The Platinum-Group Elements (PGE)

Total Page:16

File Type:pdf, Size:1020Kb

The Platinum-Group Elements (PGE) 0 The Platinum-Group Elements: 70 “Admirably Adapted” 5 75 for Science and Industry 10 80 James M. Brenan* DOI: 10.2113/ GSELEMENTS .4.4.227 15 85 he platinum-group elements (PGE) tend to exist in the metallic state or “Platinum is a most valuable bond with sulfur or other Group V ligands, and often occur as trace metal; as it is not oxidisable, Taccessory minerals in rocks. Combined with three isotopic systems that nor fusible under common contain the PGE, these elements afford a unique view of early solar system 20 circumstances, and only 90 evolution, planet formation and differentiation, and biogeochemical cycling. with difficulty combinable Initial purification of the PGE was accomplished in the late 1700s, at which with sulphur, and not acted time their unique properties, including high melting point, chemical inertness, upon by common acids, it is 25 and ability to catalyze chemical reactions, became apparent. This led to admirably adapted for the 95 enormous industrial demand, most notably for fuel production and engine uses of the philosophical emission control, which combined with scarcity in crustal rocks, has made chemist.” Elements of the PGE a highly valued commodity. Chemical Philosophy, 30 100 KEYWORDS : platinum-group elements, siderophile, chalcophile, alloy, sulfide, catalysis BY HUMPHREY DAVY INTRODUCTION the PGE fit into this picture? Most significantly, many of the chemical properties of the PGE that are of industrial 35 On 23 January 1817, Sir Humphry Davy delivered a lecture 105 to the Royal Society of London describing the results of his interest also result in distinct geochemical behavior, afford - recent experiments on the combustion of gas mixtures. Davy ing a unique view of early solar system evolution and reported “the discovery of a new and curious series of phe - planet formation and differentiation. The PGE, along with nomena,” in which mixtures of highly explosive coal gas rhenium and gold, are grouped together as the highly siderophile elements, which are defined by their extreme 40 and air were found to cause a heated wire of platinum to 110 “become ignited nearly to whiteness.” Once the glowing of partitioning into the metallic, relative to the oxide, phase. the wire was extinguished, it was found that the gas mixture The PGE are highly refractory, as gauged by their high melt - was no longer inflammable. Davy reported that “I tried to ing and condensation temperatures ( FIG . 2 ), and were there - produce these phenomena with various metals; but I have fore relatively concentrated in the feedstock for the terrestrial planets (Palme 2008 this issue). However, because of an 45 succeeded only with platinum and palladium; with copper, 115 silver, iron, gold and zinc, the effect is not produced.” What aversion to bonding with oxygen, the PGE are now scarce Davy had discovered was heterogeneous catalytic oxidation. in the crusts of differentiated planets and, instead, are con - Davy immediately recognized the practical application of centrated in the core-forming Fe–Ni alloy. As discussed in his discovery and modified the safe-lamp he had designed the articles by Palme (2008) and Lorand et al. (2008 this issue), this tendency to exist in the metallic state (termed 50 for coal miners to include a Pt wire around the lamp flame 120 (FIG . 1 ), thus limiting the amount of combustible gas available siderophile) or bond with sulfur and other group VA and to the flame and reducing the chance of explosion. VIA ligands (termed chalcophile) has thus provided geo - chemists with a sensitive tracer of differentiation processes Fast forward to the year 2007, and the impact of Davy’s that involved metal or sulfide phases. As an invaluable bonus, original discovery becomes apparent: ~9 million ounces of three radioisotope decay systems include the PGE as parent 55 125 Pt and Pd (worth ~US$7 billion) were produced for the het - (107 Pd– 107 Ag), daughter ( 187 Re– 187 Os) , or both ( 190 Pt– 186 Os). erogeneous catalytic oxidation of automobile exhaust gas. These systems have not only provided chronological infor - This is in addition to the amounts produced for jewelry and mation, but differences in parent-daughter fractionation other industrial processes (mostly catalysis related) involv - have produced distinct isotopic tracers of a variety of geo - ing one or more of the platinum-group metals (PGE: Os, Ir, chemical processes (Carlson et al. 2008 this issue). 60 Ru, Rh, Pt, Pd), totaling some 7 million ounces, worth 130 ~US$10 billion 1. How does an issue of Elements devoted to Owing to their scarcity, but enormous industrial demand, there is significant interest in understanding the rare occur - rence of mineable PGE concentrations in the highly depleted crust. In this context, Mungall and Naldrett (2008 this * Department of Geology, Earth Science Centre, University of Toronto 65 22 Russell St, Toronto, Ontario, Canada issue) emphasize the chalcophile behavior of the PGE and 135 E-mail: [email protected] the massive extraction capacity of magmatic sulfide liquids. 