Focused Ion Beam Implantation As a Tool for the Fabrication of Nano Electromechanical Devices

Total Page:16

File Type:pdf, Size:1020Kb

Focused Ion Beam Implantation As a Tool for the Fabrication of Nano Electromechanical Devices ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Focused ion beam implantation as a tool for the fabrication of nano electromechanical devices Memoria presentada per optar al títol de Doctor en Ciència de Materials Departament de Física de la Universitat Autònoma de Barcelona AUTOR Jordi Llobet Sixto DIRECTORS Francesc Pérez Murano Instituto de Microelectrónica Barcelona IMB - CNM (CSIC) Xavier Borrisé Nogué Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology TUTOR Jordi Sort Viñas Universitat Autònoma de Barcelona (UAB) 2016 Memòria presentada per aspirar al Grau de Doctor per Jordi Llobet Sixto. Vist i plau dels Directors Dr. Francesc Pérez Murano, Dr. Xavier Borrisé Nogué, i tutor Dr. Jordi Sort Viñas. Director, Director, Tutor, Francesc Pérez Murano Xavier Borrisé Nogué Jordi Sort Viñas Autor Jordi Llobet Sixto Bellaterra, 26 de gener de 2016 En primer lloc voldria agrair el suport, ajuda i direcció al Prof. Francesc Pérez-Murano i al Dr. Xavier Borrisé Nogué. A en Xevi voldria agrair-li la con¿anoa Tue sempre m¶ha mostrat des de Tue es va decidir crear l¶jrea de Nanolitogra¿a de la Sala Blanca del IMB-CNM allj l¶any 2006. Amb ell sempre he treballat molt a gust i sempre he pogut comptar amb el seu suport Tuan s¶han presentat di¿cultats o reptes, i sota la seva direc- ció vaig poder realitzar el PFC d¶Enginyeria de Materials (200) i el treball de Mjster de Nanotecnologia (2011). Amb en Francesc i el seu grup també m¶he trobat molt a gust i en un gran ambient de treball on he pogut aprendre moltes coses. També voldria agrair-li al Francesc el fet d¶ ³acollir-me´ al 201 per poder realitzar aTuesta tesis Tue tenia tantes ganes de fer. +an sigut uns anys molt bonics i estimulants. Han tingut un paper molt important en la meva carrera professional i, en particular, en aTuesta tesi doctoral en Marc Sansa i la Gemma 5ius. A banda dels bons moments Tue hem compartit guardo especials records de molts experiments Tue vjrem realitzar junts durant les seves tesis doctorals i Tue han estat clau per encetar aTuesta. Ha sigut un plaer treballar amb vosaltres. Guardo un especial record i ³good vibes´ de tota la gent del grup NanoNEMS, tan els Tue ara hi sou i els Tue ja han aixecat el vol. Tots vosaltres heu estat uns companys magní- ¿cs. Un plaer haver compartit vivències (i també experiments) amb la Laura Evangelio, la Marta Fernindez, l¶Ana Conde, en Joan Bausells, en Matteo Lorenzoni, l¶Albert Alcacer, l¶Angelos StreNlas, l¶Steven Gottlieb així com també ho va ser amb l¶Èlvaro San Paulo, la Nerea Alayo, la Lorea 2ria, la Irene Fernindez, l¶Iñigo Martín, l¶<igezu Mulugeta, en Giordano Tosolini, en Nil Fontanals, la Sophie Verhaeghe, l¶Alex ChuTuitarTui i en Dani 5uso. Moltes coses Tue se sobre el FIB i microscòpia electrònica en general son grjcies a en Jordi Millan. A ell voldria agrair-li tot el suport, els dubtes resolts, la paciència i el gran tracte humj. De vital importjncia és el fet de menjar. I si a sobre pots fer-ho en un ambient distès i de bon rollo encara millor. Agraeixo molt les converses Tue hem tingut, i també el saber es- coltar, de la Marta Duch, la N~ria Torras, l¶Alberto Moreno, en Carlos Seisdedos, en Xavi Mas, la Nuria Torres, la Neus Sabaté, en Juan Pablo Agusil i l¶Ana Sinchez. Ha estat un plaer haver compartit tot aTuest temps amb els companys de sala blanca. No vull oblidar-me de ning~ Tota la gent