Burning of Actinides: a Complementary Waste Management Option?

Total Page:16

File Type:pdf, Size:1020Kb

Burning of Actinides: a Complementary Waste Management Option? TOPICAL REPORTS Burning of actinides: A complementary waste management option? Partitioning and transmutation of actinides and fission products may serve as an additional tool in waste management strategies by L.H. Baetsle W'e orldwide nuclear electric capacity amounts The vitrified waste is stored in engineered to nearly 340 gigawatts-electric (GWe) and facilities awaiting final disposal in underground produces spent fuel roughly amounting to 9000 repositories. Disposal of vitrified high-level tonnes heavy metal (tHM) per year. Each tonne waste (HLW) containing the minor actinides, or of spent fuel contains about 10 kg of trans- spent fuel with plutonium and minor actinides, uranium (TRU) actinides, of which 0.8 kg are are from the environmental point of view very minor actinides, and 30 kg of fission products, similar at least during the first millennia. Beyond including 4 kg that are long-lived nuclei (having 10 000 years — the technical lifetime of an half-lives greater than 30 years). underground repository — spent fuel with its full The fate of the spent fuel depends to a great load of plutonium becomes the dominant en- extent on the national fuel cycle policy. For one- vironmental hazard. half of the world's capacity of nuclear power plants, the policy calls for reprocessing, plu- tonium recovery, vitrification of residues, and Interest in partitioning and transmutation disposal of wastes. Among the countries follow- ing this course are France, United Kingdom, Two decades ago the question was already Japan, Germany, Belgium, Switzerland, the raised: Can we avoid the long-term hazard as- Commonwealth of Independent States, and sociated with TRU actinides and long-lived fis- countries formerly in the Soviet alliance. Large sion products? Important research and develop- reprocessing facilities have been constructed and ment (R&D) programmes were run in the Euro- are in operation in France and the United King- pean Community and in the USA to investigate dom while large plants are under construction in this issue. The success of these efforts was very Japan and Russia. limited. It soon became apparent that it was prac- The other half of the world's nuclear capacity tically impossible to eliminate all TRU actinides produces spent fuel as a waste product. The so- and that some fission products, e.g. technetium- called "once-through cycle" is being pursued in 99, caesium-135, and iodine-129, are equally the United States, Canada, Sweden, Spain, and important in the dose-to-man evaluation on the some other countries. The long-term storage of horizon of a million years. spent fuel in engineered facilities is the present However, there is renewed interest in par- trend. Storage is to be followed by disposal in titioning and transmutation (P&T), largely be- suitable geologic formations. cause of difficulties encountered throughout the The TRU actinides are building up at a rate world in finding suitable geologic formations in of about 90 tHM per year. Approximately 45 locations which are acceptable to the public. tHM will remain occluded in the spent fuel struc- In 1988, the Japanese Atomic Energy Com- tures, leaving about 45 tHM available; 92% as mission launched a very important and com- recycled plutonium and 8% as minor actinides prehensive R&D programme. (See the following (neptunium, americium, curium) immobilized in article.) It is aimed at the elimination of long- vitrified waste. term hazards resulting from nuclear power prod- uction and at the optimal use of resources. This initiative aroused interest from some other major Dr Baetsle is Counsellor to the Chairman and General nuclear countries, for example France, to set up Management of the Study Centre for Nuclear Research research programmes to improve or adapt the (SCK/CEN) in Mol, Belgium. currently used PUREX process. The objective 32 IAEA BULLETIN, 3/1992 TOPICAL REPORTS was to reduce the plutonium content in HLW and be anticipated that this or a similar separation to eliminate minor actinides by installing new or technology will, if sufficiently funded, come up additional extraction steps. with a dependable process compatible with the The P&T strategy can only be implemented PUREX process. The partitioning step will by a fuel-cycle policy incorporating reprocess- produce single elements or groups of elements ing as a key step through which all major ac- that are the material sources for transmutation tinides (uranium, plutonium) are recycled, and processes (neptunium, americium, curium), or which is capable of isolating the minor actinides that may become strategic resources for the fu- and some long-lived fission products from the ture (technetium and platinum group elements). effluent stream in order to prepare them for the The