1 2007 PGE production statistics obtained from Johnson Matthey As a resident of London in the 1800s, Humphry Davy would market data tables (www.platinum.matthey.com/publications/). Total PGE values are calculated from metal prices averaged for have most certainly been subject to the poor air quality that the 12-month period. typified this time. Today, it’s not the burning of coal, but E LEMENTS , V OL . 4, PP . 227–232 227 AUGUST 2008 0 automobile exhaust that degrades the air quality of many DISCOVERY AND PURIFICATION OF THE PGE 70 urban centres. Autocatalysts have significantly reduced this In 1741, the metallurgist Charles Wood returned to problem (see below), but the PGE they contain (and those England with samples of platinum acquired in Jamaica, from other industrial sources) are released to the environment, which likely came from the placer deposits of the Choco and some of these PGE are bioavailable. As Rauch and district of Colombia 2. This material was given to Dr. William 5 Morrison (2008 this issue) describe, this is a matter of some 75 Brownrigg, whose description was read to the Royal Society concern, as the risks of PGE emissions to human health and of London by William Watson (Watson and Brownrigg 1750). the environment have not been accurately assessed. There In this description, the samples are referred to as “platina,” is a clear call for more intense research in this area. which is derived from the Spanish for “little silver” and alludes to their appearance ( FIG . 3 ). William Lewis per - 10 80 formed an exhaustive battery of tests on this newly found material and concluded that “it follows, that platina is not, as some believe, gold naturally debased by the admixture of some other metallic body, but a metal of the peculiar kind, essentially different from all others” (Lewis 1757). 15 85 One important discovery made by Lewis is that platina is soluble in aqua regia, “excepting a little blackish matter” (Lewis 1754), which suggested the presence of impurities in the raw sample. Subsequent work on this residue led to the 20 discoveries of iridium and osmium by Smithson Tennant, 90 reported to the Royal Society of London on 21 June 1804. In the case of iridium, Tennant writes, “I should incline to call this metal Iridium [from iris , Greek for rainbow], from the striking variety of colours which it gives, while dissolving 25 in marine acid [HCl]” (Tennant 1804). Tennant notes that 95 during one of the osmium purification steps, “a pungent and peculiar smell is immediately perceived.” He discovered that this smell “arises from the extrication of a very volatile metallic oxide,” providing the basis for the name Osmium , 30 which is derived from osme , Greek for smell. That smell, of 100 course, originates from the highly toxic osmium tetroxide. Three days later, Tennant’s colleague William Wollaston reported the discovery of rhodium (Rh), which was purified 35 from the solution remaining after precipitating platinum by 105 treatment with sal ammoniac (NH 4Cl). He indicated that this new element should be “distinguished by the name Rhodium [from rhodon , Greek for rose], from the rose-colour of a dilute solution of the salts containing it” (Wollaston 40 1804). The following year, Wollaston (1805) reported the 110 discovery of palladium, which was purified from the aqua regia solution used to dissolve raw platina. In his report to the Royal Society of London, Wollaston proposed the name FIGURE 1 Detail of the Davy Safe-Lamp (a) employed in British coal palladium, “from the planet that had been discovered mines, with the Pt wire modification (j and h) used to cat - nearly at the same time by Dr. Olbers,” referring to the dis - 45 alyze methane oxidation (after Davy 1817). REPRINTED WITH PERMISSION OF 115 THE ROYAL SOCIETY OF LONDON . covery of the Pallas asteroid (originally considered to be a planet) by the German astronomer Heinrich Olbers on March 28, 1802. Records from his monetary accounts (Chaldecott 1979) reveal that Wollaston garnered signifi - 50 cant income from a method he developed for platinum 120 purification from raw platina, which he only made public in the Bakerian Lecture to the Royal Society (Wollaston 182 9) shortly before his death in 1828. This income helped to furnish the endowment for the Wollaston Medal 55 awarded by the Geological Society of London ( FIG . 4 ). The 125 medal was originally cast in gold, but from 1846 to 1860 it was cast in palladium extracted from Brazilian gold donated by noted assayer and metallurgist P. N. Johnson. Ruthenium (Ru) was the last of the PGE to be discovered, 60 and was isolated from the insoluble residue after aqua regia 130 digestion of platinum ore from the Urals.