involucrada a les etapes, processos, manteni- ment,... tot el Tue feu te una gran complexitat tècnica i permet Tue els projectes avancin. He tingut la sort d¶interactuar més a prop durant aTuest temps amb la Marta Gerbolés, la Marta Duch, la Libertad Solé, l¶Ana Sinchez, l¶Alberto Moreno, la María Sinchez, en Jose Calvo, en Josep Montserrat, en MiTuel =abala, la 2ihane Beldarrain, la 5oser Mas, en Carles Mateu, en Josep M Cirera, en Javi Sinchez, en Sergi Sinchez, en Josep Tar- radas, en Xavi Mas, en 5oger Cot, en 5oger Llopis, en José 5us, en José Arias, l¶Antonio García Simon, en Joan Cussó, l¶Antonio Garzón, l¶Antonio Sienz, en David Muñoz, en Marcos Lechón, la Isabel Montero, la Nieves Alonso, la Carme Girbello, la Julia Pérez,... Moltes grjcies a tots I Zant to acNnoZledge our collaborators from the Imperial College of London Emiljana .rali, =ahid Durrani, Mervin Jones and Chen :ang. The time that I spent there, the mea- surements that Ze performed together, as Zell as the discussion of the results, have been a very nice experience. Durant aTuests anys he tingut la sort de colālaborar en treballs i projectes amb gent de diferents grups de recerca. A banda Tue això m¶ha permès aprendre moltes coses, ha estat un plaer compartir amb ells aTuesta experiència. Vull agrair el bon rollo Tue sempre hi ha hagut amb la gent de l¶ICN (l¶Amelia Barreiro, la M José Esplandiu, en Jordi Arbiol, en Joel Moser, l¶Adrian Bachtold, en Benjamin Lassagne) de la UAB (la N~ria Barniol, en Gabriel Abadal, en Francesc Torres, l¶Eloi Cordomí, en Gabriel Vidal, en Jordi Agustí, en Jose Luis Muñoz, en Javier 5odríguez, l¶Aitor Lopeandia, en Pablo Ferrando, la Gemma Garcia, en Jordi Sort, l¶Aida Varea, la Dolors Baró, l¶Enric Menéndez) de l¶ICMAB (en Narcís Mestres, l¶Adrian Carretero, la Jone =abaleta, en Josh MaloZney) de la UB (la Miroslavna .ovylina, l¶Albert 5omano) i també del CNM (la Llibertat Abad, l¶Amador Pérez, en Marcel Placidi, la Francesca Campabadal, en Jose Antonio Plaza). Moltes grjcies a tots vosaltres Voldria agrair tot el suport de la família i amics per aguantar-me durant la realització d¶aTuest treball. ATuest cop si, aTuest és el darrer, el més gros i el de¿nitiu (o almenys de moment ) Als meus pares Jordi i Paloma, al meu germj Albert, als meus avis, tiets, cosins, família política i als amics. A tots ells, als Tue hi son, als Tue son lluny i als Tue ja han marxat. Moltes grjcies per tot. Finalment, agrair la paciència a les dues persones Tue més han hagut de suportar-me durant aTuest ³part´ en min~scules i amb totes les cometes possibles (mai serj compa- rable ). A la Sandra Maya, la meva estimada companya en aTuest viatge Tue anomenem vida, i a la J~lia Llobet, la petitona de la casa Tue ens ha robat el cor. Moltes grjcies a les dues per tot. J~lia, Tue vols Tue et llegeixi un conte" ATuest va de nanotecnologia. RESUM La tesi doctoral titulada “Focused ion beam implantation as a tool for the fabrication of nano electromechanical devices” aborda el repte de la fabricació de ressonadors na- no-mètrics des d’una nova òptica basada en la implantació iònica mitjançant un feix de ions focalitzat (FIB). Aquest nou mètode permet fabricar nano-dispositius suspesos fun- cionals, des del punt de vista elèctric i mecànic, sense necessitat d’utilitzar resina d’una forma i) ràpida i simple, només son necessàries tres etapes de fabricació ii) Àexible, permet de¿nir dispositius amb gran llibertat geomètrica iii) alta resolució, es demostra la fabricació de dispositius suspesos de 4 +m de longitud per 10 nm de diàmetre iv) repro- duwble i v) compatible amb la tecnologia CM2S. Partint