuticas apresentada à Universidade de Lisboa através da Faculdade de Farmácia Orientadora: Ghazl Al Hamwi, PhD Student Co-Orientadora: Professora Doutora Elsa Maria Ribeiro dos Santos Anes, Professora Associada com Agregação em Microbiologia 2019 Abstract G-Protein Coupled Receptors represent one of the largest families of cellular receptors discovered and one of the main sources of attractive drug targets. In contrast, it also has a large number of understudied or orphan receptors. Pharmacological assays such as β-Arrestin recruitment assays, are one of the possible approaches for deorphanization of receptors. In this work, I applied the assay system previously mentioned to screen compounds in two orphan receptors, GRP37 and MRGPRX3. GPR37 has been primarily associated with a form of early onset Parkinsonism due to its’ expression patterns, and physiological role as substrate to ubiquitin E3, parkin. Although extensive literature regarding this receptor is available, the identification of a universally recognized ligand has not yet been possible. Two compounds were proposed as ligands, but both were met with controversy. These receptor association with Autosomal Recessive Juvenile Parkinson positions it as a very attractive drug target, and as such its’ deorphanization is a prime objective for investigators in this area. Regarding MRGPRX3 information is much scarcer.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • 1 Supplemental Material Maresin 1 Activates LGR6 Receptor
    Supplemental Material Maresin 1 Activates LGR6 Receptor Promoting Phagocyte Immunoresolvent Functions Nan Chiang, Stephania Libreros, Paul C. Norris, Xavier de la Rosa, Charles N. Serhan Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 1 Supplemental Table 1. Screening of orphan GPCRs with MaR1 Vehicle Vehicle MaR1 MaR1 mean RLU > GPCR ID SD % Activity Mean RLU Mean RLU + 2 SD Mean RLU Vehicle mean RLU+2 SD? ADMR 930920 33283 997486.5381 863760 -7% BAI1 172580 18362 209304.1828 176160 2% BAI2 26390 1354 29097.71737 26240 -1% BAI3 18040 758 19555.07976 18460 2% CCRL2 15090 402 15893.6583 13840 -8% CMKLR2 30080 1744 33568.954 28240 -6% DARC 119110 4817 128743.8016 126260 6% EBI2 101200 6004 113207.8197 105640 4% GHSR1B 3940 203 4345.298244 3700 -6% GPR101 41740 1593 44926.97349 41580 0% GPR103 21413 1484 24381.25067 23920 12% NO GPR107 366800 11007 388814.4922 360020 -2% GPR12 77980 1563 81105.4653 76260 -2% GPR123 1485190 46446 1578081.986 1342640 -10% GPR132 860940 17473 895885.901 826560 -4% GPR135 18720 1656 22032.6827 17540 -6% GPR137 40973 2285 45544.0809 39140 -4% GPR139 438280 16736 471751.0542 413120 -6% GPR141 30180 2080 34339.2307 29020 -4% GPR142 105250 12089 129427.069 101020 -4% GPR143 89390 5260 99910.40557 89380 0% GPR146 16860 551 17961.75617 16240 -4% GPR148 6160 484 7128.848113 7520 22% YES GPR149 50140 934 52008.76073 49720 -1% GPR15 10110 1086 12282.67884
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Targeting Human Mas-Related G Protein-Coupled Receptor X1 To
    Targeting human Mas-related G protein-coupled PNAS PLUS receptor X1 to inhibit persistent pain Zhe Lia,1, Pang-Yen Tsenga,1, Vinod Tiwarib,1, Qian Xua, Shao-Qiu Heb, Yan Wanga, Qin Zhenga, Liang Hana, Zhiping Wuc,d, Anna L. Blobaume, Yiyuan Cuif, Vineeta Tiwarib, Shuohao Suna, Yingying Chenga, Julie H. Y. Huang-Lionnetb, Yixun Genga, Bo Xiaof, Junmin Pengc,d,g, Corey Hopkinse, Srinivasa N. Rajab, Yun Guanb,2, and Xinzhong Donga,h,2 aThe Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; bDepartment of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; cDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105; dDepartment of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105; eDepartment of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt Specialized Chemistry Center, Vanderbilt University Medical Center, Nashville, TN 37232; fThe State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China; gSt. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105; and hHoward Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Robert J. Lefkowitz, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, and approved January 30, 2017 (received for review September 12, 2016) Human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a Animal studies suggest that a potential drug target is the MRGPRC promising target for pain inhibition, mainly because of its re- in trigeminal ganglia and DRG (6, 20, 21).
