Nature of Actin Amino-Terminal Acetylation COMMENTARY

Total Page:16

File Type:pdf, Size:1020Kb

Nature of Actin Amino-Terminal Acetylation COMMENTARY COMMENTARY NATure of actin amino-terminal acetylation COMMENTARY Peter A. Rubensteina,1 and Kuo-kuang Wena Actins constitute a highly structurally conserved family discovery of this processing pathway, however, neither of proteins found in virtually all eukaryotic cells, in the identity of the enzyme that carries out the final which they participate in processes such as production acetylation step of the pathway nor the functional sig- of contractile force, structural stabilization of the cell, nificance of this processing has been established. In cell motility, endocytosis, and exocytosis (1). The actin PNAS, two papers from the same group [Drazic et al. monomer, or G-actin, has a nucleotide-binding cleft (7) and Goris et al. (8)] make significant contributions separating two large domains. Each of these is sepa- toward solving these two questions. rated into two subdomains, with the N terminus A number of protein N-acetyltransferases had pre- appearing as an arm which originates from subdomain viously been characterized, but no enzyme had been 1 (Fig. 1). In the context of the actin filament (F-actin), a found that would acetylate the N terminus of actin two-stranded helix, subdomain 1 is located on the fila- following removal of its initiator methionine residue. ment exterior. This position allows the N-terminal re- Here, Drazic et al. (7) show that a previously poorly gion to be a site of interaction for myosin and a number described enzyme called NAA80/NATH or NAT6/ of other actin-binding regulatory proteins (2, 3). Actins Fus2 (9) had the requisite activity for such a task. Based are characterized by an acidic N-terminal region con- on a series of in vitro studies, they first demonstrated sisting of two to four acidic amino acids in which the N- that the enzyme had its highest activity with a peptide terminal amino acid is N-acetylated. However, in ma- beginning ME but also showed high activity on pep- ture actins, the initiator methionine is missing. In the tides beginning DDDI and EEEI, the N termini of beta early 1980s, a series of papers reported the discovery and gamma cytoplasmic actins. Subsequently, they of a unique processing pathway leading to the produc- demonstrated that in NAA80 knockout tissue culture tion of the pure actin (4–6). For class I actins, in which cells only the acetylation of the two actins was essen- the initiator methionine directly precedes the eventual tially affected, and reintroduction of NAA80 into the N-terminal acid residue, the methionine is acetylated. cell restored actin acetylation. Then the acetyl-methionine is removed proteolytically, Goris et al. (8) extend these studies to the kinetic exposing the N-terminal acidic amino acid, which is and structural levels. Initially the enzyme was thought then acetylated to produce the mature form of the pro- to work via a ping-pong mechanism (10). Goris et al. tein. Examples of these actins are the beta and gamma (8) demonstrate that the enzyme forms a ternary com- cytoplasmic actins found in mammalian cells. For class plex containing actin and the acetyl-CoA after which II actins, which include the striated and smooth muscle acetylation occurs. Recognition of this mechanism led actins in mammalian cells, the N-terminal processing is to the isolation of an inhibitor which approximated the more complex. These proteins are produced from ternary complex when bound to the enzyme. The au- genes which encode a Met-Cys-acidic residue N termi- thors cocrystallized the inhibitor with the Drosophila nus. For these actins, following removal of the initiator form of NAT6, with the same specificity as the human acetyl-methionine, the new N-terminal cysteine is N- enzyme, and determined the structure of the complex acetylated. The acetyl-cysteine is then removed pro- via X-ray crystallography. They demonstrated that the teolytically to expose the eventual N-terminal acidic specificity of the enzyme resided in a more open ac- residue, which is then acetylated to produce the mature tive site cleft and a much more cationic surface in this actin N terminus. The conservation of this unique pro- cleft to accommodate the N-terminal negatively cessing pathway coupled with the demonstrated in- charged residues than in other N-acetyltransferases. volvement of the N terminus in actin filament function The difference in specificity of the enzyme in vitro suggests that proper N-terminal processing of actin and in vivo was surprising. In vitro, the highest activity may have significant functional interactions. Since the was in acetylating an N-terminal Met when the next aDepartment of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242 Author contributions: P.A.R. and K.-k.W. wrote the paper. The authors declare no conflict of interest. Published under the PNAS license. See companion articles 10.1073/pnas.1718336115 and 10.1073/pnas.1719251115. 1To whom correspondence should be addressed. Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1803804115 PNAS Latest Articles | 1of3 Downloaded by guest on September 29, 2021 Pointed ends A B M6 Subdomain 4 Subdomain 2 M5 M4 M3 Subdomain 3 Subdomain 1 M2 M1 Barbed ends Fig. 1. The actin monomer (A, Protein Data Bank ID code 2BTF) and the filament (B, ref. 15). The N-terminal peptide (red) and the ADP bound in the nucleotide cleft (cyan) are shown. The four subdomains are denoted on the monomer, and M denotes the individual monomers in the filament. amino acid was acidic. However, elimination of NAA80 showed nucleation or Arp2/3 and formin-dependent nucleation. However, the accumulation of actin in which the Met had been removed and it caused a twofold slower filament elongation rate from pre- the N-terminal amino group was exposed. Subsequent work formed actin seeds compared with acetylated actin; and with showed that in the cell NATB was responsible for the initial Met mDia1, but not mDia2, formin the unacetylated actin polymerized acetylation, and NAA80 then carried out the final acetylation fol- only about 40% as fast as did the acetylated actin. Of the two lowing removal of the acetyl-Met. This result underscores the im- formins, only the mDia 1 shows a strong elongation activity as portance of establishing the activity of a protein in vivo, where the well as nucleation. The effect of altered acetylation on filament biochemical context may be very different from what occurs elongation is unexpected, because the N terminus is far removed in vitro, to gain insight into its true function. The studies carried from the monomer–monomer interaction sites that result in fila- out by this group did not specifically demonstrate that this en- ment formation. Thus, the acetylation effects can only occur through zyme carried out the ultimate acetylation of the class II actin acidic propagated conformational changes from the amino terminus to amino-terminal residue. However, the demonstrated specificity of the interfaces that are important in longitudinal strand and in the enzyme would make it the likely candidate for class II process- cross-strand contacts within the actin filament. In the latter case, ing. Furthermore, Drosophila melanogaster actins are class II ac- the possibility of the N terminus’ affecting strand–strand interactions tins, and the NAA80 used for the crystallization studies was the in the middle of the actin filament has been demonstrated (11). Drosophila homolog. This enzyme was also shown to have the The identification of actin N-terminal acetylating enzyme, its same substrate specificity as the human form, further supporting structure determination, the ability to eliminate it from cells, and this hypothesis. the demonstration that its absence affects actin function at the cell Discovery of a posttranslational protein modification and the and molecular level opens the door to many avenues of in- manner in which it is carried out is often much easier to establish vestigation that should provide new insight into the regulation of than the functional significance of that modification. Drazic et al. actin function. Elimination of the N-acetyl group from actin would (7) made a series of observations that shed light on the functional introduce a positive charge, thereby decreasing net negative significance of N-terminal actin acetylation. They showed NAA80 charge density of the amino-terminal fragment. Earlier studies distributed diffusely throughout the cytoplasm instead of associ- based on genetically altered yeast actin demonstrated that the ating with ribosomes as do most NATs. They demonstrated that degree of negative charge density affects actin-activated myosin NAA80 knockout cells displayed faster motility and faster gap ATPase activity (2). Decreased negative charge density also in- closure in a wound-healing assay. They also showed the acetyla- creases the propensity of the actin to form spontaneous bundles. tion was important for controlling cell morphology. Elimination of Changes in myosin activation could easily be tied to alterations in the enzyme resulted in a decreased G/F actin ratio and an in- cell motility associated with NAA80 elimination, while increased crease in filopodia- and lamellipodia-containing cells, all consis- bundling could very well lead to the decreased G/F actin ratio and tent with the increased cell motility they observed. To gain insight increased filament stability that would facilitate lamellipodia and into these differences in cell behavior, the authors purified actin filopodia formation as observed in the knockout cells. The ability from control and knockout cells and compared their polymeriza- to isolate active nonacetylated actin allows testing of these hy- tion properties. Absence of acetylation did not affect overall actin potheses specifically in the context of actin posttranslational pro- polymerization rates. It also did not affect spontaneous filament cessing, which was not possible earlier. Further investigation of 2of3 | www.pnas.org/cgi/doi/10.1073/pnas.1803804115 Rubenstein and Wen Downloaded by guest on September 29, 2021 these effects could provide significant new insight into allosteric The actin amino-terminal fragment has been a source of regulation of actin function.
