Rapid Quantification and Isotopic Analysis of Dissolved Sulfur Species

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Quantification and Isotopic Analysis of Dissolved Sulfur Species Research Article Received: 19 September 2016 Revised: 6 January 2017 Accepted: 23 February 2017 Published online in Wiley Online Library Rapid Commun. Mass Spectrom. 2017, 31, 791–803 (wileyonlinelibrary.com) DOI: 10.1002/rcm.7846 Rapid quantification and isotopic analysis of dissolved sulfur species Derek A. Smith1*,† , Alex L. Sessions1, Katherine S. Dawson1, Nathan Dalleska2 and Victoria J. Orphan1 1Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA 2Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA RATIONALE: Dissolved sulfur species are of significant interest, both as important substrates for microbial activities and as key intermediaries in biogeochemical cycles. Species of intermediate oxidation state such as sulfite, thiosulfate, and thiols are of particular interest but are notoriously difficult to analyze, because of low concentrations and rapid oxidation during storage and analysis. METHODS: Dissolved sulfur species are reacted with monobromobimane which yields a fluorescent bimane derivative that is stable to oxidation. Separation by Ultra-Performance Liquid Chromatography (UPLC) on a C18 column yields baseline resolution of analytes in under 5 min. Fluorescence detection (380 nm excitation, 480 nm emission) provides highly selective and sensitive quantitation, and Time-of-Flight Mass Spectrometry (TOF-MS) is used to quantify isotopic abundance, providing the ability to detect stable isotope tracers (either 33Sor34S). RESULTS: Sulfite, thiosulfate, methanethiol, and bisulfide were quantified with on-column detection limits of picomoles (μM concentrations). Other sulfur species with unshared electrons are also amenable to analysis. TOF-MS detection of 34S enrichment was accurate and precise to within 0.6% (relative) when sample and standard had similar isotope ratios, and was able to detect enrichments as small as 0.01 atom%. Accuracy was validated by comparison to isotope-ratio mass spectrometry. Four example applications are provided to demonstrate the utility of this method. CONCLUSIONS: Derivatization of aqueous sulfur species with bromobimane is easily accomplished in the field, and protects analytes from oxidation during storage. UPLC separation with fluorescence detection provides low-μM detection limits. Using high-resolution TOF-MS, accurate detection of as little as 0.01% 34S label incorporation into multiple species is feasible. This provides a useful new analytical window into microbial sulfur cycling. Copyright © 2017 John Wiley & Sons, Ltd. Sulfur exists in the natural environment in myriad forms, oxygen minimum zones of the world’s oceans,[5,6] the low 2– fi ’ ’ [7,8] ranging in oxidation state from sulfate (SO4 ) to sul de sulfate methanogenic zone of marine sediments, salt – (HS ) and including many species of intermediate oxidation marshes,[9] freshwater sediments,[10,11] and within symbiotic fi – 0 [9,12] state, such as polysul de (HSx ), elemental sulfur (S ), microbial associations. In all cases, microbial sulfur thiosulfate, trithionate, sulfite, and others. Species such as cycling is thought to play key roles in the remineralization of thiosulfate, trithionate, and sulfite in particular are thought organic matter. to be important intermediaries in microbial reactions that Sulfur speciation also dramatically affects the solubility and – transform (either oxidize, reduce, or disproportionate) sulfur bioavailability of trace metals,[1 3] abiotic oxidation and and are frequently coupled to the biogeochemical cycles of reduction of manganese and iron,[1,4] and sulfurization of – carbon, oxygen, and iron.[1 4] ’Cryptic’ sulfur cycles driven organic matter.[13,14] Studies of all these processes, and others, by microbial metabolism have been hypothesized to occur in would benefit greatly from improved methods for quantifying dissolved sulfur species, particularly the most transient, intermediate compounds. Moreover, an ability to distinguish * Correspondence to: D. A. Smith, Department of Earth and stable isotope labels in such compounds would enable a Planetary Sciences, Washington University in Saint Louis, wide variety of stable isotope probing experiments that Campus Box 1169, Rudolph Hall Rm 110, 1 Brookings could help illuminate the cryptic microbial sulfur cycle. A Drive, St. Louis, MO 63130, USA. variety of techniques to measure dissolved sulfur species E-mail: [email protected] have previously been described. One of the most widely † Current address: Department of Earth and Planetary utilized techniques, the Cline assay, employs absorption Sciences, Washington University in Saint Louis, Campus spectrophotometry of a N,N-dimethyl-p-phenylene diamine, Box 1169, Rudolph Hall Rm 110, 1 Brookings Drive, St. chloride, and sulfide complex (methylene blue) to quantify 791 Louis, MO 63130, USA. hydrogen sulfide.[15] Rapid Commun. Mass Spectrom. 2017, 31, 791–803 Copyright © 2017 John Wiley & Sons, Ltd. D. A. Smith et al. Ion chromatography (IC) has been employed to separate have been previously used to quantify sulfur species from multiple anions of sulfur (i.e., [16,17]). However, IC eluent a range of diverse samples including hydrothermal vent fl 2– 2– chemistry can alter sulfur speciation; some sulfur species, uids, sulfur-oxidizing bacterial cultures (SO3 ,S2O3 ), – – e.g. polysulfides, are too reactive for accurate quantification HS in human blood, and cysteine and HS in – with IC; further, IC provides no isotopic information, methanogens.[27 31] although it has been combined with multi-collector To improve on the separation of derivatized sulfur species inductively coupled plasma mass spectrometry (MC-ICP- by HPLC, which takes ~60 min per sample,[24,25] we employ MS) to achieve this.