2016 Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring 2021 Bulletin
Advancing Access to Civil Justice STEPS TOWARD INTERNATIONAL CLIMATE GOVERNANCE Featuring William Nordhaus, Pinelopi Goldberg, and Scott Barrett HONORING WILLIAM LABOV, RUTH LEHMANN , AND GERTRUD SCHÜPBACH SPRING 2021 SELECT UPCOMING VIRTUAL EVENTS May 6 A Conversation with Architect 27 Reflections on a Full, Consequential, Jeanne Gang and Lucky Life: Science, Leadership, Featuring: Jeanne Gang and Education Featuring: Walter E. Massey (left) in conversation with Don Randel (right) June 14 Lessons Learned from Reckoning with Organizational History Featuring: John J. DeGioia, Brent Leggs, Susan Goldberg, Claudia Rankine, and Ben Vinson 13 Finding a Shared Narrative Hosted by the Library of Congress Featuring: Danielle Allen, winner of the Library’s 2020 Kluge Prize Above: “Our Common Purpose” featuring the Juneteenth flag with one star. Artist: Rodrigo Corral For a full and up-to-date listing of upcoming events, please visit amacad.org/events. SPRING 2021 CONTENTS Flooding beside the Russian River on Westside Road in Healdsburg, Sonoma County, California; February 27, 2019. Features 16 Steps Toward International 38 Honoring Ruth Lehmann and Gertrud Climate Governance Schüpbach with the Francis Amory Prize William Nordhaus, Pinelopi Goldberg, and Scott Barrett Ruth Lehmann and Gertrud Schüpbach 30 Honoring William Labov with the Talcott Parsons Prize William Labov CONTENTS 5 Among the contributors to the Dædalus issue on “Immigration, Nativism & Race” (left to right): Douglas S. Massey (guest editor), Christopher Sebastian Parker, and Cecilia Menjívar Our Work 5 Dædalus Explores Immigration, Nativism & Race in the United States 7 Advancing Civil Justice Access in the 21st Century 7 10 New Reports on the Earnings & Job Outcomes of College Graduates 14 Our Common Purpose in Communities Across the Country Members 53 In Memoriam: Louis W. -
3-Fermion Topological Quantum Computation [1]
3-Fermion topological quantum computation [1] Sam Roberts1 and Dominic J. Williamson2 1Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia 2Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA I. INTRODUCTION Topological quantum computation (TQC) is currently the most promising approach to scalable, fault-tolerant quantum computation. In recent years, the focus has been on TQC with Kitaev's toric code [2], due to it's high threshold to noise [3, 4], and amenability to planar architectures with nearest neighbour interactions. To encode and manipulate quantum information in the toric code, a variety of techniques drawn from condensed matter contexts have been utilised. In particular, some of the efficient approaches for TQC with the toric code rely on creating and manipulating gapped-boundaries, symmetry defects and anyons of the underlying topological phase of matter [5{ 10]. Despite great advances, the overheads for universal fault-tolerant quantum computation remain a formidable challenge. It is therefore important to analyse the potential of TQC in a broad range of topological phases of matter, and attempt to find new computational substrates that require fewer quantum resources to execute fault-tolerant quantum computation. In this work we present an approach to TQC for more general anyon theories based on the Walker{Wang mod- els [11]. This provides a rich class of spin-lattice models in three-dimensions whose boundaries can naturally be used to topologically encode quantum information. The two-dimensional boundary phases of Walker{Wang models accommodate a richer set of possibilities than stand-alone two-dimensional topological phases realized by commuting projector codes [12, 13]. -
String Theory. Volume 1, Introduction to the Bosonic String
This page intentionally left blank String Theory, An Introduction to the Bosonic String The two volumes that comprise String Theory provide an up-to-date, comprehensive, and pedagogic introduction to string theory. Volume I, An Introduction to the Bosonic String, provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory and of the Polyakov path integral, and the covariant quantization of the string. The next three chapters treat string interactions: the general formalism, and detailed treatments of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification and many important aspects of string physics, such as T-duality and D-branes. Chapter nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity, and various nonperturbative ideas. An appendix giving a short course on path integral methods is also