Loral Space & Communications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Castor “Sputnik 50Th Anniversary Satellite Tracking Bonanza”
CASTOR’SCASTOR’S “SPUTNIK“SPUTNIK 5050TH ANNIVERSARYANNIVERSARY SATELLITESATELLITE TRACKINGTRACKING BONANZA”BONANZA” 1957 2007 MICHAEL A. EARL CANADIAN SATELLITE TRACKING & ORBIT RESEARCH 4 OCTOBER 1957 SPUTNIK ORBITING THE EARTH THE FIRST-EVER SOVIET ARTIFICIAL SATELLITE OF THE EARTH 40 KOPECS – USSR MAIL USSR “SPUTNIK” STAMP HOWHOW MANYMANY SATELLITESSATELLITES AREARE ORBITINGORBITING USUS TODAY?TODAY? OVER 11,00011,000 INDIVIDUAL OBJECTS WE DEPEND ON SATELLITES EVERY SINGLE DAY WHATWHAT DOESDOES “SATELLITE“SATELLITE TRACKING”TRACKING” MEAN?MEAN? Detecting and observing artificial satellite(s) for some length(s) of time; Literally following it across the sky; Observing the object, relocating the detector to observe it again, etc.; Collecting data on the object as it is being detected and followed (tracking data); and Determining an orbit for the satellite using observations in order to detect it again on a future date. DO YOU THINK OF THIS WHEN YOU THINK OF “SATELLITE TRACKING”? WHATWHAT AREARE THETHE TWOTWO GREATESTGREATEST MODERNMODERN INNOVATIONSINNOVATIONS ININ ASTRONOMY?ASTRONOMY? THE GOTO TELESCOPE THE CCD CAMERA THETHE GOTOGOTO TELESCOPETELESCOPE ANDAND CCDCCD CAMERACAMERA The Goto Telescope allows the amateur astronomer to “point and click” onto objects of choice and slew the telescope to their locations in the sky; The Goto Telescope makes the astronomers’ lives easier by automatically knowing where the objects are located, i.e. no longer necessary to look up objects’ coordinates; The CCD Camera is much more sensitive than photographic film and can detect faint celestial objects much more effectively. Very large apertures are not as necessary. The CCD Camera has a linear response to light, therefore photometric measurements are much easier than with photographic film; The CCD Camera produces images that are already based on a grid (pixels). -
Satellite Data Communications Link Requirements for a Proposed Flight Simulation System
Theses - Daytona Beach Dissertations and Theses 4-1994 Satellite Data Communications Link Requirements for a Proposed Flight Simulation System Gerald M. Kowalski Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/db-theses Part of the Aviation Commons Scholarly Commons Citation Kowalski, Gerald M., "Satellite Data Communications Link Requirements for a Proposed Flight Simulation System" (1994). Theses - Daytona Beach. 266. https://commons.erau.edu/db-theses/266 This thesis is brought to you for free and open access by Embry-Riddle Aeronautical University – Daytona Beach at ERAU Scholarly Commons. It has been accepted for inclusion in the Theses - Daytona Beach collection by an authorized administrator of ERAU Scholarly Commons. For more information, please contact [email protected]. Gerald M. Kowalski A Thesis Submitted to the Office of Graduate Programs in Partial Fulfillment of the Requirements for the Degree of Master of Aeronautical Science Embry-Riddle Aeronautical University Daytona Beach, Florida April 1994 UMI Number: EP31963 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI® UMI Microform EP31963 Copyright 2011 by ProQuest LLC All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. -
FCC-21-49A1.Pdf
Federal Communications Commission FCC 21-49 Before the Federal Communications Commission Washington, DC 20554 In the Matter of ) ) Assessment and Collection of Regulatory Fees for ) MD Docket No. 21-190 Fiscal Year 2021 ) ) Assessment and Collection of Regulatory Fees for MD Docket No. 20-105 Fiscal Year 2020 REPORT AND ORDER AND NOTICE OF PROPOSED RULEMAKING Adopted: May 3, 2021 Released: May 4, 2021 By the Commission: Comment Date: June 3, 2021 Reply Comment Date: June 18, 2021 Table of Contents Heading Paragraph # I. INTRODUCTION...................................................................................................................................1 II. BACKGROUND.....................................................................................................................................3 III. REPORT AND ORDER – NEW REGULATORY FEE CATEGORIES FOR CERTAIN NGSO SPACE STATIONS ....................................................................................................................6 IV. NOTICE OF PROPOSED RULEMAKING .........................................................................................21 A. Methodology for Allocating FTEs..................................................................................................21 B. Calculating Regulatory Fees for Commercial Mobile Radio Services...........................................24 C. Direct Broadcast Satellite Regulatory Fees ....................................................................................30 D. Television Broadcaster Issues.........................................................................................................32 -
