Pseudomonas Bacteriophage Phi6 As a Model for Virus Emergence

Total Page:16

File Type:pdf, Size:1020Kb

Pseudomonas Bacteriophage Phi6 As a Model for Virus Emergence City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 9-2015 Pseudomonas Bacteriophage Phi6 as a Model for Virus Emergence Brian Elwood Ford Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/924 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] PSEUDOMONAS BACTERIOPHAGE Φ6 AS A MODEL FOR VIRUS EMERGENCE by BRIAN E. FORD Academic dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2015 © 2015 BRIAN E. FORD All Rights Reserved. ii This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date Chair of Examining Committee Dr. John J. Dennehy Date Executive Officer Dr. Laurel Eckhardt Dr. John J. Dennehy, Queens College Dr. Stéphane Boissinot, NYU Abu Dhabi Dr. Nathalia Glickman Holtzman, Queens College Dr. Paul Gottlieb, City College of New York Dr. José A. Fernández-­‐Romero, Population Council Supervisory Committee THE CITY UNIVERSITY OF NEW YORK iii Abstract Bacteriophage Φ6 a s a Model f or Virus Emergence by Brian E. Ford Mentor: John J. Dennehy The Pseudomonas bacteriophage Φ6 has a long and well-­‐established history as a model organism. Here we describe a set of experiments to extend this model system in to concepts previously unclaimed. Chapter 1 presents a brief background of the ecology of viruses that infect microorganisms. Chapter 2 examines genetic mutations allowing for host range expansion. Chapter 3 presents a novel paired strain assay to study how a non genetic host acquired factor affects fitness of these enveloped viruses on subsequent hosts. Chapter 4 is an extension of this system to include how the bacteria host is affected in virus-­‐host coevolution. iv ABSTRACT ................................ ............................................................................................. IV LIST OF TABLES ................................ ...................................................................................... XI LIST OF FIGURES ................................ ................................................................................... XII INTRODUCTION ................................ ................................................................................... XIV CHAPTER 1: EVOLUTIONARY ECOLOGY OF THE VIRUSES OF MICROORGANISMS ..................... 1 ABSTRACT ................................ ...................................................................................................... 2 INTRODUCTION ................................ ............................................................................................... 3 VOM ABUNDANCE, BIODIVERSITY, AND B IOGEOGRAPHY ................................ ......................................... 3 POPULATION D YNAMICS OF V OMS ................................ ..................................................................... 6 Factors affecting rates of VoM population growth. ................................ ............................. 7 Predator-­‐prey dynamics. ................................ ..................................................................... 11 VOM IMPACT ON HOST ATIONS POPUL AND COMMUNITIES. ................................ .................................... 12 VoM-­‐host coevolution and its limitations. ................................ .......................................... 12 VoMs as drivers of host biodiversity. ................................ .................................................. 15 VOM ECOLOGICAL A DAPTATION ................................ ...................................................................... 16 Generation time as an optimizable trait. ................................ ............................................ 16 Coinfection, competition and cheating. ................................ .............................................. 18 Productivity versus latency. ................................ ................................................................. 19 VOM GENOME E VOLUTION ................................ ............................................................................. 21 VoM genomes. ................................ ..................................................................................... 22 Horizontal gene transfer and genome mosaicism. ................................ ............................. 23 v VOM IMPACT ON H OST G ENETICS ................................ .................................................................... 24 VOMS AS E COSYSTEM M ODIFIERS ................................ .................................................................... 26 CLOSING R EMARKS ................................ ........................................................................................ 28 ACKNOWLEDGEMENTS ................................ .................................................................................... 28 FIGURE L EGENDS ................................ ........................................................................................... 29 REFERENCES ................................ ................................................................................................. 34 CHAPTER 2: FREQUENCY AND FITNESS CONSEQUENCES OF BACTERIOPHAGE Φ6 HOST RANGE MUTATIONS ................................ .......................................................................................... 49 ABSTRACT ................................ .................................................................................................... 50 INTRODUCTION ................................ ............................................................................................. 51 METHODS AND M ATERIALS ................................ ............................................................................. 53 Study Organisms and Culture Conditions ................................ ............................................. 53 Virus Stock Preparation ................................ ........................................................................ 54 Host Range Mutant Frequency ................................ ............................................................. 54 Host Range Mutant Isolation ............................................................................................... 55 RNA Extraction and Sequencing ................................ ........................................................... 55 Mutant Characterization ................................ ...................................................................... 