included. Volume II, Superstring Theory and Beyond, begins with an introduction to supersym- metric string theories and goes on to a broad presentation of the important advances of recent years. The first three chapters introduce the type I, type II, and heterotic superstring theories and their interactions. The next two chapters present important recent discoveries about strongly coupled strings, beginning with a detailed treatment of D-branes and their dynamics, and covering string duality, M-theory, and black hole entropy. A following chapter collects many classic results in conformal field theory. The final four chapters are concerned with four-dimensional string theories, and have two goals: to show how some of the simplest string models connect with previous ideas for unifying the Standard Model; and to collect many important and beautiful general results on world-sheet and spacetime symmetries. -
Stephen Hawking: 'There Are No Black Holes' Notion of an 'Event Horizon', from Which Nothing Can Escape, Is Incompatible with Quantum Theory, Physicist Claims
NATURE | NEWS Stephen Hawking: 'There are no black holes' Notion of an 'event horizon', from which nothing can escape, is incompatible with quantum theory, physicist claims. Zeeya Merali 24 January 2014 Artist's impression VICTOR HABBICK VISIONS/SPL/Getty The defining characteristic of a black hole may have to give, if the two pillars of modern physics — general relativity and quantum theory — are both correct. Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape. In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, “There is no escape from which only temporarily holds matter and energy prisoner before eventually a black hole in classical releasing them, albeit in a more garbled form. theory, but quantum theory enables energy “There is no escape from a black hole in classical theory,” Hawking told Nature. Peter van den Berg/Photoshot and information to Quantum theory, however, “enables energy and information to escape from a escape.” black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. -
Arxiv:1705.01740V1 [Cond-Mat.Str-El] 4 May 2017 2
Physics of the Kitaev model: fractionalization, dynamical correlations, and material connections M. Hermanns1, I. Kimchi2, J. Knolle3 1Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany 2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA and 3T.C.M. group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking the topological order underlying quantum spin liquids is hard to detect exper- imentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tri-coordinated lattices are chief counterexamples | they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 Iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including 2D and 3D fractionalization as well as dynamical correlations and behavior at finite temperatures. We discuss the different materials, and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures. arXiv:1705.01740v1 [cond-mat.str-el] 4 May 2017 2 CONTENTS I. Introduction 2 II. Kitaev quantum spin liquids 3 A. The Kitaev model 3 B. Classifying Kitaev quantum spin liquids by projective symmetries 4 C. Confinement and finite temperature 5 III. Symmetry and chemistry of the Kitaev exchange 6 IV. -
Medical Advisory Board September 1, 2006–August 31, 2007
hoWard hughes medical iNstitute 2007 annual report What’s Next h o W ard hughes medical i 4000 oNes Bridge road chevy chase, marylaNd 20815-6789 www.hhmi.org N stitute 2007 a nn ual report What’s Next Letter from the president 2 The primary purpose and objective of the conversation: wiLLiam r. Lummis 6 Howard Hughes Medical Institute shall be the promotion of human knowledge within the CREDITS thiNkiNg field of the basic sciences (principally the field of like medical research and education) and the a scieNtist 8 effective application thereof for the benefit of mankind. Page 1 Page 25 Page 43 Page 50 seeiNg Illustration by Riccardo Vecchio Südhof: Paul Fetters; Fuchs: Janelia Farm lab: © Photography Neurotoxin (Brunger & Chapman): Page 3 Matthew Septimus; SCNT images: by Brad Feinknopf; First level of Rongsheng Jin and Axel Brunger; iN Bruce Weller Blake Porch and Chris Vargas/HHMI lab building: © Photography by Shadlen: Paul Fetters; Mouse Page 6 Page 26 Brad Feinknopf (Tsai): Li-Huei Tsai; Zoghbi: Agapito NeW Illustration by Riccardo Vecchio Arabidopsis: Laboratory of Joanne Page 44 Sanchez/Baylor College 14 Page 8 Chory; Chory: Courtesy of Salk Janelia Farm guest housing: © Jeff Page 51 Ways Illustration by Riccardo Vecchio Institute Goldberg/Esto; Dudman: Matthew Szostak: Mark Wilson; Evans: Fred Page 10 Page 27 Septimus; Lee: Oliver Wien; Greaves/PR Newswire, © HHMI; Mello: Erika Larsen; Hannon: Zack Rosenthal: Paul Fetters; Students: Leonardo: Paul Fetters; Riddiford: Steitz: Harold Shapiro; Lefkowitz: capacity Seckler/AP, © HHMI; Lowe: Zack Paul Fetters; Map: Reprinted by Paul Fetters; Truman: Paul Fetters Stewart Waller/PR Newswire, Seckler/AP, © HHMI permission from Macmillan Page 46 © HHMI for Page 12 Publishers, Ltd.: Nature vol. -
