The Molecular Basis of Pasteuria-Nematode

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular Basis of Pasteuria-Nematode THE MOLECULAR BASIS OF PASTEURIA-NEMATODE INTERACTIONS USING CLOSELY RELATED BACILLUS SPP. Arohi Srivastava, B.Sc., M.Sc. Submitted to the University of Hertfordshire in partial fulfilment of the requirements of the degree of Doctor of Philosophy School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts, AL10 9AB April 2017 To Mumma for being my first teacher and Papa for his strong believe in me. Acknowledgments “You can teach a student a lesson for a day; but if you can teach him to learn by creating curiosity, he will continue the learning process as long as he lives.” -- Clay P. Bedford I am thankful to Dr Keith G. Davies who, as my PhD supervisor, instilled curiosity in me and in the process, I learnt to learn. Whenever I went to him with questions, he often responded by saying: “It’s your PhD, I’ve got mine” and then asked me other questions relating to the questions I had. This inculcated in me more curiosity about the topic; the insightful discussions that followed helped me figure out the answers myself. I feel that ‘not providing ready-made answers’ has helped me a lot in the process of becoming an independent researcher and thinker. He was always very enthusiastic about my research and his warm and encouraging attitude kept me motivated throughout. Despite suffering from a heart attack last December, he continually bestowed his unwavering support and guidance on me through to the last phases of writing this manuscript. I thank my PhD co-supervisors, Drs Avice M. Hall and Kate Graeme Cook, for their competent guidance and untiring support, both academic and personal. The Christmas meals and pancakes parties at Avice’s place always made me feel homely in a foreign country. Thanks, Avice, these are indeed some of my ever-lasting memories in the UK. The supervision and suggestions given to me by Kate, before my first ever academic talk at a big international conference, helped me develop public speaking ability and improved my presentation skills. Thanks, Kate, I have so far done several talks at research conferences and symposia and I feel the first ‘practice session’ I had with you and Avice, has been very useful throughout and will always be in the long run of my career; in fact, it made me win the best student oral presentation at one of the international symposia during my studies. Special thanks are due to Dr Sharad Mohan, Principal Scientist at Indian Agricultural Research Institute, who taught me my first lessons on Pasteuria. What an amazing teacher, a motivating boss, and a passionate scientist! He has been a beacon of encouragement to me ever since I joined him at IARI as a research fellow in 2012. Although I quit my job just after one year to enrol for a PhD at the University of Hertfordshire, he continues to guide me, support me and most importantly help me realize my own potential. Working with him was a life-changing opportunity. Thanks to Dr Timothy Mauchline (Rothamsted Research, Harpenden) for providing the Pasteuria Res148 contig sequences which were used for in silico analyses; and Dr. Alla Mashanova, whose expertise in statistics was invaluable during the analysis, interpretation and presentation of my data. I am grateful to the Indian Council of Agricultural Research (ICAR) which provided funding for this work through its ICAR-International Fellowship scheme. There are so many people who deserve to be acknowledged, without whom this piece of work would not have been possible. My doctoral studies at the University of Hertfordshire were transformational for me and I will fondly remember the time spent here. I am grateful to the excellent technical team at School of Life and Medical Sciences. Thank you, Di, Kishore, Sue, Nathan, Ravi, Noelia and Mansukh for your untiring support during my lab work. Thanks to my incredible office mates; to Thomas for many ‘real scientific discussions’ we had during our respective PhDs and to Coretta for the interesting and engaging conversations on different realms of life. I extend my thanks to my friends, colleagues, and lab mates: Unnati, Bo, Asna, Sudhir, Georgia and Chinthani who formed a supportive network of friends. My warmest thanks must be to my parents for making me what I am and to my parents-in-laws for their unfailing support and understanding. Special thanks to my elder sister, Rangoli, for always inspiring me and for whom I will always be a little sister. Lastly, I thank Ankit for being a fantastically supportive partner. He is a protein scientist by profession and this was an added advantage. The intellectual discussions we had when he reached back home, after a tiring day at work, helped me a lot in my thought process. During those ‘temporary periods of uncertainties’ when my confidence slumped, he was always there to fire fight my worries and anxieties. For the final phase of my studies, to save me time for writing, he took cooking completely off my plate and made me the world’s most delicious and healthiest meals. In fact, his contributions are countless. Thank you, Ankit, to the moon and back; we did it finally! --Arohi Srivastava Contents ABSTRACT........................................................................................................................................... i-ii LIST OF FIGURES ............................................................................................................................. iii-v LIST OF TABLES .................................................................................................................................. vi LIST OF APPENDICES ........................................................................................................................ vii LIST OF ABBREVIATIONS................................................................................................................. viii CHAPTER 1: INTRODUCTION .............................................................................................................. 