Co-Posting Author Assortativity in Reddit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Networkx: Network Analysis with Python
NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users -
Measuring Homophily
Measuring Homophily Matteo Cristani, Diana Fogoroasi, and Claudio Tomazzoli University of Verona fmatteo.cristani, diana.fogoroasi.studenti, [email protected] Abstract. Social Network Analysis is employed widely as a means to compute the probability that a given message flows through a social net- work. This approach is mainly grounded upon the correct usage of three basic graph- theoretic measures: degree centrality, closeness centrality and betweeness centrality. We show that, in general, those indices are not adapt to foresee the flow of a given message, that depends upon indices based on the sharing of interests and the trust about depth in knowledge of a topic. We provide new definitions for measures that over- come the drawbacks of general indices discussed above, using Semantic Social Network Analysis, and show experimental results that show that with these measures we have a different understanding of a social network compared to standard measures. 1 Introduction Social Networks are considered, on the current panorama of web applications, as the principal virtual space for online communication. Therefore, it is of strong relevance for practical applications to understand how strong a member of the network is with respect to the others. Traditionally, sociological investigations have dealt with problems of defining properties of the users that can value their relevance (sometimes their impor- tance, that can be considered different, the first denoting the ability to emerge, and the second the relevance perceived by the others). Scholars have developed several measures and studied how to compute them in different types of graphs, used as models for social networks. This field of research has been named Social Network Analysis. -
Analysis of Topological Characteristics of Huge Online Social Networking Services Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Young-Ho Eom, Sue Moon, Hawoong Jeong
1 Analysis of Topological Characteristics of Huge Online Social Networking Services Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Young-Ho Eom, Sue Moon, Hawoong Jeong Abstract— Social networking services are a fast-growing busi- the statistics severely and it is imperative to use large data sets ness in the Internet. However, it is unknown if online relationships in network structure analysis. and their growth patterns are the same as in real-life social It is only very recently that we have seen research results networks. In this paper, we compare the structures of three online social networking services: Cyworld, MySpace, and orkut, from large networks. Novel network structures from human each with more than 10 million users, respectively. We have societies and communication systems have been unveiled; just access to complete data of Cyworld’s ilchon (friend) relationships to name a few are the Internet and WWW [3] and the patents, and analyze its degree distribution, clustering property, degree Autonomous Systems (AS), and affiliation networks [4]. Even correlation, and evolution over time. We also use Cyworld data in the short history of the Internet, SNSs are a fairly new to evaluate the validity of snowball sampling method, which we use to crawl and obtain partial network topologies of MySpace phenomenon and their network structures are not yet studied and orkut. Cyworld, the oldest of the three, demonstrates a carefully. The social networks of SNSs are believed to reflect changing scaling behavior over time in degree distribution. The the real-life social relationships of people more accurately than latest Cyworld data’s degree distribution exhibits a multi-scaling any other online networks. -
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
Modeling customer preferences using multidimensional network analysis in engineering design Mingxian Wang1, Wei Chen1, Yun Huang2, Noshir S. Contractor2 and Yan Fu3 1 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA 2 Science of Networks in Communities, Northwestern University, Evanston, IL 60208, USA 3 Global Data Insight and Analytics, Ford Motor Company, Dearborn, MI 48121, USA Abstract Motivated by overcoming the existing utility-based choice modeling approaches, we present a novel conceptual framework of multidimensional network analysis (MNA) for modeling customer preferences in supporting design decisions. In the proposed multidimensional customer–product network (MCPN), customer–product interactions are viewed as a socio-technical system where separate entities of `customers' and `products' are simultaneously modeled as two layers of a network, and multiple types of relations, such as consideration and purchase, product associations, and customer social interactions, are considered. We first introduce a unidimensional network where aggregated customer preferences and product similarities are analyzed to inform designers about the implied product competitions and market segments. We then extend the network to a multidimensional structure where customer social interactions are introduced for evaluating social influence on heterogeneous product preferences. Beyond the traditional descriptive analysis used in network analysis, we employ the exponential random graph model (ERGM) as a unified statistical -