Information and Announcements Mathematics Prizes Awarded At
Information and Announcements Mathematics Prizes Awarded at ICM 2014 The International Congress of Mathematicians (ICM) is held once in four years under the auspices of the International Mathematical Union (IMU). The ICM is the largest, and the most prestigious, meeting of the mathematics community. During the ICM, the Fields Medal, the Nevanlinna Prize, the Gauss Prize, the Chern Medal and the Leelavati Prize are awarded. The Fields Medals are awarded to mathematicians under the age of 40 to recognize existing outstanding mathematical work and for the promise of future achievement. A maximum of four Fields Medals are awarded during an ICM. The Nevanlinna Prize is awarded for outstanding contributions to mathematical aspects of information sciences; this awardee is also under the age of 40. The Gauss Prize is given for mathematical research which has made a big impact outside mathematics – in industry or technology, etc. The Chern Medal is awarded to a person whose mathematical accomplishments deserve the highest level of recognition from the mathematical community. The Leelavati Prize is sponsored by Infosys and is a recognition of an individual’s extraordinary achievements in popularizing among the public at large, mathematics, as an intellectual pursuit which plays a crucial role in everyday life. The 27th ICM was held in Seoul, South Korea during August 13–21, 2014. Fields Medals The following four mathematicians were awarded the Fields Medal in 2014. 1. Artur Avila, “for his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle”. Work of Artur Avila (born 29th June 1979): Artur Avila’s outstanding work on dynamical systems, and analysis has made him a leader in the field. -
2010 Program Meeting Schedule
Vision Sciences Society 10th Annual Meeting, May 7-12, 2010 Naples Grande Resort & Club, Naples, Florida Program Contents Board, Review Committee & Staff . 2 Satellite Events. 22 Keynote Address . 3 Club Vision Dance Party. 22 Meeting Schedule . 4 Open House . 23 Schedule-at-a-Glance . 6 Member-Initiated Symposia . 24 Poster Schedule . 8 Friday Sessions . 29 Talk Schedule . 10 Saturday Sessions . 33 Young Investigator Award . 11 Sunday Sessions . 43 Abstract Numbering System. 11 Monday Sessions . 53 VSS Dinner and Demo Night . 12 Tuesday Sessions . 58 VSS Public Lecture . 15 Wednesday Sessions . 68 VSS at ARVO . 15 Topic Index. 71 Attendee Resources . 16 Author Index . 74 Exhibitors . 19 Hotel Floorplan . 86 Travel Awards . 21 Advertisements. 89 Board, Review Committee & Staff Board of Directors Abstract Review Committee Tony Movshon (2011), President David Alais Laurence Maloney New York University Marty Banks Ennio Mingolla Pascal Mamassian (2012), President Elect Irving Biederman Cathleen Moore CNRS & Université Paris 5 Geoff Boynton Shin’ya Nishida Eli Brenner Tony Norcia Bill Geisler (2010), Past President Angela Brown Aude Oliva University of Texas, Austin David Burr Alice O’Toole Marisa Carrasco (2012), Treasurer Patrick Cavanagh John Reynolds New York University Marvin Chun Anna Roe Barbara Dosher (2013) Jody Culham Brian Rogers University of California, Irvine Greg DeAngelis Jeff Schall James Elder Brian Scholl Karl Gegenfurtner (2013) Steve Engel David Sheinberg Justus-Liebig Universität Giessen, Germany Jim Enns Daniel Simons -
Www .Ima.Umn.Edu
ce Berkeley National Laboratory) ce Berkeley Who should attend? Industrial engineers and scientists who want to learn about modern techniques in scientific computations Researchers from academic institutions involved in multidisciplinary collaborations Organizer Robert V. Kohn Tutorial Lectures: Weinan E Leslie F. Greengard courtesy and S.Graphics J-D. Yu Sakia (Epson Research Corporation), and J.A. Sethian (Dept. and Lawren UC Berkeley of Mathematics, James A. Sethian www.ima.umn.edu The primary goal of this workshop is to facilitate the use of the best computational techniques in important industrial applications. Key developers of three of the most significant recent or emerging paradigms