Effects of Assortativity on Consensus Formation with Heterogeneous Agents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating the Observability of Complex Contagion in Empirical Social Networks
Investigating the Observability of Complex Contagion in Empirical Social Networks Clay Fink1, Aurora Schmidt1, Vladimir Barash2, John Kelly2, Christopher Cameron3, Michael Macy3 1Johns Hopkins University Applied Physics Laboratory 2Graphika, Inc. 3Cornell University NSF-IBSS, San Diego, CA, August 1-2, 2016 This work was funded by the Minerva Initiative through the United States Air Force Office of Scientific Research (AFOSR) under grant FA9550-15-1-0036. 1 / 15 Complex contagions and social movements Threshold-based, or complex, models of social contagion may partly explain the initiation of mass mobilizations and social movements 2 / 15 Prior work Threshold models of collective behavior and theoretical predictions (Granovetter 1978, 1973); (Centola, Macy 2007); (Barash, Cameron, Macy 2012) Observational Studies: focus on empirical adoption thresholds Coleman, et al. (1966); Valente (1996): empirical studies of social reinforcement for medical practices and diffusion of innovations; Romero, et al. (2011), Fink, et al. (2016): spread of hashtags on Twitter; State and Adamic (2015): adoption of Equal-Sign profile pictures on Facebook 3 / 15 Overestimation of adoption thresholds b c b c a a e d e d At time t none of a's neighbors By time t + dt all neighbors have adopted have adopted. If a now adopts, what was their actual adoption threshold? 4 / 15 This work We formulate comparable probabilistic models of simple and complex contagion to generate predictions of Twitter hashtag diffusion events Using the follow network of 53K Nigerian 2014 users -
Analysis of Topological Characteristics of Huge Online Social Networking Services Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Young-Ho Eom, Sue Moon, Hawoong Jeong
1 Analysis of Topological Characteristics of Huge Online Social Networking Services Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Young-Ho Eom, Sue Moon, Hawoong Jeong Abstract— Social networking services are a fast-growing busi- the statistics severely and it is imperative to use large data sets ness in the Internet. However, it is unknown if online relationships in network structure analysis. and their growth patterns are the same as in real-life social It is only very recently that we have seen research results networks. In this paper, we compare the structures of three online social networking services: Cyworld, MySpace, and orkut, from large networks. Novel network structures from human each with more than 10 million users, respectively. We have societies and communication systems have been unveiled; just access to complete data of Cyworld’s ilchon (friend) relationships to name a few are the Internet and WWW [3] and the patents, and analyze its degree distribution, clustering property, degree Autonomous Systems (AS), and affiliation networks [4]. Even correlation, and evolution over time. We also use Cyworld data in the short history of the Internet, SNSs are a fairly new to evaluate the validity of snowball sampling method, which we use to crawl and obtain partial network topologies of MySpace phenomenon and their network structures are not yet studied and orkut. Cyworld, the oldest of the three, demonstrates a carefully. The social networks of SNSs are believed to reflect changing scaling behavior over time in degree distribution. The the real-life social relationships of people more accurately than latest Cyworld data’s degree distribution exhibits a multi-scaling any other online networks. -
Correlation in Complex Networks
Correlation in Complex Networks by George Tsering Cantwell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the University of Michigan 2020 Doctoral Committee: Professor Mark Newman, Chair Professor Charles Doering Assistant Professor Jordan Horowitz Assistant Professor Abigail Jacobs Associate Professor Xiaoming Mao George Tsering Cantwell [email protected] ORCID iD: 0000-0002-4205-3691 © George Tsering Cantwell 2020 ACKNOWLEDGMENTS First, I must thank Mark Newman for his support and mentor- ship throughout my time at the University of Michigan. Further thanks are due to all of the people who have worked with me on projects related to this thesis. In alphabetical order they are Eliz- abeth Bruch, Alec Kirkley, Yanchen Liu, Benjamin Maier, Gesine Reinert, Maria Riolo, Alice Schwarze, Carlos Serván, Jordan Sny- der, Guillaume St-Onge, and Jean-Gabriel Young. ii TABLE OF CONTENTS Acknowledgments .................................. ii List of Figures ..................................... v List of Tables ..................................... vi List of Appendices .................................. vii Abstract ........................................ viii Chapter 1 Introduction .................................... 1 1.1 Why study networks?...........................2 1.1.1 Example: Modeling the spread of disease...........3 1.2 Measures and metrics...........................8 1.3 Models of networks............................ 11 1.4 Inference................................. -
Mathematical Modeling of Complex Contagion on Clustered Networks