1 1.1 FOOD SECURITY ....................................................................................................................... 1 1.2 NEMATODES: OFTEN UNNOTICED AGRICULTURAL PESTS .............................................. 1 1.3 SEDENTARY ENDOSPARASITIC PHYTONEMATODES ........................................................ 2 1.3.1 LIFE CYCLE AND DEVELOPMENT ................................................................................................. 3 1.3.2 HOST RANGE .............................................................................................................................. 5 1.4 NEMATODE MANAGEMENT .................................................................................................... 7 1.4.1 TRADITIONAL METHODS OF NEMATODE CONTROL ....................................................................... 7 1.4.2 NEMATODE RESISTANT GM CROPS ............................................................................................ 8 1.4.3 NEMATODE SUPPRESSIVE SOILS AND BIOCONTROL OF PPN...................................................... 8 1.4.4 PASTEURIA SPP. – POTENTIAL BIOCONTROL AGENTS AGAINST NEMATODES ............................. 10 1.5 THE MEMBERS OF THE GENUS PASTEURIA ...................................................................... 10 1.5.1 LIFE CYCLE AND MORPHOLOGICAL STAGES .............................................................................. 13 1.5.2 PASTEURIA ENDOSPORES AND THEIR ATTACHMENT TO THE NEMATODE CUTICLE ...................... 15 1.6 CONSTRAINTS TO THE SUCCESSFUL DEPLOYMENT OF PASTEURIA SPP. AS A BIO- NEMATICIDE ........................................................................................................................................ 17 1.6.1 MASS PRODUCTION IN VIVO AND IN VITRO ................................................................................. 17 1.6.2 HOST SPECIFICITY ..................................................................................................................... 17 1.6.3 DNA ISOLATION OF PASTEURIA – A MAJOR CONSTRAINT IN GENOMIC STUDIES ........................ 18 1.7 BACILLUS SPP. – A MODEL TO STUDY PASTEURIA BIOLOGY ....................................... 19 1.7.1 PHYLOGENETIC CLOSENESS OF BACILLUS AND PASTEURIA ..................................................... 19 1.7.2 BACILLUS ENDOSPORES AND ATTACHMENT MECHANISMS ........................................................ 21 1.8 AIMS AND OBJECTIVES ......................................................................................................... 22 1.8.1 HYPOTHESIS ............................................................................................................................. 22 1.8.2 AIMS AND OBJECTIVES BY CHAPTER ........................................................................................ 22 CHAPTER 2: PHYLOGENETIC PLACEMENT OF PASTEURIA SPP. WITHIN FIRMICUTES ......... 24 2.1 INTRODUCTION ....................................................................................................................... 24 2.1.1 GROEL AND GYRB AS EMERGING CANDIDATES FOR PHYLOGENY RECONSTRUCTION ................ 24 2.1.2 THE GENE SPO0A AS AN ENDOSPORE-SPECIFIC CANDIDATE FOR PHYLOGENY RECONSTRUCTION ................................................................................................................................................. 25 2.1.3 AIMS AND OBJECTIVES .............................................................................................................. 26 2.2 MATERIALS AND METHODS ................................................................................................
Recommended publications
  • Microbial Diversity of Molasses Containing Tobacco (Maassel) Unveils Contamination with Many Human Pathogens
    European Review for Medical and Pharmacological Sciences 2021; 25: 4919-4929 Microbial diversity of molasses containing tobacco (Maassel) unveils contamination with many human pathogens M.A.A. ALQUMBER Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Saudi Arabia Abstract. – OBJECTIVE: Tobacco smoking drugs in today’s modern world. Different meth- remains a worldwide health issue, and the use of ods are currently used to consume tobacco, in- flavored varieties (maassel) embedded in glyc- cluding cigarettes, cigars and waterpipes1. Water- erine, molasses, and fruit essence via shisha pipe (shisha) smoking continues to rise globally2. paraphernalia (waterpipe) is growing globally. Smoking flavored tobacco (maassel), through the 16S rRNA gene pyrosequencing was conduct- shisha, is becoming a global preventable cause of ed on 18 different varieties representing 16 fla- 3,4 vors and three brands in order to study the mi- morbidity and mortality . crobiota of maassel and find whether it contains Scientists studied the chemical composition of pathogenic bacteria. tobacco for many years and illustrated the total MATERIALS AND METHODS: The samples number of chemicals identified in tobacco during were selected randomly from the most utilized the years from 1954 to 20055. In addition, a com- brands within Albaha, Saudi Arabia as deter- prehensive review of these chemicals’ classifica- mined through a questionnaire of 253 smok- ers. In addition, ten-fold serially diluted sam- tion, concentration and changes with time due ples were inoculated on blood agar, MacConkey to changes in the shape, design and composition agar, half-strength trypticase soy agar and malt of cigarettes was reported almost a decade ago6.