Recommended publications
  • Structural and Functional Characterization of the N-Terminal Acetyltransferase Natc
    Structural and functional characterization of the N-terminal acetyltransferase NatC Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry, Pharmacy of Freie Universität Berlin by Stephan Grunwald Berlin October 01, 2019 Die vorliegende Arbeit wurde von April 2014 bis Oktober 2019 am Max-Delbrück-Centrum für Molekulare Medizin unter der Anleitung von PROF. DR. OLIVER DAUMKE angefertigt. Erster Gutachter: PROF. DR. OLIVER DAUMKE Zweite Gutachterin: PROF. DR. ANNETTE SCHÜRMANN Disputation am 26. November 2019 iii iv Erklärung Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; und dass diese Dissertation keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat. Berlin, 9. November 2020 Stephan Grunwald v vi Acknowledgement I would like to thank Prof. Oliver Daumke for giving me the opportunity to do the research for this project in his laboratory and for the supervision of this thesis. I would also like to thank Prof. Dr. Annette Schürmann from the German Institute of Human Nutrition (DifE) in Potsdam-Rehbruecke for being my second supervisor. From the Daumke laboratory I would like to especially thank Dr. Manuel Hessenberger, Dr. Stephen Marino and Dr. Tobias Bock-Bierbaum, who gave me helpful advice. I also like to thank the rest of the lab members for helpful discussions. I deeply thank my wife Theresa Grunwald, who always had some helpful suggestions and kept me alive while writing this thesis.
    [Show full text]
  • Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development
    International Journal of Molecular Sciences Article Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development Nashwa El Hadidy 1 and Vladimir N. Uversky 1,2,* 1 Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; [email protected] 2 Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected]; Tel.: +1-813-974-5816; Fax: +1-813-974-7357 Received: 20 September 2019; Accepted: 21 October 2019; Published: 23 October 2019 Abstract: The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
    [Show full text]
  • NAT6 Acetylates the N‐Terminus of Different Forms of Actin
    NAT6 acetylates the N-terminus of different forms of actin Elsa Wiame1,2,Gaelle€ Tahay2, Donatienne Tyteca3, Didier Vertommen4, Vincent Stroobant5, Guido T. Bommer1,2 and Emile Van Schaftingen1,2 1 Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium 2 Laboratory of Biochemistry, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium 3 CELL Unit, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium 4 Mass Spectrometry Platform, de Duve Institute, Universite Catholique de Louvain, Brussels, Belgium 5 Ludwig Institute for Cancer Research, Universite Catholique de Louvain, Brussels, Belgium Keywords All forms of mammalian actin comprise at their N-terminus a negatively acetylation; actin; NAA10; N- charged region consisting of an N-acetylated aspartate or glutamate fol- acetyltransferase; NAT6 lowed by two or three acidic residues. This structural feature is unique to actins and important for their interaction with other proteins. The enzyme Correspondence E. Van Schaftingen, Laboratory of catalyzing the acetylation of the N-terminal acidic residue is thought to be Biochemistry, de Duve Institute, Universite NAA10, an enzyme that acetylates multiple intracellular proteins. We Catholique de Louvain, Avenue Hippocrate report here that this acetylation is essentially carried out by NAT6 (Fus2), 75, B1.75.08, B-1200 Brussels, Belgium a protein of unknown function. Tests of the activity of human recombinant Fax: +3227647598 NAT6 on a series of purified proteins showed that the best substrate had Tel: +3227647564 several acidic residues near its N-terminus. Accordingly NAT6 was particu- E-mail: [email protected] larly active on highly acidic peptides with sequences corresponding to the Elsa Wiame and Gaelle€ Tahay contributed N-terminus of different forms of mammalian actins.