Correlation in Complex Networks
Correlation in Complex Networks by George Tsering Cantwell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in the University of Michigan 2020 Doctoral Committee: Professor Mark Newman, Chair Professor Charles Doering Assistant Professor Jordan Horowitz Assistant Professor Abigail Jacobs Associate Professor Xiaoming Mao George Tsering Cantwell [email protected] ORCID iD: 0000-0002-4205-3691 © George Tsering Cantwell 2020 ACKNOWLEDGMENTS First, I must thank Mark Newman for his support and mentor- ship throughout my time at the University of Michigan. Further thanks are due to all of the people who have worked with me on projects related to this thesis. In alphabetical order they are Eliz- abeth Bruch, Alec Kirkley, Yanchen Liu, Benjamin Maier, Gesine Reinert, Maria Riolo, Alice Schwarze, Carlos Serván, Jordan Sny- der, Guillaume St-Onge, and Jean-Gabriel Young. ii TABLE OF CONTENTS Acknowledgments .................................. ii List of Figures ..................................... v List of Tables ..................................... vi List of Appendices .................................. vii Abstract ........................................ viii Chapter 1 Introduction .................................... 1 1.1 Why study networks?...........................2 1.1.1 Example: Modeling the spread of disease...........3 1.2 Measures and metrics...........................8 1.3 Models of networks............................ 11 1.4 Inference................................. -
Multidimensional Network Analysis
Universita` degli Studi di Pisa Dipartimento di Informatica Dottorato di Ricerca in Informatica Ph.D. Thesis Multidimensional Network Analysis Michele Coscia Supervisor Supervisor Fosca Giannotti Dino Pedreschi May 9, 2012 Abstract This thesis is focused on the study of multidimensional networks. A multidimensional network is a network in which among the nodes there may be multiple different qualitative and quantitative relations. Traditionally, complex network analysis has focused on networks with only one kind of relation. Even with this constraint, monodimensional networks posed many analytic challenges, being representations of ubiquitous complex systems in nature. However, it is a matter of common experience that the constraint of considering only one single relation at a time limits the set of real world phenomena that can be represented with complex networks. When multiple different relations act at the same time, traditional complex network analysis cannot provide suitable an- alytic tools. To provide the suitable tools for this scenario is exactly the aim of this thesis: the creation and study of a Multidimensional Network Analysis, to extend the toolbox of complex network analysis and grasp the complexity of real world phenomena. The urgency and need for a multidimensional network analysis is here presented, along with an empirical proof of the ubiquity of this multifaceted reality in different complex networks, and some related works that in the last two years were proposed in this novel setting, yet to be systematically defined. Then, we tackle the foundations of the multidimensional setting at different levels, both by looking at the basic exten- sions of the known model and by developing novel algorithms and frameworks for well-understood and useful problems, such as community discovery (our main case study), temporal analysis, link prediction and more. -
Robustness and Assortativity for Diffusion-Like Processes in Scale
epl draft Robustness and Assortativity for Diffusion-like Processes in Scale- free Networks G. D’Agostino1, A. Scala2,3, V. Zlatic´4 and G. Caldarelli5,3 1 ENEA - CR ”Casaccia” - Via Anguillarese 301 00123, Roma - Italy 2 CNR-ISC and Department of Physics, University of Rome “Sapienza” P.le Aldo Moro 5 00185 Rome, Italy 3 London Institute of Mathematical Sciences, 22 South Audley St Mayfair London W1K 2NY, UK 4 Theoretical Physics Division, Rudjer Boˇskovi´cInstitute, P.O.Box 180, HR-10002 Zagreb, Croatia 5 IMT Lucca Institute for Advanced Studies, Piazza S. Ponziano 6, Lucca, 55100, Italy PACS 89.75.Hc – Networks and genealogical trees PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics PACS 87.23.Ge – Dynamics of social systems Abstract – By analysing the diffusive dynamics of epidemics and of distress in complex networks, we study the effect of the assortativity on the robustness of the networks. We first determine by spectral analysis the thresholds above which epidemics/failures can spread; we then calculate the slowest diffusional times. Our results shows that disassortative networks exhibit a higher epidemi- ological threshold and are therefore easier to immunize, while in assortative networks there is a longer time for intervention before epidemic/failure spreads. Moreover, we study by computer sim- ulations the sandpile cascade model, a diffusive model of distress propagation (financial contagion). We show that, while assortative networks are more prone to the propagation of epidemic/failures, degree-targeted immunization policies increases their resilience to systemic risk. Introduction. – The heterogeneity in the distribu- propagation of an epidemic [13–15]. -