Recommended publications
  • Geological Investigations in the Bird River Sill, Southeastern Manitoba (Part of NTS 52L5): Geology and Preliminary Geochemical Results by C.A
    GS-19 Geological investigations in the Bird River Sill, southeastern Manitoba (part of NTS 52L5): geology and preliminary geochemical results by C.A. Mealin1 Mealin, C.A. 2006: Geological investigations in the Bird River Sill, southeastern Manitoba (part of NTS 52L5): geology and preliminary geochemical results; in Report of Activities 2006, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, p. 214–225. Summary and gravitational differentiation. In 2005, this study was initiated to examine the Bird Theyer (1985) identified unusual River Sill (BRS), a mafic-ultramafic layered intrusion cooling conditions requiring several magma pulses and located in the Bird River greenstone belt in southeastern cast doubt on a single magmatic intrusion theory. Manitoba. The BRS is currently an exploration target In 2005, this study was initiated to examine the for Ni-Cu–platinum group element (PGE) deposits and, controls on Ni-Cu-PGE mineralization and test the single in the past, hosted two Ni-Cu mines (Maskwa West and versus multiple injection hypothesis to establish the Dumbarton mines). relationship between mineralization and the magmatic Nickel-copper mineralization on the western half history. Specific objectives include of the BRS consists primarily of disseminated to blebby • detailed mapping of the Chrome, Page, Peterson pyrrhotite+chalcopyrite and is present in the ultramafic Block and National-Ledin properties (Figure GS-19-1); series of the Chrome and Page properties and the mafic • determination of the sulphur source for the Ni-Cu- series of the Wards property. During this study, several PGE mineralization; new sulphide-bearing localities in both the ultramafic and • delineation of the sill’s sulphur saturation history; mafic units of the sill have been identified.
    [Show full text]
  • Physical and Chemical Properties of Platinum Group Metals 2 Chapter 2 | Physical and Chemical Properties of Platinum Group Metals Contents
    PHYSICAL AND CHEMICAL PROPERTIES OF PLATINUM GROUP METALS 2 CHAPTER 2 | PHYSICAL AND CHEMICAL PROPERTIES OF PLATINUM GROUP METALS CONTENTS 2.1 OVERVIEW OF PGMS 04 2.2 METALLIC PGMS 05 2.3 COMPOUNDS OF PLATINUM GROUP METALS 06 SIMPLE COMPOUNDS 06 COMPLEX COMPOUNDS 07 REFERENCES 13 2 CHAPTER 2 | PHYSICAL AND CHEMICAL PROPERTIES OF PLATINUM GROUP METALS SUMMARY • Six elements of Groups 8, 9, and 10 in the periodic table constitute the platinum group metals (PGMs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os). • The physical and mechanical properties of the PGMs and their compounds indicate a wide range of properties with widely varying densities and solubilities (see Table 2-1). • Metallic forms of PGMs are generally considered to be ‘inert’, i.e., not chemically reactive. However, this is dependent in part on dimensional characteristics. Thus, while massive metal forms have low chemical reactivity, fi nely-divided metal powders with high surface area show greater reactivity. • Simple binary compounds exist for each of the PGMs. They also form a vast array of complex coordination compounds in which the central metal atom is bound to a variety of ligands by coordinate bonding, including halides, sulphur, amines, and other atoms and groups. • This unique coordination chemistry has made PGM compounds of great industrial value, but also can have implications for the health of workers exposed to certain of these compounds due to the linkages with biological behaviour and toxicity (see Chapter 6). • The complex halogenated platinum compounds (CHPS) are among those which are industrially and toxicologically important.