    [Show full text]
  • Non-Fumigant Alternative Soil Management Practices for Mitigating Replant Disease of Fruit Trees
    NON-FUMIGANT ALTERNATIVE SOIL MANAGEMENT PRACTICES FOR MITIGATING REPLANT DISEASE OF FRUIT TREES: MECHANISMS CONTRIBUTING TO PRATYLENCHUS PENETRANS SUPPRESSION by Tristan Tanner Watson B.Sc. (Honours), The University of British Columbia, 2013 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE COLLEGE OF GRADUATE STUDIES (Biology) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) April 2018 © Tristan Tanner Watson, 2018 The following individuals certify that they have read, and recommend to the College of Graduate Studies for acceptance, a dissertation entitled: NON-FUMIGANT ALTERNATIVE SOIL MANAGEMENT PRACTICES FOR MITIGATING REPLANT DISEASE OF FRUIT TREES: MECHANISMS CONTRIBUTING TO PRATYLENCHUS PENETRANS SUPPRESSION submitted by Tristan Tanner Watson in partial fulfillment of the requirements of the degree of Doctor of Philosophy . Dr. Louise Nelson, Irving K. Barber School of Arts and Sciences Co-supervisor Dr. Thomas Forge, Agriculture and Agri-Food Canada Co-supervisor Dr. Melanie Jones, Irving K. Barber School of Arts and Sciences Supervisory Committee Member Dr. José Úrbez-Torres, Agriculture and Agri-Food Canada Supervisory Committee Member Dr. Paul Shipley, Irving K. Barber School of Arts and Sciences University Examiner Dr. Mario Tenuta, Faculty of Agricultural and Food Sciences, University of Manitoba External Examiner ii Abstract Replant disease presents a significant barrier to the reestablishment of orchards. In the Okanagan Valley, Canada, the root-lesion nematode, Pratylenchus penetrans, is widely distributed and implicated in poor growth of newly planted fruit trees. Restrictions on soil fumigants have generated interest in alternative management strategies for disease control. Using a combination of greenhouse and field experiments, this dissertation evaluated the effects of composts, bark chip mulch, biocontrol inoculation, and two different irrigation systems (drip emitter and microsprinkler) on the establishment of apple and sweet cherry trees in old orchard soil, P.
    [Show full text]
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Genetic Disequilibria and the Interpretation of Population Genetic Structure in Daphnia
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 668 _____________________________ _____________________________ Genetic Disequilibria and the Interpretation of Population Genetic Structure in Daphnia BY LARS M. BERG ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy in Conservation Biology presented at Uppsala University in 2001. ABSTRACT Berg, L. M. 2001. Genetic disequilibria and the interpretation of population genetic structure in Daphnia. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 668. 36 pp. Uppsala. ISBN 91-554-5152-7. Understanding the processes that shape the spatial distribution of genetic variation within species is cent- ral to the evolutionary study of diversification and demography. Neutral genetic variation reflects past demographic events as well as current demographic characteristics of populations, and the correct inter- pretation of genetic data requires that the relative impact of these forces can be identified. Details of breeding systems can affect the genetic structure through effects on effective migration rate or on effect- ive population size. Restrictions in recombination rate lead to associations between neutral marker genes and genes under natural selection. Although the effects on genetic structure can be substantial, the pro- cess will often be difficult to tell apart from stochastic effects of history or genetic drift, which may sug- gest
    [Show full text]
  • Description of Pratylenchus Dunensis Sp. N. (Nematoda: Pratylenchidae
    Nematology, 2006, Vol. 8(1), 79-88 Description of Pratylenchus dunensis sp.n.(Nematoda: Pratylenchidae), a root-lesion nematode associated with the dune grass Ammophila arenaria (L.) Link ∗ Eduardo DE LA PEÑA 1, , Maurice MOENS 1,2, Adriaan VA N AELST 3 and Gerrit KARSSEN 4,5 1 Agricultural Research Centre, Crop Protection Department, Burg. van Gansberghelaan 96, 9820, Merelbeke, Belgium 2 Gent University, Laboratory for Agrozoology, Coupure 653, 9000 Gent, Belgium 3 Wageningen University & Research Centre, Laboratory of Plant Cell Biology, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands 4 Plant Protection Service, Nematology Section, P.O. Box 9102, 6700 HC Wageningen, The Netherlands 5 Wageningen University & Research Centre, Laboratory of Nematology, Binnenhaven 5, 6709 PD Wageningen, The Netherlands Received: 4 April 2005; revised: 7 November 2005 Accepted for publication: 7 November 2005 Summary – A root-lesion nematode, Pratylenchus dunensis sp. n., is described and