Clinically Early-Stage Cspα Mutation Carrier Exhibits Remarkable Terminal Stage Neuronal Pathology with Minimal Evidence of Synaptic Loss Bruno A

Total Page:16

File Type:pdf, Size:1020Kb

Clinically Early-Stage Cspα Mutation Carrier Exhibits Remarkable Terminal Stage Neuronal Pathology with Minimal Evidence of Synaptic Loss Bruno A Benitez et al. Acta Neuropathologica Communications (2015) 3:73 DOI 10.1186/s40478-015-0256-5 CASE REPORT Open Access Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss Bruno A. Benitez1* , Nigel J. Cairns2,3,6, Robert E. Schmidt3, John C. Morris2, Joanne B. Norton4, Carlos Cruchaga4,6 and Mark S. Sands1,5,6 Abstract Autosomal dominant adult-onset neuronal ceroid lipofuscinosis (AD-ANCL) is a multisystem disease caused by mutations in the DNAJC5 gene. DNAJC5 encodes Cysteine String Protein-alpha (CSPα), a putative synaptic protein. AD-ANCL has been traditionally considered a lysosomal storage disease based on the intracellular accumulation of ceroid material. Here, we report for the first time the pathological findings of a patient in a clinically early stage of disease, which exhibits the typical neuronal intracellular ceroid accumulation and incipient neuroinflammation but no signs of brain atrophy, neurodegeneration or massive synaptic loss. Interestingly, we found minimal or no apparent reductions in CSPα or synaptophysin in the neuropil. In contrast, brain homogenates from terminal AD-ANCL patients exhibit significant reductions in SNARE-complex forming presynaptic protein levels, including a significant reduction in CSPα and SNAP-25. Frozen samples for the biochemical analyses of synaptic proteins were not available for the early stage AD-ANLC patient. These results suggest that the degeneration seen in the patients with AD-ANCL reported here might be a consequence of both the early effects of CSPα mutations at the cellular soma, most likely lysosome function, and subsequent neuronal loss and synaptic dysfunction. Keywords: Neuronal ceroid lipofuscinosis, Cysteine string protein alpha, Synaptic loss, Neurodegenerative disease, Lysosome DNAJC5 Background lysosomal proteins. The function of some of these pro- The neuronal ceroid lipofuscinoses (NCLs) are the most teins is largely unknown and their relationship to lyso- common group of inherited neurodegenerative diseases some function is unclear [3]. in children [1]. NCLs are a genetically, clinically and Adult-onset NCLs (ANCL) represent up to 10 % of pathologically heterogeneous group of disorders, unified NCL cases [4]. ANCL patients exhibit the typical auto- by the presence of intracellular accumulation of auto- fluorescent granular osmiophilic deposits (GROD) in fluorescent ceroid-lipofuscin aggregates (a complex mix- neurons and skin cells [4, 5]. In recent years, the pro- ture of proteins, lipids and metals) [1, 2]. The age at gress in sequencing technology has supported the identi- onset of clinical symptoms and differences in ultrastruc- fication of a plethora of novel disease-causing genes in tural features of the storage material underlie the noso- multiple families with ANCL-like clinical features and logical spectrum of NCLs [1, 2]. NCLs are traditionally GROD-type storage material. This indicates that the considered lysosomal storage diseases (LSD), even genetic architecture of ANCL is more varied and com- though several of the mutant proteins are not primary plex than previously thought [3]. Most NCLs have a recessive pattern of inheritance; one * Correspondence: [email protected] exception is the autosomal dominant, adult onset neur- 1 Department of Medicine, Washington University School of Medicine, St. onal ceroid lipofuscinosis (AD-ANCL) (MIM #162350). Louis, MO 63110, USA Full list of author information is available at the end of the article AD-ANCL patients are asymptomatic until around the © 2015 Benitez et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Benitez et al. Acta Neuropathologica Communications (2015) 3:73 Page 2 of 10 third decade [5]. The first symptom is usually new-onset Materials and methods seizures (tonic-clonic type) followed by rapid cognitive Mutation analysis decline, motor impairment and finally, death in the ab- DNAJC5-Exon4 (Forward, 