d’un xip de silici o S2I (silici - diòxid de silici - silici), el mètode de fabricació co- mença amb un procés d’implantació FIB on es de¿neixen les estructures i les connexions elèctriques del dispositiu. El segon pas consisteix en el gravat humit del silici, on s’ataca el silici que no està protegit per la implantació FIB, permetent la suspensió o alliberació dels dispositius. En aquest estadi, on les estructures ja estan de¿nides, el silici és amorf, conté galāli i no és elèctricament funcional (l a1 1ām). El darrer pas consisteix en un tractament tèrmic a alta temperatura ¿ns a 1000C, en ambient de nitrogen i amb un precursor sòlid de bor on es propicia la recristalālització del silici formant nano-cristalls, dopar el silici amb bor (tipus p) i eliminar el galāli. Aquest tractament a alta temperatura, on les estructures no son oxidades, permet obtenir dispositius elèctricament funcionals (l a10-4 1ām). Els principals resultats obtinguts es poden classi¿car en tres àmbits t Investigació de l’efecte de la implantació amb ions gal·li en el silici, pel que fa tant a aspectes de processament com de propietats nanoelectromecàniques del material. | RESUM En aquest treball hem caracteritzat l’estructura del material en les diferents eta- pes de fabricació i hem caracteritzat elèctrica i electromecànicament els dispo- sitius ¿nals obtinguts pel mètode descrit. t Desenvolupament i optimització del procés de fabricació, especialment pel que respecte al control de dimensions i a la combinació amb altres processos Es mostra el treball realitzat en la optimització dels diferents paràmetres de fa- bricació, des de la posta a punt de la dosi d’ions ¿ns a la selectivitat del gravat.
Recommended publications
  • Morphological Studies of Focused Ion Beam Induced Tungsten Deposition
    Morphological Studies of Focused Ion Beam Induced Tungsten Deposition H. Langfischer, S. Harasek, H. D. Wanzenboeck, B. Basnar, E. Bertagnolli, A. Lugstein Institute for Solid State Electronics, Vienna University of Technology, Floragasse 7/1, 1040 Vienna, Austria A widely used approach to interconnect prototype circuits and to rewire defective circuits is direct writing of metal lines at the backend of the process line by Fig. 1: FIB-SEM image of an ion beam induced CVD means of focused ion beam (FIB) induced deposition. In tungsten deposit on thermal silicon dioxide. this work we investigate the focused ion beam induced chemical vapor deposition process of tungsten focusing After a contiguous tungsten layer has formed on nucleation at the early stages of the formation process, during the initial growth on the SiO2 surface, the further the formation of a contiguous interface, and finally the deposition process is characterized by homological linear growth. The study involves in situ characterization growth of tungsten on a tungsten surface and the thickness of the evolving layer surface employing FIB-secondary of deposited metal correlates linear with the total ion dose. electron microscope (FIB-SEM) imaging. For the In a further step the impact of the average current density experimental studies of the focused ion beam induced j on the deposition yield was determined using tungsten tungsten deposition, a Micrion FIB-2500 system is used films deposited on a tungsten surface. In order to give a + operating with a gallium liquid metal ion source. The Ga concise interpretation of the experimental findings a ions are extracted from a small local region of a gallium simple analytic model describing the deposition process is 2 droplet and then collimated and focused to an ion beam by used.