56 Plaque Size Estimates ................................ ........................................................................... 56 Mutant Fitness on Native and Novel Hosts ................................ .......................................... 57 Attachment Rate Assays ................................ ....................................................................... 5 7 RESULTS ................................ ...................................................................................................... 58 Mutation Frequency ................................ ............................................................................. 58 vi Mutation Substitution Frequency ................................ ......................................................... 59 Phenotypic Change Analysis ................................ ................................................................. 60 P3 3D Structure Prediction ................................................................................................... 61 Plaque Size ................................ ............................................................................................ 62 Mutant Fitness on Original and Novel Hosts ................................ ........................................ 63 Attachment Rate ................................ .................................................................................. 64 Data Availability ................................ ................................................................................... 65 DISCUSSION ................................................................................................................................. 65 Φ6 Host Range Mutation Frequency ................................ .................................................... 65 Mutation Hotspots ................................ ............................................................................... 69 Structural Speculations ................................ ......................................................................... 70 Fitness on Native and Novel Hosts ................................ ....................................................... 71 Attachment to Native and Novel Hosts ................................ ................................................ 72 Implications for Disease Emergence ................................ ....................................................
Recommended publications
  • Chapitre Quatre La Spécificité D'hôtes Des Virophages Sputnik
    AIX-MARSEILLE UNIVERSITE FACULTE DE MEDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE THESE DE DOCTORAT Présentée par Morgan GAÏA Né le 24 Octobre 1987 à Aubagne, France Pour obtenir le grade de DOCTEUR de l’UNIVERSITE AIX -MARSEILLE SPECIALITE : Pathologie Humaine, Maladies Infectieuses Les virophages de Mimiviridae The Mimiviridae virophages Présentée et publiquement soutenue devant la FACULTE DE MEDECINE de MARSEILLE le 10 décembre 2013 Membres du jury de la thèse : Pr. Bernard La Scola Directeur de thèse Pr. Jean -Marc Rolain Président du jury Pr. Bruno Pozzetto Rapporteur Dr. Hervé Lecoq Rapporteur Faculté de Médecine, 13385 Marseille Cedex 05, France URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095 Directeur : Pr. Didier RAOULT Avant-propos Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’Ecole Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe permettant un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse. Par ailleurs, la thèse est présentée sur article publié, accepté ou soumis associé d’un bref commentaire donnant le sens général du travail.
    [Show full text]
  • Entry of the Membrane-Containing Bacteriophages Into Their Hosts
    Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host.
    [Show full text]
  • Origin, Adaptation and Evolutionary Pathways of Fungal Viruses
    Virus Genes 16:1, 119±131, 1998 # 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Origin, Adaptation and Evolutionary Pathways of Fungal Viruses SAID A. GHABRIAL Department of Plant Pathology, University of Kentucky, Lexington, KY, USA Abstract. Fungal viruses or mycoviruses are widespread in fungi and are believed to be of ancient origin. They have evolved in concert with their hosts and are usually associated with symptomless infections. Mycoviruses are transmitted intracellularly during cell division, sporogenesis and cell fusion, and they lack an extracellular phase to their life cycles. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Typically, fungal viruses are isometric particles 25±50 nm in diameter, and possess dsRNA genomes. The best characterized of these belong to the family Totiviridae whose members have simple undivided dsRNA genomes comprised of a coat protein (CP) gene and an RNA dependent RNA polymerase (RDRP) gene. A recently characterized totivirus infecting a ®lamentous fungus was found to be more closely related to protozoan totiviruses than to yeast totiviruses suggesting these viruses existed prior to the divergence of fungi and protozoa. Although the dsRNA viruses at large are polyphyletic, based on RDRP sequence comparisons, the totiviruses are monophyletic. The theory of a cellular self-replicating mRNA as the origin of totiviruses is attractive because of their apparent ancient origin, the close relationships among their RDRPs, genome simplicity and the ability to use host proteins ef®ciently. Mycoviruses with bipartite genomes ( partitiviruses), like the totiviruses, have simple genomes, but the CP and RDRP genes are on separate dsRNA segments.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • First Description of a Temperate Bacteriophage (Vb Fhim KIRK) of Francisella Hispaniensis Strain 3523
    viruses Article First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523 Kristin Köppen 1,†, Grisna I. Prensa 1,†, Kerstin Rydzewski 1, Hana Tlapák 1, Gudrun Holland 2 and Klaus Heuner 1,* 1 Centre for Biological Threats and Special Pathogens, Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] (K.K.); [email protected] (G.I.P.); [email protected] (K.R.); [email protected] (H.T.) 2 Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy, ZBS 4, Robert Koch Institute, D-13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-18754-2226 † Both authors contributed equally to this work. Abstract: Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) includ- ing the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the Citation: Köppen, K.; Prensa, G.I.; conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and Rydzewski, K.; Tlapák, H.; Holland, the phage particles seem to be defective for infecting new bacterial cells.