CABLE SATELLITES : the NEXT GENERATION Issues Facing Cable Operators and Programmers
CABLE SATELLITES : THE NEXT GENERATION Issues Facing Cable Operators and Programmers Robert Zitter Home Box Office, Inc. A development that will impact the ABSTRACT cable industry is the FCC mandate to phase-in a uniform 2-degree spacing The deployment of next-generation between U.S. domestic satellites. The satellites in compliance with the FCC's intent of the plan is to alleviate uniform 2-degree spacing plan, together overcrowding in the U.S. orbital arc. It with the movement of cable times the deployment of next generation programming, will occur during the next satellites with improvements in ground two years. A discussion of the transition station receiving characteristics in order scenario, the technical differences in the to control the ensuing increase in new satellites, and ground station adjacent satellite interference. requirements reveals that Cable TV and SMATV facilities will require This paper discusses the satellite reconfiguration and in some cases and orbital changes that are expected to replacement may be necessary. The occur during the next two years, and satellite movement and programming presents some critical issues and transfers in the early nineties compel the challenges facing satellite programmers cable industry to examine the future and cable operators . performance of existing facilities. o Time of Replacements In the early days, 4-degrees of separation within the two segments o Introduction assigned to U.S. domestic communication satellites -- 70 to I 04 C-Band satellites have become a degrees and 117 to 143 degrees West reliable means of delivery for cable Longitude (oWL) -- consisting of 15 television programs and have played an satellite slots were found adequate. -
AVAILABLE from Hearing Before the Committee on Science and The
DOCUMENT RESUME ED 392 400 IR 017 686 TITLE Educational Technology in the 21st Century. Joint Hearing before the Committee on Science and the Committee on Economic and Educational Opportunities. House of Representatives, One Hundred Fourth Congress, First Session. INSTITUTION Congress of the U.S., Washington, DC. House Committee on Economic and Educational Opportunities.; Congress of the U.S., Washington, D.C. House Committee on Science and Technology. REPORT NO ISBN-0-16-052181-5 PUB DATE 12 Oct 95 NOTE 365p.; Serial No. 104-37. Contains photographs which may not reproduce clearly. AVAILABLE FROMU.S. Government Printing Office, Superintendent of Documents, Congressional Sales Office, Washington, DC 20402. PUB TYPE Legal/Legislative/Regulatory Materibas (090) EDRS PRICE MF01/PC15 Plus Postage. DESCRIPTORS Computer Networks; *Computer Uses in Education; *Costs; *Educational Technology; Elementary Secondary Education; Expenditures; Futures (of Society); Hearings; Instructional Materials; *Technological Advancement IDENTIFIERS *Affordability; Congress 104th; *Future Learning; Grant Recipients ABSTRACT This document presents witness testimony and supplemental materials from a Congressional hearing addressing the potential as well as the affordability of educational technology and the classroom of the future, where computers and computer networks will increasingly aid teachers and facilitate learning. Those presenting prepared statements are Congressman George E. Brown, Jr., Congressman William Clay, Congressman Robert S. Walker, Congresswoman Lynn C. Woolsey, Congresswoman Constance A. Morella, and Congressman Randy 'Duke" Cunningham. Testimony is included from:(1) Seymour Papert, Massachusetts Institute of Technology; (2) Alan C. Kay, Apple Computer:(3) Chris Dede, George Mason University; (4) David E. Shaw, D. E. Shaw & Company;(5) Ed McCracken, Silicon Graphics;(6) Pat Wright, TCI Educational Technologies, Inc.;(7) Robert W. -
TECHNOLD Official Trade Journal of the Society of Cable Television Engineers I