    [Show full text]
  • Actin Mutations and Their Role in Disease
    International Journal of Molecular Sciences Review Actin Mutations and Their Role in Disease Francine Parker, Thomas G. Baboolal and Michelle Peckham * School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; [email protected] (F.P.); [email protected] (T.G.B.) * Correspondence: [email protected]; Tel.: +44-(0)1133-434348 Received: 25 March 2020; Accepted: 7 May 2020; Published: 10 May 2020 Abstract: Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations. Keywords: actin; mutation; polymerization; myosin 1. Introduction Actin is a globular protein (G-actin) that assembles into filaments (F-actin) and is important for cell movement, intracellular movement, muscle contraction and many other functions. There are six actin genes in the human genome. Three of these encode the α-actin isoforms found in cardiac, skeletal or smooth muscle (ACTC1, ACTA1 and ACTA2, respectively). Two encode γ-actin, of which one is widely expressed (ACTG1) and the other is smooth muscle specific (ACTG2). The final gene encodes the widely expressed β-actin (ACTB). These actin isoforms are highly (>90%) conserved at the protein level. Actin is a promiscuous protein, interacting with many other proteins [1], and is also subject to many different post-translational modifications [2].
    [Show full text]
  • Quantification of Intracellular N-Terminal Β-Actin Arginylation
    www.nature.com/scientificreports OPEN Quantifcation of intracellular N-terminal β-actin arginylation Li Chen & Anna Kashina* Actin is a ubiquitous, essential, and highly abundant protein in all eukaryotic cells that performs key roles in contractility, adhesion, migration, and leading edge dynamics. The two non-muscle actins, β- and γ-, are ubiquitously present in every cell type and are nearly identical to each other at the amino acid level, but play distinct intracellular roles. The mechanisms regulating this distinction have been the focus of recent interest in the feld. Work from our lab has previously shown that β-, but not γ-, actin undergoes N-terminal arginylation on Asp3. While functional evidence suggest that this arginylation may be important to actin’s function, progress in these studies so far has been hindered by difculties in arginylated actin detection, precluding estimations of the abundance of arginylated actin in cells, and its occurrence in diferent tissues and cell types. The present study represents the frst antibody-based quantifcation of the percentage of arginylated actin in migratory non-muscle cells under diferent physiological conditions, as well as in diferent cells and tissues. We fnd that while the steady-state level of arginylated actin is relatively low, it is consistently present in vivo, and is somewhat more prominent in migratory cells. Inhibition of N-terminal actin acetylation dramatically increases the intracellular actin arginylation level, suggesting that these two modifcations may directly compete in vivo. These fndings constitute an essential step in our understanding of actin regulation by arginylation, and in uncovering the dynamic interplay of actin’s N-terminal modifcations in vivo.