    [Show full text]
  • Technical Glossary
    WBVGL 6/28/03 12:00 AM Page 409 Technical Glossary abortive infection: Infection of a cell where there is no net increase in the production of infectious virus. abortive transformation: See transitory (transient or abortive) transformation. acid blob activator: A regulatory protein that acts in trans to alter gene expression and whose activity depends on a region of an amino acid sequence containing acidic or phosphorylated residues. acquired immune deficiency syndrome (AIDS): A disease characterized by loss of cell-mediated and humoral immunity as the result of infection with human immunodeficiency virus (HIV). acute infection: An infection marked by a sudden onset of detectable symptoms usually followed by complete or apparent recovery. adaptive immunity (acquired immunity): See immunity. adjuvant: Something added to a drug to increase the effectiveness of that drug. With respect to the immune system, an adjuvant increases the response of the system to a particular antigen. agnogene: A region of a genome that contains an open reading frame of unknown function; origi- nally used to describe a 67- to 71-amino acid product from the late region of SV40. AIDS: See acquired immune deficiency syndrome. aliquot: One of a number of replicate samples of known size. a-TIF: The alpha trans-inducing factor protein of HSV; a structural (virion) protein that functions as an acid blob transcriptional activator. Its specificity requires interaction with certain host cel- lular proteins (such as Oct1) that bind to immediate-early promoter enhancers. ambisense genome: An RNA genome that contains sequence information in both the positive and negative senses. The S genomic segment of the Arenaviridae and of certain genera of the Bunyaviridae have this characteristic.
    [Show full text]
  • The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity
    viruses Review The Diversity of Bacterial Lifestyles Hampers Bacteriophage Tenacity Marta Lourenço 1,2, Luisa De Sordi 1 and Laurent Debarbieux 1,* ID 1 Department of Microbiology, Institut Pasteur, F-75015 Paris, France; [email protected] (M.L.); [email protected] (L.D.S.) 2 Collège Doctoral, Sorbonne Université, F-75005 Paris, France * Correspondence: [email protected] Received: 18 May 2018; Accepted: 11 June 2018; Published: 15 June 2018 Abstract: Phage therapy is based on a simple concept: the use of a virus (bacteriophage) that is capable of killing specific pathogenic bacteria to treat bacterial infections. Since the pioneering work of Félix d’Herelle, bacteriophages (phages) isolated in vitro have been shown to be of therapeutic value. Over decades of study, a large number of rather complex mechanisms that are used by phages to hijack bacterial resources and to produce their progeny have been deciphered. While these mechanisms have been identified and have been studied under optimal conditions in vitro, much less is known about the requirements for successful viral infections in relevant natural conditions. This is particularly true in the context of phage therapy. Here, we highlight the parameters affecting phage replication in both in vitro and in vivo environments, focusing, in particular, on the mammalian digestive tract. We propose avenues for increasing the knowledge-guided implementation of phages as therapeutic tools. Keywords: virus–host interactions; bacteriophage efficacy; gastrointestinal tract; phage therapy 1. Introduction With the alarming worldwide increase in the prevalence of multidrug-resistant bacteria, phage therapy—the use of phages to target pathogenic bacteria [1]—has recently returned to the spotlight in the USA and Europe, although it had never fallen out of favour in countries such as Georgia [2].