illustrated from Ammophila arenaria (L.) Link, a grass occurring abundantly in coastal dunes of Atlantic Europe. The new species is characterised by medium sized (454-579 µm) slender, vermiform, females and males having two lip annuli (sometimes three to four; incomplete incisures only visible with scanning electron microscopy), medium to robust stylet (ca 16 µm) with robust stylet knobs slightly set off, long pharyngeal glands (ca 42 µm), lateral field with four parallel, non-equidistant, lines, the middle ridge being narrower than the outer ones, lateral field with partial areolation and lines converging posterior to the phasmid which is located between the two inner lines of the lateral field in the posterior half of the tail, round spermatheca filled with round sperm, vulva at 78% of total body length and with protruding vulval lips, posterior uterine sac relatively short (ca 19 µm), cylindrical tail (ca 33 µm) narrowing in the posterior third with smooth tail tip and with conspicuous hyaline part (ca 2 µm).
    [Show full text]
  • Ultrastructure and Development of Pasteuria Sp. (S-1 Strain), an Obligate Endoparasite of Belonolaimus Longicaudatus (Nemata: Tylenchida) R
    Journal of Nematology 33(4):227–238. 2001. © The Society of Nematologists 2001. Ultrastructure and Development of Pasteuria sp. (S-1 strain), an Obligate Endoparasite of Belonolaimus longicaudatus (Nemata: Tylenchida) R. M. Giblin-Davis,1 D. S. Williams,2 W. P. Wergin,3 D. W. Dickson,4 T. E. Hewlett,4 S. Bekal,5 and J. O. Becker5 Abstract: Pasteuria sp., strain S-1, is a gram-positive, obligate endoparasitic bacterium that uses the phytoparasitic sting nematode, Belonolaimus longicaudatus, as its host in Florida. The host attachment of S-1 appears to be specific to the genus Belonolaimus with development occurring only in juveniles and adults of B. longicaudatus. This bacterium is characterized from other described species of Pasteuria using ultrastructure of the mature endospore. Penetration, development, and sporogenesis were elucidated with TEM, LTSEM, and SEM and are similar to other nematode-specific Pasteuria. Recent analysis of 16S rDNA sequence homology confirms its congeneric ranking with other Pasteuria species and strains from nematodes and cladocerans, and corroborates ultrastructural, morphological, morphometric, and host-range evidence suggesting separate species status. Key words: Belonolaimus longicaudatus, development, obligate nematode endoparasitic bacterium, Pasteuria sp. (S-1 strain), sporo- genesis, sting nematode, ultrastructure. Investigators have identified four nominal species of al., 1989). Thus, traditional procedures for biochemical Pasteuria that are gram-positive, mycelial, endospore- characterization have not
    [Show full text]
  • LTER Proposal
    Project Summary The KBS LTER Site: Long-term Ecological Research in Row-crop Agriculture Project Summary In 1987 we initiated the KBS Long-term Ecological Research Project in Row-crop Agriculture to examine basic ecological relationships in field-crop ecosystems typical of the US Midwest. Our goal was – and remains – to test the long-term hypothesis that agronomic management based on knowledge of ecological interactions in cropping systems can effectively replace management based on chemical inputs. We established a major field experiment comprising 11 different cropping systems and unmanaged successional communities, corresponding to different levels and types of ecological structure and disturbance and including biologically-based and conventional agricultural management. Within these systems we test hypotheses related to the patterns and processes that underlie ecosystem productivity and environmental performance. Working hypotheses are built around the general topic areas of plant community dynamics, soil microbial populations, insect predator-prey relationships, watershed and field- scale biogeochemistry, human interactions, and regional ecological processes. Intellectual Merit: With this proposal we build on past work to formulate an integrated model of agricultural landscapes that thoroughly incorporates the interactions between human and natural systems. Our overarching theme for this next research phase is “Farming for ecosystem services in a changing environment,” reflecting our desire to understand the full suite of ecosystem services associated with agriculture, including mitigation of undesirable environmental impacts. We propose to focus on responses of the coupled human and natural systems to changing external drivers, including climate change, agricultural intensification (land use alterations), and shifts in global markets. We use a pulse-press disturbance model to delineate the biophysical interactions in agriculture that produce ecosystem services vis a vis human systems.