    [Show full text]
  • Nuclear Microprobe Application in Semiconductor Process Developments
    Scanning Microscopy Volume 6 Number 1 Article 11 1-25-1992 Nuclear Microprobe Application in Semiconductor Process Developments Mikio Takai Osaka University Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Takai, Mikio (1992) "Nuclear Microprobe Application in Semiconductor Process Developments," Scanning Microscopy: Vol. 6 : No. 1 , Article 11. Available at: https://digitalcommons.usu.edu/microscopy/vol6/iss1/11 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 6, No. 1, 1992 (Pages 147-156) 0891-7035/92$5.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA NUCLEAR MICROPROBE APPLICATION IN SEMICONDUCTOR PROCESS DEVELOPMENTS Milcio Takai Faculty of Engineering Science and Research Center for Extreme Materials, Osaka University, Toyonaka, Osaka 560, Japan (Received for publication May 6, 1991, and in revised form January 25, 1992) Abstract Introduction Scanning nuclear microprobes using Ion beam analysis with Rutherford Rutherford backscattering (RBS) with light ions backscattering (RBS) and channeling has been have been applied to semiconductor process steps, successfully used for device process development in which minimum feature sizes of several in the early stage of application of ion microns down to submicron and multi-layered implantation in semiconductors [30-33]. Such structures were used. Two or three dimensional studies have substantially enhanced today's CMOS RBS mapping of processed semiconductor layers (Complementary Metal Oxide Semiconductor) such as multi-layered wiring, semiconductor-on­ technology for IC's.
    [Show full text]
  • Molecular Ion Sources for Low Energy Semiconductor Ion Implantation
    BNL-112215-2016-CP Molecular ion sources for low energy semiconductor ion implantation 1 2 3 A. I. Hershcovitch , V. I. Gushenets , D. N. Seleznev , 2 4 2 3 B. A. S. Bugaev , S. Dugin , E. M. Oks , T. V. Kulevoy , 4 3 3 C. O. Alexeyenko , A. Kozlov , G. N. Kropachev , 3 3 2 2 D. R. P. Kuibeda , S. Minaev , A. Vizir , G. Y. Yushkov 1Brookhaven National Laboratory, Upton, NY 11973 USA 2High Current Electronics Institute, Siberian Branch of Russian Academy of Sciences, Tomsk 634055 Russia 3Institute for Theoretical and Experimental Physics, Moscow 117218 Russia 4State Scientific Center of the Russian Federation State Research Institute for Chemistry and Technology of Organoelement Compounds, Moscow Russia Presented at the 16th International Conference on Ion Sources New York Marriott Marquis Hotel, New York, NY August 23 – 28, 2015 May 2016 Collider-Accelerator Department Brookhaven National Laboratory U.S. Department of Energy Office of Science, Office of Nuclear Physics Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Mini RF-Driven Ion Source for Focused Ion Beam System
    Mini RF-driven ion sources for focused ion beam systems X. Jiang a), Q. Ji, A. Chang, and K. N. Leung. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 Abstract Mini RF-driven ion sources with 1.2 cm and 1.5 cm inner chamber diameter have been developed at Lawrence Berkeley National Laboratory. Several gas species have been tested including argon, krypton and hydrogen. These mini ion sources operate in inductively coupled mode and are capable of generating high current density ion beams at tens of watts. Since the plasma potential is relatively low in the plasma chamber, these mini ion sources can function reliably without any perceptible sputtering damage. The mini RF-driven ion sources will be combined with ele ctrostatic focusing columns, and are capable of producing nano focused ion beams for micro machining and semiconductor fabrications. INTRODUCTION: Recently focused ion beam (FIB) systems have been used for circuit inspection, mask repair, micro machining, ion doping, and direct resistless writing. Most FIB systems employ a liquid metal ion source (LMIS). LMIS has a very low current yield and very high angular divergence. The gallium ion generated by liquid metal ion source can cause contamination in many FIB applications. For example, when LMIS is used for sputtering of copper, a Cu3Ga phase alloy can be formed, which is particularly resistant to milling and contributes to the uneven profiles [1]. L. Scipioni and coworkers[2] have demonstrated that when gallium ion beam is used for photo mask repair, implanted gallium ions can absorb 73% of incident 248 and 193 nm ultraviolet light.