    [Show full text]
  • New Exploration Methods for Platinum and Rhodium Deposits
    SYNTHESIS REPORT FOR PUBLICATION CONTRACT No : BRE2-CT92-0302 PROJECT N* : BE-5793 TITLE : NEW EXPLORATION METHOD FOR PLATINUM AND RHODIUM DEPOSITS POOR IN BASE METAL SULPHIDES PROJECT COORDINATOR : BRGM PARTNERS : UNIVERSITY OF MANCHESTER UNIVERSITY OF COPENHAGEN CNRS NANCY STARTING DATE :30.11.92 DURATION :36 MONTHS *** PROJECT FUNDED BY THE EUROPEAN * * COMMUNITY UNDER THE BRITE/ELJRAM * * PROGRAMME * * *** E DATE: 30.1.96 H. TITLE, AUTHOR NAMES AND ADRESSES NEW EXPLORATION METHODS FOR PLATINUM AND RHODIUM POOR IN BASE METAL SULPHIDES NEXTPRIM (EC Contract BRE2-CT92-0302 - Project BE-5793) Coordinator BRGM : M. Ohnenstetter, Z. Johan, A. Cocherie, A.M. Fouillac. C. Guerrot 3, Avenue Claude Guillemin, BP 6009,4.5060 ORLEANS CEDEX 2, France. Partners CNRS : D. Ohnenstetter, M. Chaussidon, O. Rouer CRPG, 15, rue Notre Dame Des Pauvres, B.P. 20, 54501 Vand@uvre les Nan~ y, France. University of Couenha~en : E. Makovicky, M. Makovicky, J. Rose-Hansen, S. Karup- Mgller Geological Institute, f?kter Voldgade 10, 1350 Copenhagen K, Danemark University of Manchester : D. Vaughan, G. Turner, R.A.D. Pattrick, A.P. Gize. 1. Lyon, I. McDonald Department of Geology, Williamson Building, Oxford Road, M 13 9PL Manchester. England III. ABSTRACT A multidisciplinary approach has been applied to four subeconomic deposits of platinum metals in order to propose a new model of formation for platinum group element (PGE) deposits devoid of significant base metal sulphides (BMS). The aim was to facilitate the identification of new targets for PGE exploration. Two of the deposits occur in Albania, in the Tropoja and Bulqiza massifs respectively; these belong to an ophiolitic belt created in an oceanic environment during the Upper Jurassic.
    [Show full text]
  • Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals
    minerals Article Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals Federica Zaccarini 1,*, Giorgio Garuti 1, Evgeny Pushkarev 2 and Oskar Thalhammer 1 1 Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner Str.5, A 8700 Leoben, Austria; [email protected] (G.G.); [email protected] (O.T.) 2 Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Science, Str. Pochtovy per. 7, 620151 Ekaterinburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +43-3842-402-6218 Received: 13 August 2018; Accepted: 28 August 2018; Published: 31 August 2018 Abstract: This paper reviews a database of about 1500 published and 1000 unpublished microprobe analyses of platinum-group minerals (PGM) from chromite deposits associated with ophiolites and Alaskan-type complexes of the Urals. Composition, texture, and paragenesis of unaltered PGM enclosed in fresh chromitite of the ophiolites indicate that the PGM formed by a sequence of crystallization events before, during, and probably after primary chromite precipitation. The most important controlling factors are sulfur fugacity and temperature. Laurite and Os–Ir–Ru alloys are pristine liquidus phases crystallized at high temperature and low sulfur fugacity: they were trapped in the chromite as solid particles. Oxygen thermobarometry supports that several chromitites underwent compositional equilibration down to 700 ◦C involving increase of the Fe3/Fe2 ratio. These chromitites contain a great number of PGM including—besides laurite and alloys—erlichmanite, Ir–Ni–sulfides, and Ir–Ru sulfarsenides formed by increasing sulfur fugacity. Correlation with chromite composition suggests that the latest stage of PGM crystallization might have occurred in the subsolidus.
    [Show full text]
  • Electrolytic Extraction of Platinum Group Metals from Dissolver Solution of Purex Process
    Journal of NUCLEAR SCIENCE and TECHNOLOGY, 30(11), pp. 1195~1197 (November 1993). 1195 In this note, the proper deposition potential, SHORT NOTE nitric acid concentration, temperature, and Electrolytic Extraction of Platinum electrode materials were investigated, and the effect of coexisting ions was examined. Group Metals from Dissolver 1. Experimental Solution of Purex Process The experimental apparatus is shown in 1. The electrolytic cell (500 ml) consistedFig. KenjiKOIZUMI, Masaki OZAWA of a counter electrode (1 mmo, Pt wire), a re- and TornioKAWATA ference electrode (SCE), and a working elec- Power Reactor & Nuclear Fuel Development Corp.* trode. Ti and Ta were used as the elec- trode material. The electrolyte was agitated Receired May 19, 1993 to maintain a constant temperature. Elec- Revised July 30, 1993 trode potential were controlled by the po- KEYWORDS: electrolytic extraction, tentiostat. Pt group metals concentration deposits, palladium, rhodium, ruthe- was adjusted to about 1.0E-4 mol/l. Urani- nium, purex process, solvent extrac- um (VI) ion was tested as a main coexisting tion, deposition potential, recovery, actinide ion in this experiments. Potential- electrodeposition, dissolver solution time sequences for metal deposition and potential-current curves corresponding to Pd- In the commercial light water reactor fuel dissolution are shown in Fig.2. First the at a burn-up of 33 MWd/kg, approximately working electrode was cathodically polarized 4 kg of Pt group metals are included per ton in nitric acid solution containing Pt group of heavy metals(1). Elimination of the ionic metal. The polarization potential (05) was Pt group metals (Pd, Rh, Ru) from dissolver changed from +0.5 to -0.5 V.