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 15 September 2015 doi: 10.3389/fphy.2015.00071 Mathematical modeling of complex contagion on clustered networks David J. P. O’Sullivan *, Gary J. O’Keeffe, Peter G. Fennell and James P. Gleeson Mathematics Applications Consortium for Science and Industry, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland The spreading of behavior, such as the adoption of a new innovation, is influenced by the structure of social networks that interconnect the population. In the experiments of Centola [15], adoption of new behavior was shown to spread further and faster across clustered-lattice networks than across corresponding random networks. This implies that the “complex contagion” effects of social reinforcement are important in such diffusion, in contrast to “simple” contagion models of disease-spread which predict that epidemics would grow more efficiently on random networks than on clustered networks. To accurately model complex contagion on clustered networks remains a challenge because the usual assumptions (e.g., of mean-field theory) regarding tree-like networks are invalidated by the presence of triangles in the network; the triangles are, however, Edited by: crucial to the social reinforcement mechanism, which posits an increased probability of Javier Borge-Holthoefer, a person adopting behavior that has been adopted by two or more neighbors. In this Qatar Computing Research Institute, Qatar paper we modify the analytical approach that was introduced by Hébert-Dufresne et al. Reviewed by: [19], to study disease-spread on clustered networks. -
Happiness Is Assortative in Online Social Networks
Happiness Is Assortative in Johan Bollen*,** Online Social Networks Indiana University Bruno Goncalves**̧ Indiana University Guangchen Ruan** Indiana University Abstract Online social networking communities may exhibit highly Huina Mao** complex and adaptive collective behaviors. Since emotions play such Indiana University an important role in human decision making, how online networks Downloaded from http://direct.mit.edu/artl/article-pdf/17/3/237/1662787/artl_a_00034.pdf by guest on 25 September 2021 modulate human collective mood states has become a matter of considerable interest. In spite of the increasing societal importance of online social networks, it is unknown whether assortative mixing of psychological states takes place in situations where social ties are mediated solely by online networking services in the absence Keywords of physical contact. Here, we show that the general happiness, Social networks, mood, sentiment, or subjective well-being (SWB), of Twitter users, as measured from a assortativity, homophily 6-month record of their individual tweets, is indeed assortative across the Twitter social network. Our results imply that online social A version of this paper with color figures is networks may be equally subject to the social mechanisms that cause available online at http://dx.doi.org/10.1162/ assortative mixing in real social networks and that such assortative artl_a_00034. Subscription required. mixing takes place at the level of SWB. Given the increasing prevalence of online social networks, their propensity to connect users with similar levels of SWB may be an important factor in how positive and negative sentiments are maintained and spread through human society. Future research may focus on how event-specific mood states can propagate and influence user behavior in “real life.” 1 Introduction Bird flocking and fish schooling are typical and well-studied examples of how large communities of relatively simple individuals can exhibit highly complex and adaptive behaviors at the collective level. -
Associative Diffusion and the Emergence of Cultural Variation
Beyond “Social Contagion”: Associative Diffusion and the Emergence of Cultural Variation∗ Amir Goldberg Stanford University Sarah K. Stein Stanford University July 16, 2018 Abstract Network models of diffusion predominantly think about cultural variation as a prod- uct of social contagion. But culture does not spread like a virus. In this paper, we pro- pose an alternative explanation which we refer to as associative diffusion. Drawing on two insights from research in cognition—that meaning inheres in cognitive associations between concepts, and that such perceived associations constrain people’s actions— we propose a model wherein, rather than beliefs or behaviors per-se, the things being transmitted between individuals are perceptions about what beliefs or behaviors are compatible with one another. Conventional contagion models require an assumption of network segregation to explain cultural variation. In contrast, we demonstrate that the endogenous emergence of cultural differentiation can be entirely attributable to social cognition and does not necessitate a clustered social network or a preexisting division into groups. Moreover, we show that prevailing assumptions about the effects of network topology do not hold when diffusion is associative. ∗Direct all correspondence to Amir Goldberg: [email protected]; 650-725-7926. We thank Rembrand M. Koning, Daniel A. McFarland, Paul DiMaggio, Sarah Soule, John-Paul Ferguson, Jesper Sørensen, Glenn Carroll, Sameer B. Srivastava, Jerker Denrell, Robert Gibbons and participants of the MIT conference on Categories and Shared Mental Models for helpful comments and suggestions. The usual disclaimer applies. Introduction Contemporary societies exhibit remarkable and persistent cultural differences on issues as varied as musical taste and gun control. -
Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms
SO36CH05-Uzzi ARI 2 June 2010 23:8 Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms Mark T. Rivera,1 Sara B. Soderstrom,1 and Brian Uzzi1,2 1Department of Management and Organizations, Kellogg School of Management, Northwestern University, Evanston, Illinois 60208; email: [email protected], [email protected], [email protected] 2Northwestern University Institute on Complex Systems and Network Science (NICO), Evanston, Illinois 60208-4057 Annu. Rev. Sociol. 2010. 36:91–115 Key Words First published online as a Review in Advance on Annu. Rev. Sociol. 2010.36:91-115. Downloaded from arjournals.annualreviews.org embeddedness, homophily, complexity, organizations, network April 12, 2010 evolution by NORTHWESTERN UNIVERSITY - Evanston Campus on 07/13/10. For personal use only. The Annual Review of Sociology is online at soc.annualreviews.org Abstract This article’s doi: Embeddedness in social networks is increasingly seen as a root cause of 10.1146/annurev.soc.34.040507.134743 human achievement, social stratification, and actor behavior. In this arti- Copyright c 2010 by Annual Reviews. cle, we review sociological research that examines the processes through All rights reserved which dyadic ties form, persist, and dissolve. Three sociological mech- 0360-0572/10/0811-0091$20.00 anisms are overviewed: assortative mechanisms that draw attention to the role of actors’ attributes, relational mechanisms that emphasize the influence of existing relationships and network positions, and proximity mechanisms that focus on the social organization of interaction. 91 SO36CH05-Uzzi ARI 2 June 2010 23:8 INTRODUCTION This review examines journal articles that explain how social networks evolve over time. -
Complex Contagion and the Weakness of Long Ties
Complex Contagion and the Weakness of Long Ties Damon Centola and Michael Macy Cornell University September 12, 2005 Complex Contagion and the Weakness of Long Ties Abstract The strength of weak ties is that they tend to be long – they connect socially distant locations. Recent research on “small worlds” shows that remarkably few long ties are needed to give large and highly clustered populations the “degrees of separation” of a random network, in which information can rapidly diffuse. We test whether this effect of long ties generalizes from simple to complex contagions – those in which the credibility of information or the willingness to adopt an innovation requires independent confirmation from multiple sources. Using Watts and Strogatz’s original small world model, we demonstrate that long ties not only fail to speed up complex contagions, they can even preclude diffusion entirely. Results suggest that the spread of collective actions, social movements, and risky innovations benefit not from ties that are long but from bridges that are wide enough to transmit strong social reinforcement. Balance theory shows how wide bridges might also form in evolving networks, but this turns out to have surprisingly little effect on the propagation of complex contagions. We find that hybrid contagions, in which a critical mass of low-threshold nodes trigger the remaining high threshold nodes, can propagate on perturbed networks. However, of greater importance is the finding that wide bridges are a characteristic feature of spatial networks, which may account in part for the widely observed tendency for social movements to diffuse spatially. 2 “All politics is local.” – Rep. -
The Perceived Assortativity of Social Networks: Methodological Problems and Solutions
The perceived assortativity of social networks: Methodological problems and solutions David N. Fisher1, Matthew J. Silk2 and Daniel W. Franks3 Abstract Networks describe a range of social, biological and technical phenomena. An important property of a network is its degree correlation or assortativity, describing how nodes in the network associate based on their number of connections. Social networks are typically thought to be distinct from other networks in being assortative (possessing positive degree correlations); well-connected individuals associate with other well-connected individuals, and poorly-connected individuals associate with each other. We review the evidence for this in the literature and find that, while social networks are more assortative than non-social networks, only when they are built using group-based methods do they tend to be positively assortative. Non-social networks tend to be disassortative. We go on to show that connecting individuals due to shared membership of a group, a commonly used method, biases towards assortativity unless a large enough number of censuses of the network are taken. We present a number of solutions to overcoming this bias by drawing on advances in sociological and biological fields. Adoption of these methods across all fields can greatly enhance our understanding of social networks and networks in general. 1 1. Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada. Email: [email protected] (primary corresponding author) 2. Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK Email: [email protected] 3. Department of Biology & Department of Computer Science, University of York, York, YO10 5DD, UK Email: [email protected] Keywords: Assortativity; Degree assortativity; Degree correlation; Null models; Social networks Introduction Network theory is a useful tool that can help us explain a range of social, biological and technical phenomena (Pastor-Satorras et al 2001; Girvan and Newman 2002; Krause et al 2007). -