    [Show full text]
  • Classification and Phylogeny for the Annotation of Novel Eukaryotic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120881; this version posted May 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Classification and phylogeny for the annotation of novel eukaryotic 4 GNAT acetyltransferases 5 6 Bojan Krtenic1,2*, Adrian Drazic3, Thomas Arnesen1,3,4, Nathalie Reuter2,5* 7 8 1. Department of Biological Sciences, University of Bergen, Norway 9 2. Computational Biology Unit, Department of Informatics, University of Bergen, Norway 10 3. Department of Biomedicine, University of Bergen, Norway 11 4. Department of Surgery, Haukeland University Hospital, Norway 12 5. Department of Chemistry, University of Bergen, Norway 13 14 * To whom correspondence should be addressed. Tel (+47) 555 84040. Email: 15 [email protected] 16 17 Keywords: N-terminal acetyltransferases, NAT, GNAT, lysine acetyltransferase, KAT, sequence 18 similarity networks, phylogeny 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120881; this version posted May 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 The enzymes of the GCN5-related N-acetyltransferase (GNAT) superfamily count more than 870 22 000 members through all kingdoms of life and share the same structural fold.
    [Show full text]
  • Advance in Understanding Actin Sheds Light on Cell Function 8 April 2020, by Melissa Moody
    Advance in understanding actin sheds light on cell function 8 April 2020, by Melissa Moody acids that forms the protein. The modification, called N-terminal acetylation, can occur on the vast majority of human proteins and is thought to have important biological functions. However, in the case of actin those functions have not been entirely clear. The findings also illuminate the general biology of N- terminal acetylation. In fact, this is the first time the atomic-scale structure of any protein as it is being modified in this manner has been determined. "These are fundamental findings that extend our Credit: CC0 Public Domain understanding of how actin works and also how N- terminal acetylation works," said study senior author Roberto Dominguez, Ph.D., the William Maul Measey Presidential Professor of Physiology A tiny chemical modification on one of the most at Penn. abundant and important proteins in cells, actin, has long been somewhat mysterious, its function not Actin's importance is underscored by the fact that in fully understood, but scientists from the Perelman mammalian cells it is the most abundant protein in School of Medicine at the University of the cytoplasm, the space outside the nucleus. It is Pennsylvania have now taken a big step towards best known for forming cable-like structures called clearing up the mystery. filaments, which make up much of the supportive "skeleton" of cells, and also play key roles in cell The scientists, who report their discovery on the division and in cells' ability to move about in post-translational modification of actin in Science tissues.
    [Show full text]
  • N-Terminal Acetylation of Actin by NAA80 Is Essential for Structural Integrity of the Golgi Apparatus T
    Experimental Cell Research 390 (2020) 111961 Contents lists available at ScienceDirect Experimental Cell Research journal homepage: www.elsevier.com/locate/yexcr N-terminal acetylation of actin by NAA80 is essential for structural integrity of the Golgi apparatus T ∗ Tobias B. Beigla,b, Monica Hellesvika, Jaakko Sarastea, Thomas Arnesena,c,d, Henriette Aksnesa, a Department of Biomedicine, University of Bergen, Norway b Institute of Cell Biology and Immunology, University of Stuttgart, Germany c Department of Biological Sciences, University of Bergen, Norway d Department of Surgery, Haukeland University Hospital, Norway ARTICLE INFO ABSTRACT Keywords: N-alpha-acetyltransferase 80 (NAA80) was recently demonstrated to acetylate the N-terminus of actin, with Actin cytoskeleton NAA80 knockout cells showing actin cytoskeleton-related phenotypes, such as increased formation of membrane Cell migration protrusions and accelerated migration. Here we report that NAA80 knockout cells additionally display frag- Golgi structure mentation of the Golgi apparatus. We further employed rescue assays to demonstrate that this phenotype is N-terminal acetylation connected to the ability of NAA80 to modify actin. Thus, re-expression of NAA80, which leads to re-establish- N-alpha-acetyltransferase 80 (NAA80) ment of actin's N-terminal acetyl group, rescued the Golgi fragmentation, whereas a catalytic dead NAA80 Posttranslational modification mutant could neither restore actin Nt-acetylation nor Golgi structure. The Golgi phenotype of NAA80 KO cells was shared by both migrating and non-migrating cells and live-cell imaging indicated increased Golgi dynamics in migrating NAA80 KO cells. Finally, we detected a drastic increase in the amount of F-actin in cells lacking NAA80, suggesting a causal relationship between this effect and the observed re-organization of Golgi structure.