    [Show full text]
  • Investigation of Ion Beam Techniques for the Analysis and Exposure of Particles Encapsulated by Silica Aerogel: Applicability for Stardust
    Meteoritics & Planetary Science 39, Nr 9, 1461–1473 (2004) Abstract available online at http://meteoritics.org Investigation of ion beam techniques for the analysis and exposure of particles encapsulated by silica aerogel: Applicability for Stardust G. A. GRAHAM,1, 5*# P. G. GRANT,2# R. J. CHATER,3 A. J. WESTPHAL,4# A. T. KEARSLEY,5 C. SNEAD,4# G. DOMÍNGUEZ,4# A. L. BUTTERWORTH,4# D. S. MCPHAIL,3 G. BENCH,2# and J. P. BRADLEY1# 1Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, California 94551, USA 2Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94551, USA 3Department of Materials, Imperial College, London, SW7 2AZ, UK 4Space Sciences Laboratory, University of California at Berkeley, Berkeley, California 94720, USA 5Department of Mineralogy, The Natural History Museum, London, SW7 5BD, UK #Member of BayPAC (Bay Area Particle Analysis Consortium) *Corresponding author. E-mail: [email protected] (Received 19 September 2003; revision accepted 25 June 2004) Abstract–In 2006, the Stardust spacecraft will return to Earth with cometary and perhaps interstellar dust particles embedded in silica aerogel collectors for analysis in terrestrial laboratories. These particles will be the first sample return from a solid planetary body since the Apollo missions. In preparation for the return, analogue particles were implanted into a keystone of silica aerogel that had been extracted from bulk silica aerogel using the optical technique described in Westphal et al. (2004). These particles were subsequently analyzed using analytical techniques associated with the use of a nuclear microprobe. The particles have been analyzed using: a) scanning transmission ion microscopy (STIM) that enables quantitative density imaging; b) proton elastic scattering analysis (PESA) and proton backscattering (PBS) for the detection of light elements including hydrogen; and c) proton-induced X-ray emission (PIXE) for elements with Z >11.
    [Show full text]
  • Focused-Ion-Beam Induced Deposition of Tungsten Nanoscale
    Nanotechnology 25 105301 (2012) dx.doi.org/10.1088/0957-4484/23/10/105301 Felling of Individual Freestanding Nanoobjects Using Focused-ion-beam Milling for Investigations of Structural and Transport Properties Wuxia Li,1. 2 J.C. Fenton,2 Ajuan Cui,1 Huan Wang,2 Yiqian Wang,3 Changzhi Gu,1 D.W. McComb,3 and P.A. Warburton2 1Beijing National Lab of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2London Centre for Nanotechnology, University College London, London, WC1E 7JE, UK 3London Centre for Nanotechnology, Imperial College, London, SW7 2AZ, UK Email: [email protected] Short title: Felling of freestanding objects for properties investigation PACS: 81.16.-c, 87.85.Rs, 81.07.-b ABSTRACT We report that, to enable studies of their compositional, structural and electrical properties, freestanding individual nanoobjects can be selectively felled in a controllable way by the technique of low-current focused-ion-beam (FIB) milling with the ion beam at a chosen angle of incidence to the nanoobject. To demonstrate the suitability of the technique, we report results zigzag/straight tungsten nanowires grown vertically on support substrates and then felled for characterization. We also describe a systematic investigation of the effect of the experimental geometry and parameters on the felling process and on the induced wire-bending phenomenon. The method of felling freestanding nanoobjects using FIB is an advantageous new technique for enabling investigations of the properties of selected individual nanoobjects. 1. Introduction Recently, with the downscaling of electronics, nanomaterials with various shapes have been synthesized and their properties have been explored by several different methods [1-7], with a view to building novel nanodevices and new functional logic circuit architectures.
    [Show full text]
  • Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences
    Chapter 6 Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences Meltem Sezen Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61634 Abstract Considered as the newest field of electron microscopy, focused ion beam (FIB) technolo‐ gies are used in many fields of science for site-specific analysis, imaging, milling, deposi‐ tion, micromachining, and manipulation. Dual-beam platforms, combining a high- resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-disper‐ sive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for trans‐ mission electron microscopy (TEM) can practically be carried out with ultrahigh preci‐ sion. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. More‐ over, FIB sectioning and sampling techniques are frequently used for revealing the struc‐ tural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to elec‐ tron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned Keywords: Focused Ion Beams, Electron Microscopy, Dual-Beam Platforms, Nanostruc‐ turing, Nanoanalysis 1. Introduction The miniaturization of novel materials, structures, and systems down to the atomic scale has assigned electron microscopy, a complementary branch of nanotechnology, for multidisciplinary sciences.