Social Network Analysis: Homophily
Social Network Analysis: homophily Donglei Du ([email protected]) Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 Donglei Du (UNB) Social Network Analysis 1 / 41 Table of contents 1 Homophily the Schelling model 2 Test of Homophily 3 Mechanisms Underlying Homophily: Selection and Social Influence 4 Affiliation Networks and link formation Affiliation Networks Three types of link formation in social affiliation Network 5 Empirical evidence Triadic closure: Empirical evidence Focal Closure: empirical evidence Membership closure: empirical evidence (Backstrom et al., 2006; Crandall et al., 2008) Quantifying the Interplay Between Selection and Social Influence: empirical evidence—a case study 6 Appendix A: Assortative mixing in general Quantify assortative mixing Donglei Du (UNB) Social Network Analysis 2 / 41 Homophily: introduction The material is adopted from Chapter 4 of (Easley and Kleinberg, 2010). "love of the same"; "birds of a feather flock together" At the aggregate level, links in a social network tend to connect people who are similar to one another in dimensions like Immutable characteristics: racial and ethnic groups; ages; etc. Mutable characteristics: places living, occupations, levels of affluence, and interests, beliefs, and opinions; etc. A.k.a., assortative mixing Donglei Du (UNB) Social Network Analysis 4 / 41 Homophily at action: racial segregation Figure: Credit: (Easley and Kleinberg, 2010) Donglei Du (UNB) Social Network Analysis 5 / 41 Homophily at action: racial segregation Credit: (Easley and Kleinberg, 2010) Figure: Credit: (Easley and Kleinberg, 2010) Donglei Du (UNB) Social Network Analysis 6 / 41 Homophily: the Schelling model Thomas Crombie Schelling (born 14 April 1921): An American economist, and Professor of foreign affairs, national security, nuclear strategy, and arms control at the School of Public Policy at University of Maryland, College Park. -
Social Support Networks Among Young Men and Transgender Women of Color Receiving HIV Pre-Exposure Prophylaxis
Journal of Adolescent Health 66 (2020) 268e274 www.jahonline.org Original article Social Support Networks Among Young Men and Transgender Women of Color Receiving HIV Pre-Exposure Prophylaxis Sarah Wood, M.D., M.S.H.P. a,b,*, Nadia Dowshen, M.D., M.S.H.P. a,b, José A. Bauermeister, M.P.H., Ph.D. c, Linden Lalley-Chareczko, M.A. d, Joshua Franklin a,b, Danielle Petsis, M.P.H. b, Meghan Swyryn d, Kezia Barnett, M.P.H. b, Gary E. Weissman, M.D., M.S.H.P. a, Helen C. Koenig, M.D., M.P.H. a,d, and Robert Gross, M.D., M.S.C.E. a,e a Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania b Division of Adolescent Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania c School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania d Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania e Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania Article history: Received May 13, 2019; Accepted August 1, 2019 Keywords: Pre-exposure prophylaxis; Social networks; Adherence; HIV; Adolescents ABSTRACT IMPLICATIONS AND CONTRIBUTION Purpose: The aim of the study was to characterize perceived social support for young men and transgender women who have sex with men (YM/TWSM) taking HIV pre-exposure prophylaxis This mixed-methods (PrEP). study of young men and Methods: Mixed-methods study of HIV-negative YM/TWSM of color prescribed oral PrEP. transgender women of Participants completed egocentric network inventories characterizing their social support color using pre-exposure fi ¼ networks and identifying PrEP adherence support gures. -
Word: Toward a Model of Gossip and Power in the Workplace
Technische Universität München Fakultät für Informatik Lehrstuhl für Wirtschaftsinformatik Prof. Dr. Helmut Krcmar The Project Success of IT Outsourcing Vendors – The Influence of IT Human Resource Management and of the Governance Structure Christoph Pflügler, Master of Science with honors Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Martin Bichler Prüfer der Dissertation: 1. Prof. Dr. Helmut Krcmar 2. Prof. Dr. Jason Bennett Thatcher Die Dissertation wurde am 12.08.2019 bei der Technischen Universität München eingereicht und durch die Fakultät für Informatik am 31.01.2020 angenommen. Preface This dissertation is the end result of a process that started during my master program “Finance and Information Management”. As this program was quite research focused, it included a three- month guided research phase. Dr. Markus Böhm was my supervisor and supported me in writing my first paper. This paper developed a carve-out maturity model and was presented at the Wirtschaftsinformatik 2015 conference. The guided research phase arouse my interest in the world of research. During writing my master thesis, I was convinced by my supervisor Prof. Dr. Michael Schermann to apply for a position at the Chair for Information Systems of Prof. Dr. Helmut Krcmar. I joined the research team of Dr. Manuel Wiesche in January 2015 together with Maximilian Schreieck, whom I already knew well from our time at TUM: Junge Akademie. Now, over four years later, I do not regret the decision at all to first have a look into the world of research and then pursue a career in industry.