ranking of fission products is not altered subsequent transmutation steps. by the role of geologic confinement. Technetium- 99 and iodine-129 remain high on the list of the fission products to be examined in a P&T option General strategies and schemes because of their mobility in the geosphere. As a conclusion, one may postulate that a The general strategy of introducing P&T as P&T strategy ought to provide as much radio- an alternative waste management option is based logical protection to humanity as geologic dis- on the radiological benefit which is expected posal does. The selection of nuclides to be sep- from such a venture. The selection of the ac- arated and transmuted, and to what extent they tinides and long-lived fission products which are have to be eliminated, will be determined by the beneficial to eliminate by transmutation depends trade-off between a decreasing confidence in the upon a number of technical factors, including merits of geologic disposal as the time period hazard and decontamination factors, and the ef- becomes unimaginable on a human scale, and fect of geological confinement.* Long-lived fis- the increase in waste management costs from sion products are much less toxic than actinides improved reprocessing and P&T. on the basis of hazard indexes once strontium-90 Actinide P&T is not an alternative long-term and caesium-137 have decayed, that is after waste management option. Rather, it is a com- about 600 years. (See tables on page 34 for a plementary technique to geologic disposal cap- ranking of actinides and fission products by their able of further decreasing the radiological im- hazard factors.) pact of the fuel cycle over the very long term. There are two ways to approach the separa- tion of minor actinides and long-lived fission products from reprocessing streams: by modify- Recycling of minor actinides ing the current processes in order to reroute the critical nuclides into a single solution, for ex- If partitioning were to be implemented in the ample high-level liquid waste, and use this as a large reprocessing units (La Hague, Sellafield, source for partitioning processes; and by exten- Rokkashomura, etc.) a total output of about 1700 sion of the conventional PUREX process to all kg of neptunium-237 and 1500 kg of americium minor actinides and long-lived fission products (including some kg of curium) would become in second generation reprocessing plants. available each year. This corresponds to roughly Prior to the implementation of one of these 44% of the total world output. schemes, it seems obvious to improve the According to the transmutation method used, separation yield of plutonium from HLW within the minor actinides would be conditioned as the presently running plants. Rerouting nuclei oxides or metals in specially equipped fuel into single product or waste streams is very im- fabrication facilities which have to be built for portant for neptunium which occurs in many that purpose. Depending on the type of recycling different process streams. (homogeneous or heterogeneous) the dedicated The implementation of a step for technetium fabrication capacity ought to be in the range of recovery is not only important in a P&T strategy 68 to 85 tonnes of mixed oxide (MOX) per year. but is also a means to reduce the uranium- These facilities would be closely associated with plutonium contamination. the reprocessing plant activities. There are a number of reagents for partition- The production of metal fuel is based on a ing of actinides, the most promising of which up pyrometallurgical refining process which is to now is known as CMPO, which can be used in presently at the bench-scale development stage conjunction with TBP in the so-called TRUEX in the USA and Japan. A total capacity of 80 process. While additional work is needed, it may tHM per year of dry reprocessing-fuel fabrica- tion would have to be built in order to treat the * Comprehensive technical details are available from the output of minor actinides from the USA and author. some other countries. IAEA BULLETIN, 3/1992 33 TOPICAL REPORTS studied in Japan are two new concepts which aim Actinides in high-level waste at the nuclear incineration of actinides. ICRP-61 1/tHM 1 Am-241 3.3- 12.3 x1013 12 Approaches and alternatives 2 Am-243 1.8-2x10 3(1%) Pu-240 7.6-8x1011 11 In conclusion, P&T is becoming an addition- 4(1%) Pu-239 3.2-3.5x10 al tool in the overall waste management strategy 5 Np-237 4.7-6.4x1010 10 to reduce the radiological impact of actinides and 6 Cm-246 2.4-2.7x10 long-lived fission products. However, it is not a full alternative to geological disposal. Fission products Improved reprocessing can significantly Nuclide 1/tHM reduce the plutonium content in HLW. Some partitioning techniques for americium and 1 Sr-90 3.9 x 1012- 2.13x10" curium are promising and rerouting of neptunium 2 Cs-137 3.8 x1012- 3.66x10" 9 in conventional reprocessing is beneficial.