    [Show full text]
  • The Platinum Group Metals As Coating Materials
    Issue No. 38 – February 2012 Updated from Original August 2002 Publication The Platinum Group Metals as Coating Materials How precious is your metal - An overview on The platinum group metals consist of platinum and palladium, as well as rhodium, iridium, the use of the platinum osmium, and ruthenium. They can be found in the transition metals on the periodic table of the elements. A close-up of this part of the table is shown in Figure 1. Palladium is currently the group metals as contact surfaces for electronic only metal of the group in widespread use in electrical contacts, although platinum was widely connectors. used in the past. Rhodium is only used in electrical contact applications requiring very high hardness and wear resistance. The other three metals in the group are used mainly in other industrial applications. Pure, electroplated platinum and palladium have a hardness of around 200 to 400 HV, although . Platinum they may also be applied by cladding. Both have a conductivity of around 16% IACS. Thus they are harder than gold, but slightly less conductive. At one time, their prices were . Palladium competitive with gold, and gold-flashed palladium coatings were even used as less expensive alternatives to gold coatings. However, both of these metals are much more expensive than gold . Rhodium (at least at the time of this writing). Due to its cost, gold-flashed palladium is now used mainly in applications which require greater hardness and wear resistance than hard gold alone. Ruthenium Rhodium is much harder than platinum and palladium, typically 800-1000 HV, with an .
    [Show full text]
  • Recovery of Platinum Group Metals from High Level Radioactive Waste POSSIBILITIES of SEPARATION and USE RE-EVALUATED by R
    Recovery of Platinum Group Metals from High Level Radioactive Waste POSSIBILITIES OF SEPARATION AND USE RE-EVALUATED By R. P. Bush AEA Technology, Harwell Laboratory, Oxfordshire, England When nuclear fuel is irradiated in a power reactor a wide range of chemical elements is created by the fission of uranium and plutonium. These fission products include palladium, rhodium and ruthenium, and could in principle constitute a valuable source of these three metals. Their separation from the fuel during reprocessing operations is, however, a complex matter. Various processes have been proposed and evaluated, mainly on a laboratory scale. To date none of them has been established as applicable on a commercial scale, but investigations with this aim are continuing in several countries. Even a complete separation of the platinum group metals from other nuclides would yield a radioac- tive product, because of the presence of active isotopes of the platinum group metals. These would be expected to restrict the practical utilisation of platinum group metals created by nuclear jisswn, unless an isotope separation technique can be developed, or the metals are stored until the radioactivity has decayed. The irradiation of nuclear fuels in power reviewed in Platinum Metals Review in 1970 reactors leads to the production of atoms of a (1). The current revival of interest has resulted wide range of fission products, ranging in partly because of the increasing economic im- atomic mass from 70 to 160. These fission pro- portance of rhodium. This metal is a crucial ducts generally constitute components of the component of the three-way catalysts used for radioactive waste generated by the nuclear fuel automobile emission control, and the demand cycle.