    [Show full text]
  • Focused-Ion-Beam Lithography
    Feasibility Study of Spatial-Phase-Locked Focused-Ion-Beam Lithography by Anto Yasaka M.Eng., Nuclear Engineering, Tokyo Institute of Technology, 1983 B.S., Applied Physics, Tokyo Institute of Technology, 1981 Submitted to the Department of Materials Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science in Materials Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1995 © 1995 Massachusetts Institute of Technology. All rights reserved. Signature of Author ............... ...eJ ' ..v.. .............. ....................... Department of Marials Science and Engineering May 12, 1995 Certified by ........................................... Henry I. Smith Professor of Electrical Engineering Thesis Advisor CertifiedC ertifi ed bby........... y ......................................... .. .. A.. Carl V. Sompson II Professor of Electronic Materials Thesis Advisor Accepted by ............................................................................ Carl V. Thompson II Professor of Electronic Materials ;?.: usErrsINSTrbhair, Departmental Committee on Graduate Students OF TECHNOLOGY JUL 2 01995 Sciencp LIBRARIES Feasibility Study of Spatial-Phase-Locked Focused-Ion-Beam Lithography by Anto Yasaka Submitted to the Department of Materials Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science in Materials Science and Engineering Abstract It is known that focused-ion-beam lithography has the capability of writing extremely fine lines (less than 50 nm line and space has been achieved) without proximity effect. However, because the writing field in ion-beam lithography is quite small, large- area patterns must be created by stitching together the small fields. The precision with which this can be done is much poorer than the resolution, typical stitching errors are -100 nm. A spatial-phase-locking method has been proposed to reduce stitching errors and provide both pattern placement accuracy and precision.
    [Show full text]
  • Scanning Electron Microscopy Vs Focused Ion Beam
    Scanning Electron Microscopy vs Focused Ion Beam Caitlyn Gardner Quang T. Huynh Concepts and fundamentals of Scanning Electron Microscopes Diffraction limit of light Any atoms are small than half of a wavelength of light is too small to see with light microscope Electrons have much shorter wavelength than light Secondary electrons Scattered electrons X-rays Auger electrons Specimen current Application of SEM Generate high-resolution images ( in nano-scales) Texture Chemical composition Examine microfabric and crystallography orientation in materials SEM Components Electron source (“Gun”) Electron lenses Sample Stages Detectors for all signals of interest Display/Data output devices Infrastructure requirements: Power Supply Vacuum system Cooling system Vibration-free floor Room free of ambient magnetic and electric field Structure of a SEM Figure: Typical structure of scanning electron microscope [1] Radiolarian Magnification: X 500 Magnification: X 2,000 Figure 2: Radiolarian [6] Advantages High magnification from 10 to 500,000x By 2009, the world’s highest SEM resolution is 0.4nm at 30kV Can be applied to wide range of applications in the study of solid materials Large depth of field Easy to operate with user-friendly interfaces Highly portable Safe to operate Disadvantages Sample must be solid and small enough to fit in the chamber Vacuum Some light elements can not be detected by EDS detectors Many instruments cannot detect elements with atomic numbers less than 11 Low conductivity sample must have
    [Show full text]
  • Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures
    micromachines Review Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures Mariachiara Manoccio 1,2,* , Marco Esposito 2,* , Adriana Passaseo 2, Massimo Cuscunà 2 and Vittorianna Tasco 2 1 Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy 2 CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; [email protected] (A.P.); [email protected] (M.C.); [email protected] (V.T.) * Correspondence: [email protected] (M.M.); [email protected] (M.E.) Abstract: The focused ion beam (FIB) is a powerful piece of technology which has enabled scientific and technological advances in the realization and study of micro- and nano-systems in many research areas, such as nanotechnology, material science, and the microelectronic industry. Recently, its applications have been extended to the photonics field, owing to the possibility of developing systems with complex shapes, including 3D chiral shapes. Indeed, micro-/nano-structured elements with precise geometrical features at the nanoscale can be realized by FIB processing, with sizes that can be tailored in order to tune optical responses over a broad spectral region. In this review, we give an overview of recent efforts in this field which have involved FIB processing as a nanofabrication tool for photonics applications. In particular, we focus on FIB-induced deposition and FIB milling, employed to build 3D nanostructures and metasurfaces exhibiting intrinsic chirality. We describe the fabrication strategies present in the literature and the chiro-optical behavior of the developed structures. The achieved results pave the way for the creation of novel and advanced nanophotonic devices for many fields of application, ranging from polarization control to integration in photonic circuits to subwavelength imaging.