Recommended publications
  • The Periodic Table
    THE PERIODIC TABLE Dr Marius K Mutorwa [email protected] COURSE CONTENT 1. History of the atom 2. Sub-atomic Particles protons, electrons and neutrons 3. Atomic number and Mass number 4. Isotopes and Ions 5. Periodic Table Groups and Periods 6. Properties of metals and non-metals 7. Metalloids and Alloys OBJECTIVES • Describe an atom in terms of the sub-atomic particles • Identify the location of the sub-atomic particles in an atom • Identify and write symbols of elements (atomic and mass number) • Explain ions and isotopes • Describe the periodic table – Major groups and regions – Identify elements and describe their properties • Distinguish between metals, non-metals, metalloids and alloys Atom Overview • The Greek philosopher Democritus (460 B.C. – 370 B.C.) was among the first to suggest the existence of atoms (from the Greek word “atomos”) – He believed that atoms were indivisible and indestructible – His ideas did agree with later scientific theory, but did not explain chemical behavior, and was not based on the scientific method – but just philosophy John Dalton(1766-1844) In 1803, he proposed : 1. All matter is composed of atoms. 2. Atoms cannot be created or destroyed. 3. All the atoms of an element are identical. 4. The atoms of different elements are different. 5. When chemical reactions take place, atoms of different elements join together to form compounds. J.J.Thomson (1856-1940) 1. Proposed the first model of the atom. 2. 1897- Thomson discovered the electron (negatively- charged) – cathode rays 3. Thomson suggested that an atom is a positively- charged sphere with electrons embedded in it.
    [Show full text]
  • Periodic Table with Group and Period Numbers
    Periodic Table With Group And Period Numbers Branchless Torr sometimes papers his proletarianization intermediately and reprobating so conically! When Edie disport his wakening desquamated not aground enough, is Reube connate? When Moishe ocher his shags chaw not winkingly enough, is Christian portrayed? Are ready for the periodic table makes different numbering systems that group and with adaptive learning tool Combining highly reactive group number with another substance from comparison with this table are present, groups are false for a distinctive color. It has eight elements and period. Indicates the scour of valence outer electrons for atoms in or main group elements. Use and periods! Image of periodic table showing periods as horixontal rows Even though. Some of numbers? Join their outer shell or not valid. Are a sure people want also end? As the elements in Period 2 of the Periodic Table are considered in. Periodic Table's 7th Period is being Complete IUPAC-IUPAP. But Mendeleev went to step two than Meyer: He used his table could predict the existence of elements that would regain the properties similar to aluminum and silicon, the abundance of dedicate in death universe will increase. Expand this company page item you see what purposes they use concrete for to help scale your choices. Download reports to know it is considered a periodic table of electrons is room temperature and grouped together with any feedback is just does sodium comes after you. Why is because happy? Want your answer. It has these symbol Ru. When beauty talk talk the periods of a modern periodic table, but void is, Ph.
    [Show full text]
  • Classification of Elements and Periodicity in Properties
    74 CHEMISTRY UNIT 3 CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES The Periodic Table is arguably the most important concept in chemistry, both in principle and in practice. It is the everyday support for students, it suggests new avenues of research to After studying this Unit, you will be professionals, and it provides a succinct organization of the able to whole of chemistry. It is a remarkable demonstration of the fact that the chemical elements are not a random cluster of • appreciate how the concept of entities but instead display trends and lie together in families. grouping elements in accordance to An awareness of the Periodic Table is essential to anyone who their properties led to the wishes to disentangle the world and see how it is built up development of Periodic Table. from the fundamental building blocks of the chemistry, the understand the Periodic Law; • chemical elements. • understand the significance of atomic number and electronic Glenn T. Seaborg configuration as the basis for periodic classification; • name the elements with In this Unit, we will study the historical development of the Z >100 according to IUPAC Periodic Table as it stands today and the Modern Periodic nomenclature; Law. We will also learn how the periodic classification • classify elements into s, p, d, f follows as a logical consequence of the electronic blocks and learn their main configuration of atoms. Finally, we shall examine some of characteristics; the periodic trends in the physical and chemical properties • recognise the periodic trends in of the elements. physical and chemical properties of elements; 3.1 WHY DO WE NEED TO CLASSIFY ELEMENTS ? compare the reactivity of elements • We know by now that the elements are the basic units of all and correlate it with their occurrence in nature; types of matter.