    [Show full text]
  • Iridarsenite (Ir, Ru)As2 C 2001-2005 Mineral Data Publishing, Version 1
    Iridarsenite (Ir, Ru)As2 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As irregular inclusions, to 60 µm, in a matrix of rutheniridosmine. Physical Properties: Hardness = n.d. VHN = 488 and 686 (100 g load) on two grains. D(meas.) = n.d. D(calc.) = 10.9 Optical Properties: Opaque. Color: In polished section, medium gray with brownish tint. Luster: Metallic. Pleochroism: Weak to none. Anisotropism: Weak but distinct, from medium gray to pale orange-brown. R1–R2: (470) 47.2–46.9, (546) 45.4–46.1, (589) 44.9–46.6, (650) 41.4–44.0 ◦ 0 Cell Data: Space Group: P 21/c (synthetic). a = 6.05 b = 6.06 c = 6.18 β = 113 17 Z=4 X-ray Powder Pattern: Papua New Guinea. 3.90 (100), 2.840 (70), 2.069 (60), 2.610 (50), 1.910 (50), 1.943 (40), 1.875 (40) Chemistry: (1) (2) Ir 40.7 52.2 Ru 10.3 1.7 Os 1.3 0.4 Pt 0.5 1.1 Rh 0.9 0.2 Pd 0.1 As 46.2 44.0 S 0.2 Total 99.0 99.9 (1) Papua New Guinea; by electron microprobe, corresponds to (Ir0.69Ru0.33Os0.02)Σ=1.04As2.00. (2) Do.; by electron microprobe, average of four other grains; corresponds to (Ir0.92Ru0.06 Os0.01Pt0.02Rh0.01)Σ=1.02(As1.97S0.03)Σ=2.00. Occurrence: In nuggets or fragments of natural Os–Ir–Ru alloys. Association: Irarsite, ruthenarsenite, rutheniridosmine. Distribution: From an unspecified locality [probably the Waria River, Bowutu Mountains, or the Yodda Goldfield] in Papua New Guinea [TL].
    [Show full text]
  • Colloform High-Purity Platinum from the Placer Deposit
    Colloform high-purity platinum from the placer deposit of Koura River (Gornaya Shoriya, Russia) Nesterenko G.V.1, Zhmodik S.M.1,2, Airiyants E.V.1, Belyanin D.K.1,2, Kolpakov V.V.1, Bogush A.A.1,3,* 1V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 2Novosibirsk State University, Novosibirsk 630090, Russia 3Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK *Corresponding author: A.A. Bogush, E-mail: [email protected] Abstract A microinclusion of colloform high-purity platinum in a grain of platinum-group minerals (PGM) from the alluvial gold-bearing placer deposit in the south of Western Siberia (Russia) was detected and characterized for the first time. It is different in composition, texture, and conditions of formation from high-purity platinum of other regions described in the literature. The main characteristics of investigated high-purity platinum are colloform-layered texture, admixture of Fe (0.37-0.78 wt.%), and paragenesis of Cu-rich isoferroplatinum, hongshiite, and rhodarsenide. The PGM grain with high-purity platinum is multiphase and heterogeneous in texture. It is a product of intensive metasomatic transformation of Cu-rich isoferroplatinum (Pt3(Fe0.6Cu0.4)). The transformation was carried out in two stages: 1 - copper stage including three substages (Cu-rich isoferroplatinum, copper platinum and hongshiite); and 2 - arsenic (rhodarsenide). The formation of high-purity platinum was separated in time from the formation of isoferroplatinum and was carried out by precipitation from postmagmatic solutions. Keywords: platinum-group elements (PGE), platinum-group minerals (PGM), high-purity platinum, Cu-rich isoferroplatinum, hongshiite, alluvial placer, Gornaya Shoriya Introduction High-purity platinum was discovered in the gold-bearing placer deposit of Koura River situated in Gornaya Shoriya (south-western Siberia, Russia, Fig.
    [Show full text]
  • Platinum Group Metal Chalcogenides
    Platinum Group Metal Chalcogenides THEIR SYNTHESES AND APPLICATIONS IN CATALYSIS AND MATERIALS SCIENCE By Sandip Dey and Vimal K. Jain* Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India * E-mail: [email protected] Some salient features of platinum group metal compounds with sulfur, selenium or tellurium, known as chalcogenides, primarily focusing on binary compounds, are described here. Their structural patterns are rationalised in terms of common structural systems. Some applications of these compounds in catalysis and materials science are described, and emerging trends in designing molecular precursors for the syntheses of these materials are highlighted. Chalcogenides are a range of compounds that will consider first a selection of the structures primarily contain oxygen, sulfur, selenium, telluri- adopted, followed by their catalytic and electronic um or polonium and which may also occur in uses. nature. The compounds may be in binary, ternary or quaternary form. Platinum group metal chalco- Ruthenium and Osmium genides have attracted considerable attention in Chalcogenides recent years due to their relevance in catalysis and Ruthenium and osmium dichalcogenides of materials science. Extensive application of palladi- composition ME2 (M = Ru, Os; E = S, Se, Te) are um (~ 27% of global production in year 2000) in usually prepared by heating stoichiometric quanti- the electronic industry in multilayer ceramic capac- ties of the elements in evacuated sealed ampoules itors (MLCCs) and ohmic contacts has further at elevated temperatures (~ 700ºC) (13). Single accelerated research activity on platinum group crystals, such as RuS2, see Figure 1, are grown metal chalcogenide materials. either from a tellurium flux (4) or by chemical The platinum group metals form several vapour transport techniques using interhalogens as chalcogenides: transporting agent (5).