COMMUNICATIONS TECHNOLD Official trade journal of the Society of Cable Television Engineers I ..._/ • ,.',,_ ___.,-.".-' -_',.,-''' -_-',,,e0K.:- _ _72 ,-- •••••••,..„ Handling the problems of lightning and power Wrapping up a successful Tec Expo August 1988 /tba Only one manufacturer's headend' e gg, equipment is reliable enough 1Ne/ ,br)a _ 4:0 ese) Ni,;:•fo .44 In addition to the standard Nexus 2Year is Warranty Extension to five years Limited NS arrranty, we are now pleased from the date of purchase applies to to offer an additional 3Year Warranty c„eNee 2 Year any Nexus headend equipment. Extension. This applies to ce` regardless of how long all Series 1, Series 5and you've owned it. Series 100 headend products. Of" Nexus will provide this For further information on valuable 3Year Warranty esee the Nexus Five Year Warranty si ts` Extension after you complete a earVVarranl, program, please call, write or market and application questionnaire. check the reader service number below. NEXUS - Built to Last. TEL: (206) 644-2371 OR WRITE: NEXUS ENGINEERING CORP. BELLEVUE. WA. 7000 LOUGHEED HWY. ENGINEERING CORR BURNABY, B.C.. V5A 4K4 (604) 420-5322 PERFORMANCE BURNABY, B.C. FAX: (604) 420-5941 YOU CAN - V>. CE. Reader Service Number 2. ,t11. 11k NO DROPOUTS Now that Trilogy has acomplete line shopping in all installations. of foam drop cables, you don't have to go Take it all the way in with Trilogy elsewhere to move inside after your MC and go forward with confidence with trunk and feeders are in place. the most rigorous quality control found in And you get the savings of one-stop the industry. -
Commercial Spacecraft Mission Model Update
Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................ -
<> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A -
7"-__F/,' "T C/7, E) Report to the NATIONAL AERONAUTICS AND
NASA-CR-194177 /_- 7"-__F/,'_"t C/7, E) Report To The NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - AMES RESEARCH CENTER - SEMIANNUAL STATUS REPORT #5 for GRANT NAG 2-700 SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE/ HIGH RESOLUTION MICROWAVE SURVEY TEAM MEMBER Paul G. Steffes, Principal Investigator Report Period: March I, 1993 through August 31, 1993 Submitted by Professor Paul G. Steffes School of Electrical Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0250 (404 894-3128) (NASA-CR-194177) SEARCH FOR N94-13086 EXTRATERRESTRIAL INTELLIGENCE/HIGH RESOLUTION MICROWAVE SURVEY TEAM MEMBER Semiannuel Status Report No. Unclas 5, 1 Mar. - 31 Aug. 1993 (Georgia Inst. of Tech.) 61 p G3155 0185928 TABLE OF CONTENTS Io INTRODUCTION AND SUMMARY II. DEVELOPMENT OF A DATA BASE OF SPACEBORNE TRANSMITTERS III. OBSERVATIONAL STUDIES IV. CONCLUSION V. REFERENCES Vl. APPENDICES 1. INTRODUCTION AND SUNiARY This semiannual status report describes activities conducted by the Principal Investigator during the first half of this third year of the NASA High Resolution Microwave Survey (HRMS) Investigator Working Group (IWG). As a (HRMS) Team Member with primary interest in the Sky Survey activity, this investigator attended IWG meetings at NASA/Ames and U.C. - Santa Cruz in April and August 1992, and has traveled independently to NRAO/KittPeak, Arizona (April Igg3) and Woodbury, Georgia (July 1993). During the July 1993 visit to the Georgia Tech Research Corporation/Woodbury Research Facility, an experiment was conducted to study the effects of interference from C-band (3.7 - 4.2 GHz) geostationary spacecraft on the Sky Survey operation in that band. At the first IWG meeting in April of this year, results of a SETI observation conducted at the 203 GHz positronium hyperfine resonance using the NRAO facility at Kitt Peak, AZ, were presented, as well as updates on the development of the spaceborne RFI data bases developed for the project. -
COMSAT Technical Review
COMSAT Technical Review Volume 17 Number 1, Spring 1987 Advisory Board Joseph V. Charyk COMSAT TECHNICAL REVIEW John V. Evans Spring 1987 Editorial Board Geoffrey Hyde, Chairman Volume 17 Number 1 , Richard A. Arndt Ali E. Atia S. Joseph Campanella I DESIGN AND MODELING OF A GaAs MONOI.I'THIC 2- TO 6-GHz Dattakumar M. Chitre R. K. Gupta , .1. H. Reynolds, Russell J. Fang FEEDBACK AMPLIFIER Howard W. Flieger M. C. Fu , AND T. Heikkila Melvyn Grossman 23 A 120-Mbit/s TDMA QPSK MODEM FOR ON-BOARD APPLICATIONS Ivor N. Knight , AND F. T. Assal Larry C. Palmer R. G. Egri , K. Karimullab Edward E. Reinhart 55 AN ADAPTIVE EQUALIZER FOR 120-Mblt/s QPSK TRANSMISSION David V. Rogers Hans J. Weiss J. M. Kappes Albert E. Williams 87 