    [Show full text]
  • EG0800259 Plasma Ion Sources
    EG0800259 Plasma Ion Sources M.M.Abdelrahman and H.El-Khabeary* Accelerators & Ion Sources Department, Nuclear Research Center, Atomic Energy Authority P.N.13759 Inchas, Cairo, Egypt. *([email protected]) ABSTRACT A wide variety of ion source types has been developed. Ion sources can provide beams of hundreds of amperes for fusion applications, nano–amperes for microprobe trace analysis and broad beams for ion implantation, space thrusters, industrial polymerisation and food sterilisation. Also it can be used in medical, military and accelerators applications. In this paper, three different types of plasma ion sources with different means for producing the discharge current and the ions extracting current from the plasma are studied. The various plasma described include, d.c glow discharge plasma, arc discharge plasma and radio frequency discharge plasma. Key Words: Ion Sources, Ionization Processes, Sputtering and Etching Processes. INTRODUCTION Laboratory plasmas(1) can be created in a wide variety of ways, most commonly as electrical discharges(2) of one kind or another. Industrially, plasmas are used in various forms for semiconductor processing(3), materials modification(4) and synthesis, and other purposes. In ion sources, plasmas are the medium from which the ions are extracted. Ion sources may be classified according to the discharge and ion beam characteristics. In general, an ion beam source consists of the ionizer, in which the ions are generated, and of an electrodes system for ion extraction, acceleration and focusing. The ionizer can be operated with gaseous elements or compounds or with liquids or solids vaporized by an external or internal oven, by plasma heating and ion beam sputtering.
    [Show full text]
  • A Comparison of Beam-Induced Damage from Xenon and Gallium Focused Ion Beams
    A COMPARISON OF BEAM-INDUCED DAMAGE FROM XENON AND GALLIUM FOCUSED ION BEAMS By SAMUEL R. NORRIS, B.S. Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Degree Master of Applied Science McMaster University © Copyright by Samuel Norris, 2019 S Norris Department of Materials Science and Engineering - McMaster University McMaster University, Hamilton Ontario MASTER OF APPLIED SCIENCE (2019), Materials Science and Engineering TITLE: A Comparison of Beam-Induced Damage from Xenon and Gallium Focused Ion Beams AUTHOR: Samuel Norris, B.S. (Centre College) SUPERVISOR: Nabil D. Bassim NUMBER OF PAGES: xii, 43 ii S Norris Department of Materials Science and Engineering - McMaster University LAY ABSTRACT The second half of the 20th century saw the advent of nanotechnology, both in the context of understanding the structure of the natural world beyond the limit of light microscopy, as well as manipulating materials to create useful microscopic devices, including the computers ubiquitous in today’s life. One technology that has contributed to today’s nano-centric paradigm is the focused ion beam/scanning electron microscope (FIB/SEM). The FIB/SEM is used to machine materials with extreme precision for many diverse applications such as modifying microcircuits, three-dimensional (3D) nanotomography, or to prepare samples for other microscopy techniques. For some applications, however, damage to the sample from the ion beam can be fatal. New ion sources have become available in the past ten years that may cause less damage to samples, and thus open up new applications for FIB. This thesis includes first a description of a series of optical devices prototyped using FIB.
    [Show full text]