Ollivier Ricci Curvature of Directed Hypergraphs Marzieh Eidi1* & Jürgen Jost1,2
www.nature.com/scientificreports OPEN Ollivier Ricci curvature of directed hypergraphs Marzieh Eidi1* & Jürgen Jost1,2 Many empirical networks incorporate higher order relations between elements and therefore are naturally modelled as, possibly directed and/or weighted, hypergraphs, rather than merely as graphs. In order to develop a systematic tool for the statistical analysis of such hypergraph, we propose a general defnition of Ricci curvature on directed hypergraphs and explore the consequences of that defnition. The defnition generalizes Ollivier’s defnition for graphs. It involves a carefully designed optimal transport problem between sets of vertices. While the defnition looks somewhat complex, in the end we shall be able to express our curvature in a very simple formula, κ = µ0 − µ2 − 2µ3 . This formula simply counts the fraction of vertices that have to be moved by distances 0, 2 or 3 in an optimal transport plan. We can then characterize various classes of hypergraphs by their curvature. Principles of network analysis. Network analysis constitutes one of the success stories in the study of complex systems3,6,11. For the mathematical analysis, a network is modelled as a (perhaps weighted and/or directed) graph. One can then look at certain graph theoretical properties of an empirical network, like its degree or motiv distribution, its assortativity or clustering coefcient, the spectrum of its Laplacian, and so on. One can also compare an empirical network with certain deterministic or random theoretical models. Successful as this analysis clearly is, we nevertheless see two important limitations. One is that many of the prominent concepts and quantities used in the analysis of empirical networks are node based, like the degree sequence. -
Happiness Is Assortative in Online Social Networks
Happiness Is Assortative in Johan Bollen*,** Online Social Networks Indiana University Bruno Goncalves**̧ Indiana University Guangchen Ruan** Indiana University Abstract Online social networking communities may exhibit highly Huina Mao** complex and adaptive collective behaviors. Since emotions play such Indiana University an important role in human decision making, how online networks Downloaded from http://direct.mit.edu/artl/article-pdf/17/3/237/1662787/artl_a_00034.pdf by guest on 25 September 2021 modulate human collective mood states has become a matter of considerable interest. In spite of the increasing societal importance of online social networks, it is unknown whether assortative mixing of psychological states takes place in situations where social ties are mediated solely by online networking services in the absence Keywords of physical contact. Here, we show that the general happiness, Social networks, mood, sentiment, or subjective well-being (SWB), of Twitter users, as measured from a assortativity, homophily 6-month record of their individual tweets, is indeed assortative across the Twitter social network. Our results imply that online social A version of this paper with color figures is networks may be equally subject to the social mechanisms that cause available online at http://dx.doi.org/10.1162/ assortative mixing in real social networks and that such assortative artl_a_00034. Subscription required. mixing takes place at the level of SWB. Given the increasing prevalence of online social networks, their propensity to connect users with similar levels of SWB may be an important factor in how positive and negative sentiments are maintained and spread through human society. Future research may focus on how event-specific mood states can propagate and influence user behavior in “real life.” 1 Introduction Bird flocking and fish schooling are typical and well-studied examples of how large communities of relatively simple individuals can exhibit highly complex and adaptive behaviors at the collective level. -
Assortativity and Mixing