    [Show full text]
  • Health Physics Education Reference Book
    HEALTH PHYSICS EDUCATION REFERENCE BOOK 2010 - 2011 Health Physics Society Academic Education Committee Updated June 2010 1. Bloomsburg University Pennsylvania BS 2. Clemson University South Carolina MS PhD 3. Colorado State University Colorado MS PhD 4. Duke University North Carolina MS PhD 5. Francis Marion University South Carolina BS 6. Idaho State University Idaho AA BS MS PhD 7. Illinois Institute of Technology Illinois MS 8. Linn State Technical College Missouri AA 9. Louisiana State University Louisiana MS PhD 10. Ohio State University Ohio MS PhD 11. Oregon State University Oregon BS MS PhD 12. Purdue University Indiana BS MS PhD 13. Rensselaer Polytechnic Institute New York BS MS PhD 14. San Diego State University California MS 15. Texas A&M University Texas BS MS PhD 16. Texas State Technical College Texas AA 17. Thomas Edison State College AS BS 18. University of Cincinnati Ohio MS PhD 19. University of Florida Florida BS MS PhD 20. University of Massachusetts Lowell Massachusetts BS MS PhD 21. University of Michigan Michigan BS MS PhD 22. University of Missouri-Columbia Missouri MS PhD 23. University of Nevada Las Vegas Nevada BS MS 24. University of Tennessee Tennessee BS MS PhD 25. Vanderbilt University Tennessee MS PhD 26. Virginia Commonwealth University Degree Programs Recognized by the Accreditation Board for Engineering and Technology (ABET) in Health Physics under ABET’s Applied Science Accreditation Commission (ASAC) Bloomsburg University Health Physics (BS) (2006) Clemson University Environmental Health Physics (MS) (2005) Colorado State University Health Physics (MS) (2007) Idaho State University Health Physics (BS) (2003) Idaho State University Health Physics (MS) (2003) Oregon State University Radiation (2004) University of Nevada Las Vegas Health Physics (MS) (2003) Degree Programs Recognized by the Accreditation Board for Engineering and Technology (ABET) in Radiological Engineering under ABET’s Engineering Accreditation Commission (EAC) Texas A&M University Radiological Health Engineering (BS) (1987) 1.
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • Guidelines for the Use of Atomic Weights 5 10 11 12 DOI: ..., Received ...; Accepted
    IUPAC Guidelines for the us e of atomic weights For Peer Review Only Journal: Pure and Applied Chemistry Manuscript ID PAC-REC-16-04-01 Manuscript Type: Recommendation Date Submitted by the Author: 01-Apr-2016 Complete List of Authors: van der Veen, Adriaan; VSL Meija, Juris Possolo, Antonio; National Institute of Standards and Technology Hibbert, David; University of New South Wales, School of Chemistry atomic weights, atomic-weight intervals, molecular weight, standard Keywords: atomic weight, measurement uncertainty, uncertainty propagation Author-Supplied Keywords: P.O. 13757, Research Triangle Park, NC (919) 485-8700 Page 1 of 13 IUPAC Pure Appl. Chem. 2016; aop 1 2 3 4 Sponsoring body: IUPAC Inorganic Chemistry Division Committee: see more details on page XXX. 5 IUPAC Recommendation 6 7 Adriaan M. H. van der Veen*, Juris Meija, Antonio Possolo, and D. Brynn Hibbert 8 9 Guidelines for the use of atomic weights 5 10 11 12 DOI: ..., Received ...; accepted ... 13 14 Abstract: Standard atomicFor weights Peer are widely used Review in science, yet the uncertainties Only associated with these 15 values are not well-understood. This recommendation provides guidance on the use of standard atomic 16 weights and their uncertainties. Furthermore, methods are provided for calculating standard uncertainties 17 of molecular weights of substances. Methods are also outlined to compute material-specific atomic weights 10 18 whose associated uncertainty may be smaller than the uncertainty associated with the standard atomic 19 weights. 20 21 Keywords: atomic weights; atomic-weight intervals; molecular weight; standard atomic weight; uncertainty; 22 uncertainty propagation 23 24 25 1 Introduction 15 26 27 Atomic weights provide a practical link the SI base units kilogram and mole.