    [Show full text]
  • SHRIMP INFECTIOUS MYONECROSIS STRATEGY MANUAL Photographs Captions and Credits
    FIAA/C1187 (En) FAO Fisheries and Aquaculture Circular ISSN 2070-6065 SHRIMP INFECTIOUS MYONECROSIS STRATEGY MANUAL Photographs captions and credits: Top left: Penaeus vannamei farmed in Asia. Photo credit: ©Dr Donald Lightner, Arizona, USA. Top right: Infectious myonecrosis affected Penaeus vannamei from an outbreak in Brazil. Photo credit: ©2006, Microbiology Society, a derivative of figures by Poulos et al., 2006. Journal of General Virology. Bottom left: Transmission electron micrograph of purified infectious myonecrosis virions. Photo credit: ©2006, Microbiology Society, a derivative of figures by Poulos et al., 2006. Journal of General Virology. Bottom right: Farmers cleaning pond bottom in an Indonesia shrimp farm. Photo credit: ©Mr Hanggono Bambang, Situbondo, Indonesia. v FAO Fisheries and Aquaculture Circular No. 1187 FIAA/C1187 (En) SHRIMP INFECTIOUS MYONECROSIS STRATEGY MANUAL by Kathy F.J. Tang Aquatic Animal Health Specialist Arizona, USA Melba G. Bondad-Reantaso Aquatic Animal Health Specialist Aquaculture Officer (Aquaculture Service) Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations Rome, Italy J. Richard Arthur Aquatic Animal Health Specialist Barrier, Canada Under FAO project TCP/INT/3501 Strengthening biosecurity governance and capacities for dealing with the serious shrimp infectious myonecrosis virus (IMNV) disease FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Required citation: Tang, K.F.J., Bondad-Reantaso, M.G. & Arthur, J.R. 2019. Shrimp infectious myonecrosis strategy manual. FAO Fisheries and Aquaculture Circular No. 1187. Rome, FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Genomic Exploration of Individual Giant Ocean Viruses
    The ISME Journal (2017) 11, 1736–1745 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Genomic exploration of individual giant ocean viruses William H Wilson1,2, Ilana C Gilg1, Mohammad Moniruzzaman3, Erin K Field1,4, Sergey Koren5, Gary R LeCleir3, Joaquín Martínez Martínez1, Nicole J Poulton1, Brandon K Swan1,6, Ramunas Stepanauskas1 and Steven W Wilhelm3 1Bigelow Laboratory for Ocean Sciences, Boothbay, ME, USA; 2School of Marine Science and Engineering, Plymouth University, Plymouth, UK; 3Department of Microbiology, The University of Tennessee, Knoxville, TN, USA; 4Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC, USA; 5Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA and 6National Biodefense Analysis and Countermeasures Center, Frederick, MD, USA Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on ‘giant viruses’ that are readily distinguishable by flow cytometry. From a single- milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus.
    [Show full text]
  • Current and Novel Approaches in Influenza Management
    Review Current and Novel Approaches in Influenza Management Erasmus Kotey 1,2,3 , Deimante Lukosaityte 4,5, Osbourne Quaye 1,2 , William Ampofo 3 , Gordon Awandare 1,2 and Munir Iqbal 4,* 1 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; [email protected] (E.K.); [email protected] (O.Q.); [email protected] (G.A.) 2 Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana 3 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; [email protected] 5 The University of Edinburgh, Edinburgh, Scotland EH25 9RG, UK * Correspondence: [email protected] Received: 20 May 2019; Accepted: 17 June 2019; Published: 18 June 2019 Abstract: Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised.
    [Show full text]
  • Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines
    Review Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines Ekramy E. Sayedahmed 1 , Ahmed Elkashif 1, Marwa Alhashimi 1, Suryaprakash Sambhara 2,* and Suresh K. Mittal 1,* 1 Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; [email protected] (E.E.S.); [email protected] (A.E.); [email protected] (M.A.) 2 Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA * Correspondence: [email protected] (S.S.); [email protected] (S.K.M.) Received: 2 August 2020; Accepted: 17 September 2020; Published: 1 October 2020 Abstract: Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe.
    [Show full text]
  • Emerging Viral Diseases of Fish and Shrimp Peter J
    Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry.
    [Show full text]