5'-ggaaggcagtatccccacctggaac-3'; sence of visual impairments [5]. The primary clinical and Reverse, 5'-cggcacagtgtcagtgccctcc-3') was amplified on pathological features of AD-ANCL include progressive Applied Biosystems (Applied Biosystems, Carlsbad, and widespread neurodegenerative processes resulting in California, USA) 96-Well GeneAmp® PCR System remarkable cortical and cerebellar atrophy [5]. Nearly all 9700 Thermal Cyclers using a touchdown protocol. of our current understanding of AD-ANCL is based on PCR products were amplified under the same conditions analysis of postmortem tissue from terminal cases. To our (25-μlvolumecontaining10×PfuUltra™ HF reaction knowledge, there is no report characterizing both early buffer (Stratagene, La Jolla, California, USA), 5× Betaine and late pathology events of AD-ANCL cases. (Sigma-aldrich, St Louis, USA), 100 μMeachdNTP, AD-ANCL is caused by a heterozygous point mutation 200 nM each primer, 0.4 PfuUltra™ High-Fidelity DNA (p.L115R) and an in-frame codon deletion (p.L116Δ)in Polymerase (Promega); PCR profile: 94 °C followed by the DnaJ (Hsp40) homolog, subfamily C, member 5 34 cycles of 45 s at 94 °C, 45 s at 62°, and 1 min at 72 °C). (DNAJC5) gene [6–8]. The DNAJC5 gene encodes CSPα. PCR product purification was completed with Exosap-IT CSPα is a cytosolic and membrane-bound co-chaperone (USB Corporation). Sequencing was performed both in with a putative neuroprotective function [9]. The func- forward and reverse direction using BigDye® Terminator tion of CSPα in the central nervous system is primarily v3.1 Cycle Sequencing Kit (ABI) on an ABI 3130 sequen- deduced from data collected from CSPα-deficient mice cer. Sequence traces were analyzed using Sequencher and flies, which exhibit massive age-dependent neurode- (v4.7, Gene Codes Corp, Ann Arbor, Michigan, USA). generation affecting mainly active neurons and photore- ceptors [9, 10]. CSPα is widely considered a member of Neuropathological Methods the presynaptic machinery responsible for proteostasis After death, the consent for brain removal was obtained and synapse maintenance [11–13]. Defective synaptic from next-of-kin. Briefly, the left hemibrain was pre- soluble NSF attachment protein receptor (SNARE)- served in 10 % phosphate-buffered formalin for neuro- complex assembly, due mostly but not exclusively to the pathologic assessment; the right hemibrain was snap reduction in soluble NSF attachment protein-25 (SNAP- frozen and stored at −80 °C for biochemical studies [18]. 25) levels, appears to be responsible for the neurodegen- Unfortunately, no flash frozen tissue was obtained from eration seen in CSPα-deficient mice [10, 11, 14, 15]. the early stage AD-ANCL patient. Tissue blocks were There are approximately 20 additional proteins that taken from the frontal, temporal, parietal, and occipital demonstrate altered expression patterns in the absence lobes, amygdala, hippocampus, basal ganglia, thalamus, of CSPα in mice [13] that can also be part of its patho- brainstem, cerebellum, and spinal cord when available. genic cascade. Following formic acid (95 %) pretreatment for 5 min, The histological hallmark of AD-ANCL is the intra- histology was undertaken and included hematoxylin and cellular accumulation of autofluorescent storage ma- eosin and a modified Bielschowsky silver impregnation. terial (AFSM) [4, 5]. Although there are similarities in Immunohistochemistry was performed using the follow- the neurodegenerative process between AD-ANCL ing primary antibodies: glial fibrillary acidic protein patients and CSPα-deficient mice, no ceroid accumu- (GFAP, 1:2,000; Dako, Glostrup, Denmark), ionized lation has been reported in CSPα-deficient mice or calcium-binding adapter molecule 1 (Iba1, 1:2,000; flies [12, 16]. Currently, it is unknown how mutations Wako Chemicals USA Inc., Richmond, VA), synaptophy- in DNAJC5/CSPα result in the formation of AFSM. A sin (1:1,000; Abcam, Cambridge, MA) and CSPα/ dominant negative effect was initially proposed as the DNAJC5 (AB1576, 1:1,000, Millipore, Temecula, CA). pathogenic mechanism for AD-ANCL-causing muta- tions in CSPα based on both its inheritance pattern and a reduction in neuropil CSPα staining in terminal Densitometry AD-ANCL