    [Show full text]
  • Unlocking the Non-Ige-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2)
    cells Review Unlocking the Non-IgE-Mediated Pseudo-Allergic Reaction Puzzle with Mas-Related G-Protein Coupled Receptor Member X2 (MRGPRX2) Mukesh Kumar, Karthi Duraisamy and Billy-Kwok-Chong Chow * School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; [email protected] (M.K.); [email protected] (K.D.) * Correspondence: [email protected]; Tel.: +852-2299-0850; Fax: +852-2559-9114 Abstract: Mas-related G-protein coupled receptor member X2 (MRGPRX2) is a class A GPCR ex- pressed on mast cells. Mast cells are granulated tissue-resident cells known for host cell response, allergic response, and vascular homeostasis. Immunoglobulin E receptor (Fc"RI)-mediated mast cell activation is a well-studied and recognized mechanism of allergy and hypersensitivity reac- tions. However, non-IgE-mediated mast cell activation is less explored and is not well recognized. After decades of uncertainty, MRGPRX2 was discovered as the receptor responsible for non-IgE- mediated mast cells activation. The puzzle of non-IgE-mediated pseudo-allergic reaction is unlocked by MRGPRX2, evidenced by a plethora of reported endogenous and exogenous MRGPRX2 ag- onists. MRGPRX2 is exclusively expressed on mast cells and exhibits varying affinity for many molecules such as antimicrobial host defense peptides, neuropeptides, and even US Food and Drug Administration-approved drugs. The discovery of MRGPRX2 has changed our understanding of mast cell biology and filled the missing link of the underlying mechanism of drug-induced MC degranulation and pseudo-allergic reactions. These non-canonical characteristics render MRGPRX2 Citation: Kumar, M.; Duraisamy, K.; Chow, B.-K.-C.
    [Show full text]
  • An African-Specific Haplotype in MRGPRX4 Is Associated with Menthol Cigarette Smoking
    RESEARCH ARTICLE An African-specific haplotype in MRGPRX4 is associated with menthol cigarette smoking 1☯ 2☯ 3 3 Julia KozlitinaID , Davide Risso , Katherine LansuID , Reid Hans Johnson Olsen , 2 4 5 2 Eduardo Sainz , Donata Luiselli , Arnab BarikID , Carlos Frigerio-Domingues , 6¤a 7 8¤b 8¤b 3 Luca PaganiID , Stephen Wooding , Thomas Kirchner , Ray NiauraID , Bryan Roth , 2 Dennis DraynaID * 1 McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America, 2 National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America, 3 Division of a1111111111 Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina a1111111111 School of Medicine, Chapel Hill, North Carolina, United States of America, 4 Department of Biological, a1111111111 Geological, and Environmental Sciences, University of Bologna, Bologna, Italy, 5 National Center for a1111111111 Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, United States of a1111111111 America, 6 Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia, 7 School of Public Health, University of California, Merced, California, United States of America, 8 Schroeder Institute for Tobacco Research, Washington, District of Columbia, United States of America ☯ These authors contributed equally to this work. ¤a Current address: Department of Biology, University of Padova, Padua, Italy OPEN ACCESS ¤b Current address: College of Global Public Health, New York University, New York, New York, United States of America Citation: Kozlitina J, Risso D, Lansu K, Olsen RHJ, * [email protected] Sainz E, Luiselli D, et al.
    [Show full text]
  • Dissection Électrophysiologique Et Fonctionnelle Des Propriétés Du Réseau Des Ganglions De La Base Corinne Beurrier
    Dissection électrophysiologique et fonctionnelle des propriétés du réseau des ganglions de la base Corinne Beurrier To cite this version: Corinne Beurrier. Dissection électrophysiologique et fonctionnelle des propriétés du réseau des gan- glions de la base. Neurobiologie. Aix Marseille Université, 2018. tel-02348409 HAL Id: tel-02348409 https://hal.archives-ouvertes.fr/tel-02348409 Submitted on 5 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Faculté des Sciences Campus de Luminy Habilitation à Diriger des Recherches Corinne Beurrier Chargée de Recherche au CNRS Dissection électrophysiologique et fonctionnelle des propriétés du réseau des ganglions de la base Soutenue le 14 décembre 2018 devant le jury composé de : Pr. Valéry Matarazzo Président Pr. Stéphane Charpier Rapporteur Dr. Catherine Le Moine Rapportrice Dr. Paul Apicella Rapporteur Dr. Hélène Marie Examinatrice Dr. Lydia Kerkerian Le-Goff Examinatrice SOMMAIRE I. Curriculum Vitae II. Travaux antérieurs III.1 Les propriétés intrinsèques des neurones du noyau subthalamique et l’effet de la stimulation à haute fréquence III.2 La plasticité à long terme dans le noyau accumbens est un support neuronal de la sensibilisation à la cocaïne III.3 L’ablation génétiquement ciblée des neurones striato-nigraux révèle des fonctions très diverses de ces neurones III.4 Les interneurones cholinergiques du striatum sont des acteurs essentiels dans la pathophysiologie de la maladie de Parkinson III.