Assortativity and Assortativity and Mixing General mixing between node categories Mixing Assortativity and Mixing Definition Definition I Assume types of nodes are countable, and are Complex Networks General mixing General mixing Assortativity by assigned numbers 1, 2, 3, . Assortativity by CSYS/MATH 303, Spring, 2011 degree degree I Consider networks with directed edges. Contagion Contagion References an edge connects a node of type µ References e = Pr Prof. Peter Dodds µν to a node of type ν Department of Mathematics & Statistics Center for Complex Systems aµ = Pr(an edge comes from a node of type µ) Vermont Advanced Computing Center University of Vermont bν = Pr(an edge leads to a node of type ν) ~ I Write E = [eµν], ~a = [aµ], and b = [bν]. I Requirements: X X X eµν = 1, eµν = aµ, and eµν = bν. µ ν ν µ Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. 1 of 26 4 of 26 Assortativity and Assortativity and Outline Mixing Notes: Mixing Definition Definition General mixing General mixing Assortativity by I Varying eµν allows us to move between the following: Assortativity by degree degree Definition Contagion 1. Perfectly assortative networks where nodes only Contagion References connect to like nodes, and the network breaks into References subnetworks. General mixing P Requires eµν = 0 if µ 6= ν and µ eµµ = 1. 2. Uncorrelated networks (as we have studied so far) Assortativity by degree For these we must have independence: eµν = aµbν . 3. Disassortative networks where nodes connect to nodes distinct from themselves. Contagion I Disassortative networks can be hard to build and may require constraints on the eµν. -
Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms
SO36CH05-Uzzi ARI 2 June 2010 23:8 Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms Mark T. Rivera,1 Sara B. Soderstrom,1 and Brian Uzzi1,2 1Department of Management and Organizations, Kellogg School of Management, Northwestern University, Evanston, Illinois 60208; email: [email protected], [email protected], [email protected] 2Northwestern University Institute on Complex Systems and Network Science (NICO), Evanston, Illinois 60208-4057 Annu. Rev. Sociol. 2010. 36:91–115 Key Words First published online as a Review in Advance on Annu. Rev. Sociol. 2010.36:91-115. Downloaded from arjournals.annualreviews.org embeddedness, homophily, complexity, organizations, network April 12, 2010 evolution by NORTHWESTERN UNIVERSITY - Evanston Campus on 07/13/10. For personal use only. The Annual Review of Sociology is online at soc.annualreviews.org Abstract This article’s doi: Embeddedness in social networks is increasingly seen as a root cause of 10.1146/annurev.soc.34.040507.134743 human achievement, social stratification, and actor behavior. In this arti- Copyright c 2010 by Annual Reviews. cle, we review sociological research that examines the processes through All rights reserved which dyadic ties form, persist, and dissolve. Three sociological mech- 0360-0572/10/0811-0091$20.00 anisms are overviewed: assortative mechanisms that draw attention to the role of actors’ attributes, relational mechanisms that emphasize the influence of existing relationships and network positions, and proximity mechanisms that focus on the social organization of interaction. 91 SO36CH05-Uzzi ARI 2 June 2010 23:8 INTRODUCTION This review examines journal articles that explain how social networks evolve over time. -
NODEXL for Beginners Nasri Messarra, 2013‐2014
NODEXL for Beginners Nasri Messarra, 2013‐2014 http://nasri.messarra.com Why do we study social networks? Definition from: http://en.wikipedia.org/wiki/Social_network: A social network is a social structure made up of a set of social actors (such as individuals or organizations) and a set of the dyadic ties between these actors. Social networks and the analysis of them is an inherently interdisciplinary academic field which emerged from social psychology, sociology, statistics, and graph theory. From http://en.wikipedia.org/wiki/Sociometry: "Sociometric explorations reveal the hidden structures that give a group its form: the alliances, the subgroups, the hidden beliefs, the forbidden agendas, the ideological agreements, the ‘stars’ of the show". In social networks (like Facebook and Twitter), sociometry can help us understand the diffusion of information and how word‐of‐mouth works (virality). Installing NODEXL (Microsoft Excel required) NodeXL Template 2014 ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Double‐click, follow the instructions The SocialNetImporter extends the capabilities of NodeXL mainly with extracting data from the Facebook network. To install: ‐ Download the latest version of the social importer plugins from http://socialnetimporter.codeplex.com ‐ Open the Zip file and save the files into a directory you choose, e.g. c:\social ‐ Open the NodeXL template (you can click on the Windows Start button and type its name to search for it) ‐ Open the NodeXL tab, Import, Import Options (see screenshot below) 1 | Page ‐ In the import dialog, type or browse for the directory where you saved your social importer files (screenshot below): ‐ Close and open NodeXL again For older Versions: ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Unzip the files to a temporary folder ‐ Close Excel if it’s open ‐ Run setup.exe ‐ Visit http://socialnetimporter.codeplex.com ‐ Download the latest version of the socialnetimporter plug in 2 | Page ‐ Extract the files and copy them to the NodeXL plugin direction.