cases [7, 12, 17]. Densitometry of synaptophysin and CSPα/DNAJC5 im- In this report, we describe the clinical and patho- munoreactivity was assessed in the cortical ribbon of the logical features of a patient in a clinically early stage of middle frontal gyrus, an area available in all mutation the disease with all the pathological cellular changes carriers and non-carriers, and included the gyral crest found in terminal AD-ANCL cases but with no apparent and sulcal depth. The intensity of immunoreactivity reduction in CSPα or synaptophysin in the neuropil. In (luminance measured as arbitrary values) was determined contrast, terminal AD-ANCL patients exhibit significant following immunohistochemistry of all cases treated in a reductions of presynaptic protein levels, including a single batch using Densita
Recommended publications
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases
    REVIEW published: 16 May 2017 doi: 10.3389/fnins.2017.00254 The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases Rachel E. Lackie 1, 2, Andrzej Maciejewski 1, 3, Valeriy G. Ostapchenko 1, Jose Marques-Lopes 1, Wing-Yiu Choy 3, Martin L. Duennwald 4, Vania F. Prado 1, 2, 5, 6 and Marco A. M. Prado 1, 2, 5, 6* 1 Molecular Medicine, Robarts Research Institute, University of Western Ontario, London, ON, Canada, 2 Program in Neuroscience, University of Western Ontario, London, ON, Canada, 3 Department of Biochemistry, University of Western Ontario, London, ON, Canada, 4 Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada, 5 Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada, 6 Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer’s disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and Edited by: Cintia Roodveldt, of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Centro Andaluz de Biología Molecular Chaperones and co-chaperones regulate protein folding and client maturation, but they y Medicina Regenerativa, Spain also target misfolded or aggregated proteins for refolding or for degradation, mostly Reviewed by: Toshihide Takeuchi, by the proteasome. They form an important line of defense against misfolded proteins Osaka University, Japan and are part of the cellular quality control system. The heat shock protein (Hsp) family, Janine Kirstein, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to Leibniz Institute for Molecular Pharmacology (FMP), Germany regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD.
    [Show full text]
  • CLN8 Mutations Presenting with a Phenotypic Continuum of Neuronal Ceroid Lipofuscinosis—Literature Review and Case Report
    G C A T T A C G G C A T genes Article CLN8 Mutations Presenting with a Phenotypic Continuum of Neuronal Ceroid Lipofuscinosis—Literature Review and Case Report Magdalena Badura-Stronka 1,*,†, Anna Winczewska-Wiktor 2,†, Anna Pietrzak 3,†, Adam Sebastian Hirschfeld 1, Tomasz Zemojtel 4, Katarzyna Woły ´nska 1, Katarzyna Bednarek-Rajewska 5, Monika Seget-Dubaniewicz 5, Agnieszka Matheisel 6, Anna Latos-Bielenska 1 and Barbara Steinborn 2 1 Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; [email protected] (A.S.H.); [email protected] (K.W.); [email protected] (A.L.-B.) 2 Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (A.W.-W.); [email protected] (B.S.) 3 Department of Neurology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; [email protected] 4 BIH Genomics Core Unit, Campus Mitte, Charite University Medicine, 13353 Berlin, Germany; [email protected] 5 Department of Clinical Pathology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; [email protected] (K.B.-R.); [email protected] (M.S.-D.) 6 Citation: Badura-Stronka, M.; Department of Developmental Neurology, Gdansk Medical University, 80-307 Gdansk, Poland; Winczewska-Wiktor, A.; Pietrzak, A.; [email protected] * Correspondence: [email protected] Hirschfeld, A.S.; Zemojtel, T.; † These authors contributed equally to this work. Woły´nska,K.; Bednarek-Rajewska, K.; Seget-Dubaniewicz, M.; Matheisel, A.; Latos-Bielenska, A.; Steinborn, B. Abstract: CLN8 is a ubiquitously expressed membrane-spanning protein that localizes primarily CLN8 Mutations Presenting with a in the ER, with partial localization in the ER-Golgi intermediate compartment.