    [Show full text]
  • NOCICEPTORS and the PERCEPTION of PAIN Alan Fein
    NOCICEPTORS AND THE PERCEPTION OF PAIN Alan Fein, Ph.D. Revised May 2014 NOCICEPTORS AND THE PERCEPTION OF PAIN Alan Fein, Ph.D. Professor of Cell Biology University of Connecticut Health Center 263 Farmington Ave. Farmington, CT 06030-3505 Email: [email protected] Telephone: 860-679-2263 Fax: 860-679-1269 Revised May 2014 i NOCICEPTORS AND THE PERCEPTION OF PAIN CONTENTS Chapter 1: INTRODUCTION CLASSIFICATION OF NOCICEPTORS BY THE CONDUCTION VELOCITY OF THEIR AXONS CLASSIFICATION OF NOCICEPTORS BY THE NOXIOUS STIMULUS HYPERSENSITIVITY: HYPERALGESIA AND ALLODYNIA Chapter 2: IONIC PERMEABILITY AND SENSORY TRANSDUCTION ION CHANNELS SENSORY STIMULI Chapter 3: THERMAL RECEPTORS AND MECHANICAL RECEPTORS MAMMALIAN TRP CHANNELS CHEMESTHESIS MEDIATORS OF NOXIOUS HEAT TRPV1 TRPV1 AS A THERAPEUTIC TARGET TRPV2 TRPV3 TRPV4 TRPM3 ANO1 ii TRPA1 TRPM8 MECHANICAL NOCICEPTORS Chapter 4: CHEMICAL MEDIATORS OF PAIN AND THEIR RECEPTORS 34 SEROTONIN BRADYKININ PHOSPHOLIPASE-C AND PHOSPHOLIPASE-A2 PHOSPHOLIPASE-C PHOSPHOLIPASE-A2 12-LIPOXYGENASE (LOX) PATHWAY CYCLOOXYGENASE (COX) PATHWAY ATP P2X RECEPTORS VISCERAL PAIN P2Y RECEPTORS PROTEINASE-ACTIVATED RECEPTORS NEUROGENIC INFLAMMATION LOW pH LYSOPHOSPHATIDIC ACID Epac (EXCHANGE PROTEIN DIRECTLY ACTIVATED BY cAMP) NERVE GROWTH FACTOR Chapter 5: Na+, K+, Ca++ and HCN CHANNELS iii + Na CHANNELS Nav1.7 Nav1.8 Nav 1.9 Nav 1.3 Nav 1.1 and Nav 1.6 + K CHANNELS + ATP-SENSITIVE K CHANNELS GIRK CHANNELS K2P CHANNELS KNa CHANNELS + OUTWARD K CHANNELS ++ Ca CHANNELS HCN CHANNELS Chapter 6: NEUROPATHIC PAIN ANIMAL
    [Show full text]
  • Dap-1788 Goat Anti-MRGPRX3 Or MRGX3
    DATA SHEET Goat anti-MRGPRX3 / MRGX3 Antibody Item Number dAP-1788 Target Molecule Principle Name: MRGPRX3 / MRGX3; Official Symbol: MRGPRX3; All Names and Symbols: MRGPRX3; MAS-related GPR, member X3; GPCR; MRGX3; SNSR1; G protein-coupled receptor MRGX3; G protein- coupled receptor SNSR1; G protein-coupled receptor SNSR2; mas-related GPCR member X3; Accession Number (s): NP_473372.2; Human Gene ID(s): 117195; Non-Human GeneID(s): Immunogen QLPQETLELSGSRL, is from Internal region This antibody may cross-react with human MRGPRX1 and X4 (GeneID: 259249, 117196; MW: 36.25kDa and 36.43kDa). Applications Pep ELISA Species Tested: Purification Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Supplied As lyophilized powder of 50ug or 100ug IgG; Reconsititute IgG with 100ul or 200ul sterile DI Water and final product will be formulated as 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum albumin. Aliquot and store at -20°C. Minimize freezing and thawing. Peptide ELISA Peptide ELISA: antibody detection limit dilution 1 to 4000. Western Blot Western Blot: Not yet tested. At this stage we are dependent on researchers in the field for further charac- terization of this product. Therefore we cannot recommend an optimal concentration and the antibody is an aspiring product. We would appreciate any IHC Reference Reference(s): Kaisho Y, Watanabe T, Nakata M, Yano T, Yasuhara Y, Shimakawa K, Mori I, Sakura Y, Terao Y, Matsui H, Taketomi S. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype.
    [Show full text]