of computation – fast multipole methods, level set methods, and multiscale computation – will provide tutorial introductions to these classes of methods. Presentations will be particularly geared to scientists using or interested in using these approaches in industry. In addition the workshop will include research reports, poster presentations, and problem posing by industrial researchers, and offer ample time for both formal and informal discussion, related to the use of these new methods of computation. The IMA is an NSF funded Institute Schedule Weinan E received his Ph.D. from the University of California at Los Angeles in 1989. He was visiting MONDAY, MARCH 28 member at the Courant Institute from 1989 to 1991. He joined the IAS in Princeton as a long term mem- All talks are in Lecture Hall EE/CS 3-180 ber in 1992 and went on to take a faculty 8:30 Coffee and Registration position at the Courant Institute at New York Reception Room EE/CS 3-176 University in 1994. -
Asian Nobel Prize' for Mapping the Universe 27 May 2010
Scientists win 'Asian Nobel Prize' for mapping the universe 27 May 2010 Three US scientists whose work helped map the category. universe are among the recipients of the one- million-US-dollar Shaw Prize, known as the "Asian (c) 2010 AFP Nobel," the competition's organisers said Thursday. Princeton University professors Lyman Page and David Spergel and Charles Bennett of Johns Hopkins University, won the award for an experiment that helped to determine the "geometry, age and composition of the universe to unprecedented precision." The trio will share the Shaw Prize's award for astronomy, with one-million-US-dollar prizes also awarded in the categories for mathematical sciences and life sciences and medicine. The University of California's David Julius won the award for life sciences and medicine for his "seminal discoveries" of how the skin senses pain and temperature, the organisers' statement said. "(Julius's) work has provided insights into fundamental mechanisms underlying the sense of touch as well as knowledge that opens the door to rational drug design for the treatment of chronic pain," the statement said. Princeton's Jean Bourgain won an award for his "profound work" in mathematical sciences, it said. The Shaw Prize, funded by Hong Kong film producer and philanthropist Run Run Shaw and first awarded in 2004, honours exceptional contributions "to the advancement of civilization and the well-being of humankind." The awards will be presented at a ceremony in Hong Kong on September 28. Last year, two scientists whose work challenged the assumption that obesity is caused by a lack of will power won the life sciences and medicine 1 / 2 APA citation: Scientists win 'Asian Nobel Prize' for mapping the universe (2010, May 27) retrieved 27 September 2021 from https://phys.org/news/2010-05-scientists-asian-nobel-prize-universe.html This document is subject to copyright. -
Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind. -
Pin Faculty Directory
Harvard University Program in Neuroscience Faculty Directory 2019—2020 April 22, 2020 Disclaimer Please note that in the following descripons of faculty members, only students from the Program in Neuroscience are listed. You cannot assume that if no students are listed, it is a small or inacve lab. Many faculty members are very acve in other programs such as Biological and Biomedical Sciences, Molecular and Cellular Biology, etc. If you find you are interested in the descripon of a lab’s research, you should contact the faculty member (or go to the lab’s website) to find out how big the lab is, how many graduate students are doing there thesis work there, etc. Program in Neuroscience Faculty Albers, Mark (MGH-East)) De Bivort, Benjamin (Harvard/OEB) Kaplan, Joshua (MGH/HMS/Neurobio) Rosenberg, Paul (BCH/Neurology) Andermann, Mark (BIDMC) Dettmer, Ulf (BWH) Karmacharya, Rakesh (MGH) Rotenberg, Alex (BCH/Neurology) Anderson, Matthew (BIDMC) Do, Michael (BCH—Neurobio) Khurana, Vikram (BWH) Sabatini, Bernardo (HMS/Neurobio) Anthony, Todd (BCH/Neurobio) Dong, Min (BCH) Kim, Kwang-Soo (McLean) Sahay, Amar (MGH) Arlotta, Paola (Harvard/SCRB) Drugowitsch, Jan (HMS/Neurobio) Kocsis, Bernat (BIDMC) Sahin, Mustafa (BCH/Neurobio) Assad, John (HMS/Neurobio) Dulac, Catherine (Harvard/MCB) Kreiman, Gabriel (BCH/Neurobio) Samuel, Aravi (Harvard/ Physics) Bacskai, Brian (MGH/East) Dymecki, Susan(HMS/Genetics) LaVoie, Matthew (BWH) Sanes, Joshua (Harvard/MCB) Baker, Justin (McLean) Engert, Florian (Harvard/MCB) Lee, Wei-Chung (BCH/Neurobio) Saper, Clifford