    [Show full text]
  • Genome-Wide Association Study and Pathway Analysis for Female Fertility Traits in Iranian Holstein Cattle
    Ann. Anim. Sci., Vol. 20, No. 3 (2020) 825–851 DOI: 10.2478/aoas-2020-0031 GENOME-WIDE ASSOCIATION STUDY AND PATHWAY ANALYSIS FOR FEMALE FERTILITY TRAITS IN IRANIAN HOLSTEIN CATTLE Ali Mohammadi1, Sadegh Alijani2♦, Seyed Abbas Rafat2, Rostam Abdollahi-Arpanahi3 1Department of Genetics and Animal Breeding, University of Tabriz, Tabriz, Iran 2Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran 3Department of Animal Science, University College of Abureyhan, University of Tehran, Tehran, Iran ♦Corresponding author: [email protected] Abstract Female fertility is an important trait that contributes to cow’s profitability and it can be improved by genomic information. The objective of this study was to detect genomic regions and variants affecting fertility traits in Iranian Holstein cattle. A data set comprised of female fertility records and 3,452,730 pedigree information from Iranian Holstein cattle were used to predict the breed- ing values, which were then employed to estimate the de-regressed proofs (DRP) of genotyped animals. A total of 878 animals with DRP records and 54k SNP markers were utilized in the ge- nome-wide association study (GWAS). The GWAS was performed using a linear regression model with SNP genotype as a linear covariate. The results showed that an SNP on BTA19, ARS-BFGL- NGS-33473, was the most significant SNP associated with days from calving to first service. In total, 69 significant SNPs were located within 27 candidate genes. Novel potential candidate genes include OSTN, DPP6, EphA5, CADPS2, Rfc1, ADGRB3, Myo3a, C10H14orf93, KIAA1217, RBPJL, SLC18A2, GARNL3, NCALD, ASPH, ASIC2, OR3A1, CHRNB4, CACNA2D2, DLGAP1, GRIN2A and ME3.
    [Show full text]
  • Use of Network Pharmacology to Investigate the Mechanism of the Compound Xuanju Capsule in the Treatment of Rheumatoid Arthritis
    Hindawi BioMed Research International Volume 2021, Article ID 5568791, 14 pages https://doi.org/10.1155/2021/5568791 Research Article Use of Network Pharmacology to Investigate the Mechanism of the Compound Xuanju Capsule in the Treatment of Rheumatoid Arthritis Wenyang Wei, Wanpeng Lu, Xiaolong Chen, Yunfeng Yang, and Mengkai Zheng Academic Research and Development Center of Zhejiang Strong Pharmaceutical Co., Ltd., Hangzhou, 310053 Zhejiang, China Correspondence should be addressed to Mengkai Zheng; [email protected] Received 24 February 2021; Accepted 24 July 2021; Published 10 August 2021 Academic Editor: Nadeem Sheikh Copyright © 2021 Wenyang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. To clarify the therapeutic mechanisms of compound Xuanju capsule-treated rheumatoid arthritis (RA) based on network pharmacology tactics. Method. The TCMSP, TCMID and STITCH databases were used to screen the active ingredients and targets in the compound Xuanju capsule; the OMIM, TTD, PharmGKB and GeneCards databases were applied to screen the RA-related disease targets. Then, the obtained targets were imported into Cytoscape 3.7.1 software to construct the active ingredient-target network and the RA-related disease-target network. The active ingredient-target PPI network, the RA-related disease-target PPI network and the common target PPI network were built by using the STRING platform and Cytoscape 3.7.1 software. The GO and KEGG analyses of the common targets were analyzed by using the Metascape and Bioinformatics online tools.