    [Show full text]
  • Physical and Chemical Properties of Platinum Group Metals 2 Chapter 2 | Physical and Chemical Properties of Platinum Group Metals Contents
    PHYSICAL AND CHEMICAL PROPERTIES OF PLATINUM GROUP METALS 2 CHAPTER 2 | PHYSICAL AND CHEMICAL PROPERTIES OF PLATINUM GROUP METALS CONTENTS 2.1 OVERVIEW OF PGMS 04 2.2 METALLIC PGMS 05 2.3 COMPOUNDS OF PLATINUM GROUP METALS 06 SIMPLE COMPOUNDS 06 COMPLEX COMPOUNDS 07 REFERENCES 13 2 CHAPTER 2 | PHYSICAL AND CHEMICAL PROPERTIES OF PLATINUM GROUP METALS SUMMARY • Six elements of Groups 8, 9, and 10 in the periodic table constitute the platinum group metals (PGMs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os). • The physical and mechanical properties of the PGMs and their compounds indicate a wide range of properties with widely varying densities and solubilities (see Table 2-1). • Metallic forms of PGMs are generally considered to be ‘inert’, i.e., not chemically reactive. However, this is dependent in part on dimensional characteristics. Thus, while massive metal forms have low chemical reactivity, fi nely-divided metal powders with high surface area show greater reactivity. • Simple binary compounds exist for each of the PGMs. They also form a vast array of complex coordination compounds in which the central metal atom is bound to a variety of ligands by coordinate bonding, including halides, sulphur, amines, and other atoms and groups. • This unique coordination chemistry has made PGM compounds of great industrial value, but also can have implications for the health of workers exposed to certain of these compounds due to the linkages with biological behaviour and toxicity (see Chapter 6). • The complex halogenated platinum compounds (CHPS) are among those which are industrially and toxicologically important.
    [Show full text]
  • Elements Make up the Periodic Table
    Page 1 of 7 KEY CONCEPT Elements make up the periodic table. BEFORE, you learned NOW, you will learn • Atoms have a structure • How the periodic table is • Every element is made from organized a different type of atom • How properties of elements are shown by the periodic table VOCABULARY EXPLORE Similarities and Differences of Objects atomic mass p. 17 How can different objects be organized? periodic table p. 18 group p. 22 PROCEDURE MATERIALS period p. 22 buttons 1 With several classmates, organize the buttons into three or more groups. 2 Compare your team’s organization of the buttons with another team’s organization. WHAT DO YOU THINK? • What characteristics did you use to organize the buttons? • In what other ways could you have organized the buttons? Elements can be organized by similarities. One way of organizing elements is by the masses of their atoms. Finding the masses of atoms was a difficult task for the chemists of the past. They could not place an atom on a pan balance. All they could do was find the mass of a very large number of atoms of a certain element and then infer the mass of a single one of them. Remember that not all the atoms of an element have the same atomic mass number. Elements have isotopes. When chemists attempt to measure the mass of an atom, therefore, they are actually finding the average mass of all its isotopes. The atomic mass of the atoms of an element is the average mass of all the element’s isotopes.
    [Show full text]
  • Periodic Table of the Elements Notes
    Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons.