    [Show full text]
  • Autosomal-Dominant Adult Neuronal Ceroid Lipofuscinosis Caused by Duplication in DNAJC5 Initially Missed by Sanger and Whole-Exome Sequencing
    European Journal of Human Genetics (2020) 28:783–789 https://doi.org/10.1038/s41431-019-0567-2 ARTICLE Autosomal-dominant adult neuronal ceroid lipofuscinosis caused by duplication in DNAJC5 initially missed by Sanger and whole-exome sequencing 1 2,3 1 1 1 Ivana Jedličková ● Maxime Cadieux-Dion ● Anna Přistoupilová ● Viktor Stránecký ● Hana Hartmannová ● 1 1 1,4 1,4 1 Kateřina Hodaňová ● Veronika Barešová ● Helena Hůlková ● Jakub Sikora ● Lenka Nosková ● 1 1 1 2 5 5 Dita Mušálková ● Petr Vyleťal ● Jana Sovová ● Patrick Cossette ● Eva Andermann ● Frederick Andermann ● 1 Stanislav Kmoch ● The Adult NCL Gene Discovery Consortium Received: 3 May 2019 / Revised: 29 November 2019 / Accepted: 10 December 2019 / Published online: 9 January 2020 © The Author(s), under exclusive licence to European Society of Human Genetics 2020 Abstract Adult-onset neuronal ceroid lipofuscinoses (ANCL, Kufs disease) are rare hereditary neuropsychiatric disorders characterized by intralysosomal accumulation of ceroid in tissues. The ceroid accumulation primarily affects the brain, leading to neuronal loss and progressive neurodegeneration. Although several causative genes have been identified (DNAJC5, CLN6, CTSF, GRN, 1234567890();,: 1234567890();,: CLN1, CLN5, ATP13A2), the genetic underpinnings of ANCL in some families remain unknown. Here we report one family with autosomal dominant (AD) Kufs disease caused by a 30 bp in-frame duplication in DNAJC5, encoding the cysteine-string protein alpha (CSPα). This variant leads to a duplication of the central core motif of the cysteine-string domain of CSPα and affects palmitoylation-dependent CSPα sorting in cultured neuronal cells similarly to two previously described CSPα variants, p.(Leu115Arg) and p.(Leu116del). Interestingly, the duplication was not detected initially by standard Sanger sequencing due to a preferential PCR amplification of the shorter wild-type allele and allelic dropout of the mutated DNAJC5 allele.
    [Show full text]
  • Protein Homeostasis, Second Edition
    This is a free sample of content from Protein Homeostasis, Second Edition. Click here for more information on how to buy the book. Index A overview of diseases, 13, 41–43 Abf2, 160 polyphosphate AD. See Alzheimer’s disease amyloidogenic protein interactions, 393–395 AFG3L2, 162 cytotoxicity amelioration, 396–397 Africa swine fever virus (ASFV), 468 prospects for study, 52, 55 Aging protein homeostasis context, 48–49 heat shock factors, 431 structure–activity relationship, 14–15 proteostasis network regulation, 450–452 therapeutic intervention, 50–52 Ago2, 335, 467 toxicity, 47–48 Aha1, 333, 335, 338–339, 504 Amyotrophic lateral sclerosis (ALS), 214, 262, 264, AIRAP, 267 290–291, 293, 404, 409, 524, 532 AIRAPL, 267–268 ApoB, 135 AKT, 274, 467 ASFV. See Africa swine fever virus ALK, 503 ATAD1, 104 ALMC2, 487 ATF4, 79, 88, 182, 186, 189, 445–446 ALP. See Autophagy lysosome pathway ATF5, 182, 186, 189 a-Synuclein, 375, 522 ATF6, 60, 62–64, 79, 445–446, 481–482, 484–489 ALS. See Amyotrophic lateral sclerosis ATFS-1, 99, 180–181, 185, 188–189, 445–446 Alzheimer’s disease (AD), 186, 519 Atg7, 293 autophagy lysosomal pathway, 290–291 Atg32, 167 chaperone studies, 213–214, 216–217, 222 ATM, 313 Hsp90 studies, 337 ATR, 313 polyphosphate studies, 392, 394–395, 399 Atropine, 501 AMPK, 444 ATXN2, 524 Amyloid Autophagy lysosome pathway (ALP) chaperone modulation chaperone-mediated autophagy, 288–289 aggregation prevention, 217–222 history of study, 285 degradation of amyloid-forming proteins, 225–227 macroautophagy, 287–288 disaggregation of amyloids,
    [Show full text]
  • The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
    REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Senescence Inhibits the Chaperone Response to Thermal Stress
    SUPPLEMENTAL INFORMATION Senescence inhibits the chaperone response to thermal stress Jack Llewellyn1, 2, Venkatesh Mallikarjun1, 2, 3, Ellen Appleton1, 2, Maria Osipova1, 2, Hamish TJ Gilbert1, 2, Stephen M Richardson2, Simon J Hubbard4, 5 and Joe Swift1, 2, 5 (1) Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK. (2) Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (3) Current address: Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22903, USA. (4) Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (5) Correspondence to SJH ([email protected]) or JS ([email protected]). Page 1 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence CONTENTS Supplemental figures S1 – S5 … … … … … … … … 3 Supplemental table S6 … … … … … … … … 10 Supplemental references … … … … … … … … 11 Page 2 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence SUPPLEMENTAL FIGURES Figure S1. A EP (passage 3) LP (passage 16) 200 µm 200 µm 1.5 3 B Mass spectrometry proteomics (n = 4) C mRNA (n = 4) D 100k EP 1.0 2 p < 0.0001 p < 0.0001 LP p < 0.0001 p < 0.0001 ) 0.5 1 2 p < 0.0001 p < 0.0001 10k 0.0 0 -0.5 -1 Cell area (µm Cell area fold change vs. EP fold change vs.