    [Show full text]
  • Cotranslational, Posttranslational, and Noncatalytic Roles of N-Terminal Acetyltransferases
    Cotranslational, Posttranslational, and Noncatalytic Roles of N-terminal Acetyltransferases Henriette Aksnes1,2* Rasmus Ree1, and Thomas Arnesen1,2,3* 1Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway 2Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway 3Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway *correspondence to [email protected] or [email protected] Abstract Recent studies of N-terminal acetylation have identified new N-terminal acetyltransferases (NATs) and expanded the known functions of these enzymes beyond their roles as ribosome-associated co- translational modifiers. For instance, the identification of Golgi- and chloroplast-associated NATs shows that acetylation of N-termini also happens post-translationally. In addition, we now appreciate that some NATs are highly specific: for example, a dedicated NAT responsible for post-translational N-terminal acetylation of actin was recently revealed. Other studies have extended NAT function beyond Nt-acetylation, including functions as lysine acetyltransferases (KATs) and non-catalytic roles. Finally, emerging studies emphasize the physiological relevance of N-terminal acetylation, including roles in calorie restriction-induced longevity and in pathological α-synuclein aggregation, relevant for Parkinson’s disease. Combined, the NATs rise as multifunctional proteins and N-terminal acetylation is gaining recognition as a major cellular regulator. Keywords Acetylation, actin, histones, KAT, lysine acetyltransferase, NAA10, NAA80, N-acetyltransferase, N- terminal acetyltransferase, NAT, N-terminal acetylation, protein folding, protein degradation, protein targeting 1 N-terminal acetylation – an abundant and regulated protein modification N-terminal (Nt) acetylation is among the most common protein modifications in eukaryotic cells. In fact, a majority of the proteome is Nt-acetylated (Arnesen et al., 2009; Bienvenut et al., 2012).
    [Show full text]
  • A Method to Purify Actin Isoforms with Bespoke Key Post-Translational
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs241406. doi:10.1242/jcs.241406 TOOLS AND RESOURCES Pick-ya actin – a method to purify actin isoforms with bespoke key post-translational modifications Tomoyuki Hatano*,‡, Lavanya Sivashanmugam*, Andrejus Suchenko, Hamdi Hussain and Mohan K. Balasubramanian‡ ABSTRACT (3) aspartate and glutamate N-acetylation in animals and amoeba, Actin is one of the most abundant eukaryotic cytoskeletal polymer- mediated by the N-acetyl transferase NAA80 (Drazic et al., 2018; forming proteins, which, in the filamentous form, regulates a number Goris et al., 2018); (4) N-arginylation in mammals (Karakozova of physiological processes, ranging from cell division and migration et al., 2006); and (5) His-73 methylation in animals and amoeba, to development and tissue function. Actins have different post- mediated by the histidine methyl transferase SETD3 (Kwiatkowski translational modifications (PTMs) in different organisms, including et al., 2018; Wilkinson et al., 2019). Thus, a precise biochemical and methionine, alanine, aspartate and glutamate N-acetylation, biophysical understanding of actin function in various organisms and N-arginylation and the methylation of the histidine at residue 73 tissues depends on the ability to produce actin isoforms with (His-73), with different organisms displaying a distinct signature of organism-specific signature PTMs. The current methods for actin PTMs. Currently, methods are not available to produce actin isoforms purification either constitutively introduce aspartate and glutamate with an organism-specific PTM profile. Here, we report the Pick-ya N-acetylation and His-73 methylation (purification from rabbit or Dictyostelium actin method, a method to express actin isoforms from any eukaryote chicken muscle, Sf9-insect cell cultures, and human with its own key characteristic PTM pattern.
    [Show full text]