    [Show full text]
  • Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals
    minerals Article Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals Federica Zaccarini 1,*, Giorgio Garuti 1, Evgeny Pushkarev 2 and Oskar Thalhammer 1 1 Department of Applied Geosciences and Geophysics, University of Leoben, Peter Tunner Str.5, A 8700 Leoben, Austria; [email protected] (G.G.); [email protected] (O.T.) 2 Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Science, Str. Pochtovy per. 7, 620151 Ekaterinburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +43-3842-402-6218 Received: 13 August 2018; Accepted: 28 August 2018; Published: 31 August 2018 Abstract: This paper reviews a database of about 1500 published and 1000 unpublished microprobe analyses of platinum-group minerals (PGM) from chromite deposits associated with ophiolites and Alaskan-type complexes of the Urals. Composition, texture, and paragenesis of unaltered PGM enclosed in fresh chromitite of the ophiolites indicate that the PGM formed by a sequence of crystallization events before, during, and probably after primary chromite precipitation. The most important controlling factors are sulfur fugacity and temperature. Laurite and Os–Ir–Ru alloys are pristine liquidus phases crystallized at high temperature and low sulfur fugacity: they were trapped in the chromite as solid particles. Oxygen thermobarometry supports that several chromitites underwent compositional equilibration down to 700 ◦C involving increase of the Fe3/Fe2 ratio. These chromitites contain a great number of PGM including—besides laurite and alloys—erlichmanite, Ir–Ni–sulfides, and Ir–Ru sulfarsenides formed by increasing sulfur fugacity. Correlation with chromite composition suggests that the latest stage of PGM crystallization might have occurred in the subsolidus.
    [Show full text]
  • Electrolytic Extraction of Platinum Group Metals from Dissolver Solution of Purex Process
    Journal of NUCLEAR SCIENCE and TECHNOLOGY, 30(11), pp. 1195~1197 (November 1993). 1195 In this note, the proper deposition potential, SHORT NOTE nitric acid concentration, temperature, and Electrolytic Extraction of Platinum electrode materials were investigated, and the effect of coexisting ions was examined. Group Metals from Dissolver 1. Experimental Solution of Purex Process The experimental apparatus is shown in 1. The electrolytic cell (500 ml) consistedFig. KenjiKOIZUMI, Masaki OZAWA of a counter electrode (1 mmo, Pt wire), a re- and TornioKAWATA ference electrode (SCE), and a working elec- Power Reactor & Nuclear Fuel Development Corp.* trode. Ti and Ta were used as the elec- trode material. The electrolyte was agitated Receired May 19, 1993 to maintain a constant temperature. Elec- Revised July 30, 1993 trode potential were controlled by the po- KEYWORDS: electrolytic extraction, tentiostat. Pt group metals concentration deposits, palladium, rhodium, ruthe- was adjusted to about 1.0E-4 mol/l. Urani- nium, purex process, solvent extrac- um (VI) ion was tested as a main coexisting tion, deposition potential, recovery, actinide ion in this experiments. Potential- electrodeposition, dissolver solution time sequences for metal deposition and potential-current curves corresponding to Pd- In the commercial light water reactor fuel dissolution are shown in Fig.2. First the at a burn-up of 33 MWd/kg, approximately working electrode was cathodically polarized 4 kg of Pt group metals are included per ton in nitric acid solution containing Pt group of heavy metals(1). Elimination of the ionic metal. The polarization potential (05) was Pt group metals (Pd, Rh, Ru) from dissolver changed from +0.5 to -0.5 V.
    [Show full text]
  • The Platinum Group Metals As Coating Materials
    Issue No. 38 – February 2012 Updated from Original August 2002 Publication The Platinum Group Metals as Coating Materials How precious is your metal - An overview on The platinum group metals consist of platinum and palladium, as well as rhodium, iridium, the use of the platinum osmium, and ruthenium. They can be found in the transition metals on the periodic table of the elements. A close-up of this part of the table is shown in Figure 1. Palladium is currently the group metals as contact surfaces for electronic only metal of the group in widespread use in electrical contacts, although platinum was widely connectors. used in the past. Rhodium is only used in electrical contact applications requiring very high hardness and wear resistance. The other three metals in the group are used mainly in other industrial applications. Pure, electroplated platinum and palladium have a hardness of around 200 to 400 HV, although . Platinum they may also be applied by cladding. Both have a conductivity of around 16% IACS. Thus they are harder than gold, but slightly less conductive. At one time, their prices were . Palladium competitive with gold, and gold-flashed palladium coatings were even used as less expensive alternatives to gold coatings. However, both of these metals are much more expensive than gold . Rhodium (at least at the time of this writing). Due to its cost, gold-flashed palladium is now used mainly in applications which require greater hardness and wear resistance than hard gold alone. Ruthenium Rhodium is much harder than platinum and palladium, typically 800-1000 HV, with an .
    [Show full text]