    [Show full text]
  • Prognostic and Functional Significant of Heat Shock Proteins (Hsps)
    biology Article Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches Miriam Buttacavoli 1,†, Gianluca Di Cara 1,†, Cesare D’Amico 1, Fabiana Geraci 1 , Ida Pucci-Minafra 2, Salvatore Feo 1 and Patrizia Cancemi 1,2,* 1 Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] (M.B.); [email protected] (G.D.C.); [email protected] (C.D.); [email protected] (F.G.); [email protected] (S.F.) 2 Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-2389-7330 † These authors contributed equally to this work. Simple Summary: In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinfor- matics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important bio- logical pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity Citation: Buttacavoli, M.; Di Cara, of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, G.; D’Amico, C.; Geraci, F.; we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC Pucci-Minafra, I.; Feo, S.; Cancemi, P.
    [Show full text]
  • Characterization of the Dual Functional Effects of Heat Shock Proteins (Hsps
    Zhang et al. Genome Medicine (2020) 12:101 https://doi.org/10.1186/s13073-020-00795-6 RESEARCH Open Access Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors Zhao Zhang1†, Ji Jing2†, Youqiong Ye1, Zhiao Chen1, Ying Jing1, Shengli Li1, Wei Hong1, Hang Ruan1, Yaoming Liu1, Qingsong Hu3, Jun Wang4, Wenbo Li1, Chunru Lin3, Lixia Diao5*, Yubin Zhou2* and Leng Han1* Abstract Background: Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. Methods: We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. Results: We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 10/02/2021 03:44:31PM Via Free Access 2 E MEIMARIDOU and Others
    1 REVIEW From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery Eirini Meimaridou, Sakina B Gooljar and J Paul Chapple Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK (Correspondence should be addressed to J P Chapple; Email: [email protected]) Abstract Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales – this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing. Journal of Molecular Endocrinology (2009) 42, 1–9 Introduction Hsp90 chaperone systems functioning throughout the life cycle of steroid receptors clearly illustrates that To become functional and fulfil their cellular roles, the chaperones do not function solely in the folding of vast majority of proteins must fold into complex three- newly translated proteins, but are required for multiple dimensional shapes. Proteins may not be able to fold fully cellular processes. until their polypeptide chain and/or other subunits are In fact, for the Hsc70 chaperone machinery, a very fully synthesized. Partially folded proteins may have broad range of localized functions have been identified undesirable interactions with other essential cellular (Young et al.
    [Show full text]
  • Targeting the Hsp40/Hsp70 Chaperone Axis As a Novel Strategy to Treat Castration-Resistant
    Author Manuscript Published OnlineFirst on May 15, 2018; DOI: 10.1158/0008-5472.CAN-17-3728 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Targeting the Hsp40/Hsp70 chaperone axis as a novel strategy to treat castration-resistant prostate cancer Michael A. Moses1, Yeong Sang Kim2, Genesis M. Rivera-Marquez1, Nobu Oshima1, Matthew J. Watson1, Kristin E. Beebe1, Catherine Wells1, Sunmin Lee2, Abbey D. Zuehlke1, Hao Shao3, William E. Bingman III4, Vineet Kumar5, Sanjay V. Malhotra5, Nancy L. Weigel4, Jason E. Gestwicki3, Jane B. Trepel2, Leonard M. Neckers1* 1Urologic Oncology Branch and 2Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; 3Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, CA; 4Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX; 5 Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, CA *Corresponding author: Leonard Neckers, Urologic Oncology Branch, National Cancer Institute, Bldg. 10-CRC, Rm. 1W-5940, 9000 Rockville Pike, Bethesda, MD 20892. Phone: 301-496- 5899; Fax: 301-402-0922; Email: [email protected] Running title: Chaperone inhibitors target AR splice variants Keywords: Castrate-resistant prostate cancer, androgen receptor, androgen receptor splice variants, molecular chaperones, drug targeting The authors declare no potential conflicts of interest. Word count: 6408 Total number of figures: 6 main figures 1 Downloaded from cancerres.aacrjournals.org on October 2, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 15, 2018; DOI: 10.1158/0008-5472.CAN-17-3728 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]