    [Show full text]
  • Bacillus Penetrans and Related Parasites of Nematodes 1 R
    Biocontrol: Bacillus penetrans and Related Parasites of Nematodes 1 R. M. Sayre 2 Abstract: Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, particularly with the genus Pasteuria, are considered. Also dis- cussed are other soil bacterial species that are potential biocontrol agents. Products of their bacterial fermentation in soil are toxic to nematodes, making them effective biocontrol agents. Key Words: Duboscqia, Pasteuria ramosa, Pseudomonas denitrificans, Clostridium butyricum, DesulJovibrio desulJuricans, Bacillus thuringiensis, rickettsia. Nematodes and bacteria are two impor- tional data on two other bacterial parasites tant members of the total biota in soil of nematodes are presented briefly. The habitats. The diversity of the species, and second interaction, amensalism, considers their ubiquity and abundance in soils, for the inltibitory or antibiotic effect of some thousands o[ years have provided oppor- species of bacteria on species of plant- tunity for the evolution of intimate and parasitic nematodes. complex interactions between the two When Thorne (30) described Duboscqia groups of organisms. Theoretically, re- penetrans as a protozoan, he could not peated analysis of soil habitats for bacteria- have realized its bacterial nature because nematode interactions should reveal all of electron-microscope techniques were not the several possible interactions that could available to him, and the concept of the occur between the two species.
    [Show full text]
  • Aerosol Microbiome Over the Mediterranean Sea Diversity and Abundance
    atmosphere Article Aerosol Microbiome over the Mediterranean Sea Diversity and Abundance Esra Mescioglu 1,* , Eyal Rahav 2, Natalia Belkin 2, Peng Xian 3, Jordan M. Eigenza 4 , Ania Vichik 2, Barak Herut 2 and Adina Paytan 5 1 Earth and Planetary Science, University of California, Santa Cruz, CA 95060, USA 2 Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108000, Israel 3 Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93940, USA 4 Biomolecular Engineering, University of California, Santa Cruz, CA 95060, USA 5 Institute of Marine Science, University of California, Santa Cruz, CA 95060, USA * Correspondence: [email protected] Received: 18 June 2019; Accepted: 24 July 2019; Published: 1 August 2019 Abstract: Prokaryotic microbes can become aerosolized and deposited into new environments located thousands of kilometers away from their place of origin. The Mediterranean Sea is an oligotrophic to ultra-oligotrophic marginal sea, which neighbors northern Africa (a major source of natural aerosols) and Europe (a source of mostly anthropogenic aerosols). Previous studies demonstrated that airborne bacteria deposited during dust events over the Mediterranean Sea may significantly alter the ecology and function of the surface seawater layer, yet little is known about their abundance and diversity during ‘background’ non-storm conditions. Here, we describe the abundance and genetic diversity of airborne bacteria in 16 air samples collected over an East-West transect of the entire Mediterranean Sea during non-storm conditions in April 2011. The results show that airborne bacteria represent diverse groups with the most abundant bacteria from the Firmicutes (Bacilli and Clostridia) and Proteobacteria (Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) phyla.
    [Show full text]
  • Microbial Community Composition During Degradation of Organic Matter
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bodenökologie Microbial community composition during degradation of organic matter Stefanie Elisabeth Wallisch Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Göttlein Prüfer der Dissertation: 1. Hon.-Prof. Dr. M. Schloter 2. Univ.-Prof. Dr. S. Scherer Die Dissertation wurde am 14.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.08.2015 angenommen. Table of contents List of figures .................................................................................................................... iv List of tables ..................................................................................................................... vi Abbreviations .................................................................................................................. vii List of publications and contributions .............................................................................. viii Publications in peer-reviewed journals .................................................................................... viii My contributions to the publications ....................................................................................... viii Abstract
    [Show full text]
  • A Transcriptomic Snapshot of Early Molecular Communication Between Pasteuria Penetrans and Meloidogyne Incognita Victor Phani1, Vishal S
    Phani et al. BMC Genomics (2018) 19:850 https://doi.org/10.1186/s12864-018-5230-8 RESEARCH ARTICLE Open Access A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita Victor Phani1, Vishal S. Somvanshi1, Rohit N. Shukla2, Keith G. Davies3,4* and Uma Rao1* Abstract Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle.
    [Show full text]
  • Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
    Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract
    [Show full text]