    [Show full text]
  • Osmium (Os, Ir, Ru) C 2001-2005 Mineral Data Publishing, Version 1
    Osmium (Os, Ir, Ru) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6/m 2/m 2/m. Rare crystals are hexagonal tabular, to 3 mm; commonly as euhedral prismatic inclusions in Pt–Fe alloys. Physical Properties: Hardness = n.d. VHN = 1206–1246 (25 g load). D(meas.) = 22.48 D(calc.) = 22.59 Optical Properties: Opaque. Color: White with a bluish gray tinge in reflected light. Pleochroism: Noticeable. Anisotropism: Strong, reddish orange. R1–R2: (400) — , (420) 62.7–63.9, (440) 63.9–64.7, (460) 63.9–64.6, (480) 63.8–64.4, (500) 63.3–63.8, (520) 62.7–63.2, (540) 62.1–62.7, (560) 61.5–61.8, (580) 60.9–61.4, (600) 60.4–60.7, (620) 59.9–60.2, (640) 59.6–59.8, (660) 59.3–59.9, (680) 59.2–60.0, (700) 59.4–60.0 Cell Data: Space Group: P 63/mmc. a = 2.7341 c = 4.3197 Z = 2 X-ray Powder Pattern: Synthetic osmium. 2.076 (100), 2.367 (35), 2.160 (35), 1.3668 (20), 1.2300 (20), 1.1551 (20), 1.595 (18) Chemistry: (1) (2) (3) Os 94.1 84.8 98.8 r 5.4 12.0 0.3 Ru 0.8 2.2 Pt 0.1 1.7 Rh 0.5 Pd 0.1 0.2 Total 100.4 101.3 99.3 (1) Atlin, Canada; by electron microprobe. (2) Joubdo stream, Ethiopia; by electron microprobe. (3) Gusevogorskii pluton, Russia; by electron microprobe, average of four analyses.
    [Show full text]
  • Platinum-Group Metals in New Mexico
    ity within the Dakota to allow passageof the solutions; 4) presence of an impermeable Platinum-groupmetals in NewMexico caprock to contain the solutions, which are thought to have risen stratigraphically dur- by VirginiaT. McLemore, Robeft W. Eveleth, Lynn A. Brandvold,and James M. Robensln ing their migration northward toward the NewMexico Bureau of Minesand Mineral Resources. Socorro. NM 87801 San |uan Basin or westward toward the Gal- lup sag;and 5) availability of organic material in the Dakota to reduce and thereby precip- PGM reported in New Mexico itate the uranium from the rising solutions. Introduction (Blairet al.,1977) The author's observations agree with those Platinum-group metals (PGM) consist of of Piersonand Green (1980). six elements:platinum (Pt), palladium (Pd), Tampa mine, Bromide district, AcxNowlrpcrr.rrr.rrs-This report would not rhodium (Rh), iridium (Ir), osmium (Os), and Rio Arriba County have been completed without the encour- ruthenium (Ru); platinum and palladium are The Tampa mine in the northern part of agement of Virginia T. Mclemore of the New the most abundant of the group. The PGM the county is one of the largest mines in the Mexico Bureau of Mines and Mineral Re- typically occur together as natural alloys (for Bromide district with a 400-ft shaft and 800- sources. Thanks are owed to Leo E. Little, example, osmiridium-an alloy of osmium 1000ft of drifts (Bingler, 1968).Sulfide re- Manager of the Grand Junction projects of- and iridium) and to a lesserextent as sulfides placement veins containing chalcopyrite, fice of the DOE for accessto the AEC records and arsenides.All the metals are rare (Table molybdenite, pyrite, malachite,and somefree stored in the DOE archives at Grand Junc- 1) and therefore expensive.
    [Show full text]