MODULATION SELECTION FOR ILL MOBILE SATELI,FI'F EXPERIMENT Pier L. Bargellini, Editor Emeritus (MSAT-X) K. M. Mackenthun Editorial Staff MANAGING EDITOR Margaret B. Jacocks 105 HURWrrZ STABII .II'Y ANALYSIS OF AN ADPCM SYSTEM TECHNICAL EDITORS S. Dimolitsas AND U. Bhaskar Barbara J. Wassell Diane Haugen APPROXIMATIONS FOR THE RAISED COSINE FILTER PRODUCTION 127 POLE-ZERO J. J. Poklemba Barbara J. Wassell FAMILY Louis P. Stephens, Jr. 159 A SIMULATION STUDY OF RAIN ATTENUATION AND DIVERSITY EFFECTS CIRCULATION LINKS J. Mass Shirley H. Taylor ON SATELLITE COMSAT TECHNICAL REVIEW is published twice a year by 189 PROGRAMMABL E CONVOLUTIONAL ENCODER AND THRESHOLD Communications Satellite Corporation (COMSAT). Subscriptions, DECODER J. S. Snyder which include the two issues published within a calendar year, are: one year, $15 U.S.; two years, $25; three years, $35; 201 CTR NOTE : GEOSTATIONARY SATELLITE LOG FOR YEAR END 1986 single copies, $10; article reprints, $2.50. -
2001 Commercial Space Transportation Forecasts
2001 Commercial Space Transportation Forecasts Federal Aviation Administration's Associate Administrator for Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) May 2001 ABOUT THE ASSOCIATE ADMINISTRATOR FOR COMMERCIAL SPACE TRANSPORTATION (AST) AND THE COMMERCIAL SPACE TRANSPORTATION ADVISORY COMMITTEE (COMSTAC) The Federal Aviation Administration’s senior executives from the U.S. commercial Associate Administrator for Commercial Space space transportation and satellite industries, Transportation (AST) licenses and regulates U.S. space-related state government officials, and commercial space launch activity as authorized other space professionals. by Executive Order 12465, Commercial Expendable Launch Vehicle Activities, and the The primary goals of COMSTAC are to: Commercial Space Launch Act of 1984, as amended. AST’s mission is to license and • Evaluate economic, technological and regulate commercial launch operations to ensure institutional issues relating to the U.S. public health and safety and the safety of commercial space transportation industry property, and to protect national security and foreign policy interests of the United States • Provide a forum for the discussion of issues during commercial launch operations. The involving the relationship between industry Commercial Space Launch Act of 1984 and the and government requirements 1996 National Space Policy also direct the Federal Aviation Administration to encourage, • Make recommendations to the Administrator facilitate, and promote commercial launches. on issues and approaches for Federal policies and programs regarding the industry. The Commercial Space Transportation Advisory Committee (COMSTAC) provides Additional information concerning AST and information, advice, and recommendations to the COMSTAC can be found on AST’s web site, at Administrator of the Federal Aviation http://ast.faa.gov. -
FCC-21-98A1.Pdf
Federal Communications Commission FCC 21-98 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Assessment and Collection of Regulatory Fees for ) MD Docket No. 21-190 Fiscal Year 2021 ) ) REPORT AND ORDER AND NOTICE OF PROPOSED RULEMAKING Adopted: August 25, 2021 Released: August 26, 2021 Comment Date: [30 days after date of publication in the Federal Register] Reply Comment Date: [45 days after date of publication in the Federal Register] By the Commission: Acting Chairwoman Rosenworcel and Commissioners Carr and Simington issuing separate statements. TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION...................................................................................................................................1 II. BACKGROUND.....................................................................................................................................2 III. REPORT AND ORDER..........................................................................................................................6 A. Allocating Full-time Equivalents......................................................................................................7 B. Commercial Mobile Radio Service Regulatory Fees Calculation ..................................................27 C. Direct Broadcast Satellite Fees .......................................................................................................28 D. Full-Service Television Broadcaster Fees ......................................................................................36