[18,19] Derivatization of sulfur species with Ultra-Performance Liquid Chromatography (UPLC) for rapid methyl trifluoromethanesulfonic acid (methyl triflate) is (<5 min) separation of derivatized sulfur species. For capable of stabilizing polysulfides with quantification detection and quantitation, we evaluated both a conventional down to approximately 25 μM by UV absorption fluorescence detector and a state-of-the-art Time-of-Flight spectrophotometry coupled to high-performance liquid (TOF) mass spectrometer (TOF-MS). Fluorescence detection chromatography (HPLC); however, with extraction and is less expensive and more sensitive than MS, and evaporation post-extraction, lower limits are reported.[20] nondestructive so it can be coupled with preparative fraction Drawbacks of the methyl triflate method include the toxicity collection of individual sulfur species, e.g. for subsequent of the reagent, multistep extraction procedure, addition of high-precision analysis of natural abundance isotope ratios. sulfur to the derivatized product, and applicability only to However, fluorescence itself provides no isotopic information, reduced sulfur species. Cyclic voltammetry and in situ probes which is the main impetus for using MS. The high-resolution have also been used to measure and quantify many of the TOF-MS employed here allows us to distinguish isobaric reactive sulfur species in environmental samples at relatively interferences in the molecular ions, and accurately quantify high spatial resolutions (mms).[9,21,22] The limitations of cyclic 34S enrichment down to levels of ~0.6%. The same voltammetry are that it cannot distinguish between the methodological approach could presumably be used for 33S isotopes of sulfur. enrichments. We note that while TOF-MS was used in this Here, we adapt a previously described method for study, quadrupole or other low-resolution MS could be an preserving aqueous nucleophilic sulfur species as bimane alternative, with the caveat that isotopic discrimination might derivatives, and update their separation and detection to suffer. modern instrumentation. Key features of the derivatization To refine and test this updated methodology, we focused on 2– 2– – are that (1) reaction with bromobimane (mBBr) is four sulfur analytes: SO3 ,S2O3 ,CH3SH, and HS . Other quantitative thus causing no isotopic fractionation; (2) the sulfur species are also potentially accessible with this resulting bimane derivatives are very stable towards approach. These analytes were measured in standard subsequent oxidation, providing a convenient means to solutions (both a dilution series of decreasing concentration, preserve samples in the field; and (3) bimane is strongly and a series of varying isotopic composition), then fluorescent, enabling non-destructive fluorescence characterized in four separate proof-of-principle applications: – detection.[23 26] The quantitative mBBr reaction proceeds as (1) measurement of sulfite and thiosulfate concentrations in a nucleophilic substitution of sulfur compounds containing marine sediment pore-waters, where they are present at low an unshared pair of electrons (Fig. 1), which includes sulfite μM concentrations; (2) measuring 34S appearance in bisulfide 2– 2– fi (SO3 ), thiosulfate (S2O3 ), organic thiols (R-SH), bisul de in a pure culture of sulfate-reducing bacteria amended with – fi 2– 0 34 2– 34 fi (HS ), and polysul des (Sn ) but not elemental sulfur (S ) SO4 tracer; (3) measuring S in bisul de in methane seep 2– 34 2– or sulfate (SO4 ). mBBr is a neutral molecule capable of sediments incubated with SO4 tracer; and (4) identifying crossing the cellular membrane, enabling reactions with both previously unreported intermediate sulfur species in
Recommended publications
  • Toxicological Profile for Hydrogen Sulfide and Carbonyl Sulfide
    HYDROGEN SULFIDE AND CARBONYL SULFIDE 149 6. POTENTIAL FOR HUMAN EXPOSURE 6.1 OVERVIEW Hydrogen sulfide has been found in at least 34 of the 1,832 waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) and carbonyl sulfide was detected in at least 4 of the 1,832 waste sites (ATSDR 2015). However, the number of sites evaluated for these substances is not known and hydrogen sulfide and carbonyl sulfide are ubiquitous in the atmosphere. The frequency of these sites can be seen in Figures 6-1 and 6-2. Carbonyl sulfide and hydrogen sulfide are principal components in the natural sulfur cycle. Bacteria, fungi, and actinomycetes (a fungus-like bacteria) release hydrogen sulfide during the decomposition of 2- sulfur containing proteins and by the direct reduction of sulfate (SO4 ). Hydrogen sulfide is also emitted from volcanoes, stagnant or polluted waters, and manure or coal pits with low oxygen content (Aneja 1990; Khalil and Ramussen 1984). The majority of carbonyl sulfide that enters the environment is released to air and it is very abundant in the troposphere (Conrad and Meuser 2000; EPA 1994c, 1994d; Meinrat et al. 1992; Simmons et al. 2012; Stimler et al. 2010). It enters the atmosphere from both natural and anthropogenic sources (EPA 1994c, 1994d; Meinrat et al. 1992; Stimler et al. 2010). Carbonyl sulfide is released from wetlands, salt marshes, soil, oceans, deciduous and coniferous trees, and volcanic gases (Blake et al. 2004; EPA 1994c, 1994d; Meinrat et al. 1992; Rasmussen et al. 1982a, 1982b; Stimler et al.
    [Show full text]
  • Chemical Resistance Guide
    CATALOG C-CRG-0517 VALVES Pressure-rated bronze, iron and alloy-iron gate, globe and check valves • Pressure- rated bronze ball valves • Boiler specialty valves • Commercial and industrial butterfly valves • Lined butterfly valves • Circuit balancing valves and kits • Carbon and stainless steel ball valves • ANSI flanged steel ball valves • Lined ball valves • Pneumatic and electric actuators and controls • Grooved ball and butterfly valves • High performance butterfly valves • UL/FM fire protection valves • MSS specification valves • Bronze specialty valves • Low pressure gate, globe, -GU check and ball valves • Frostproof sillcocks • Quarter-turn supply stops • Quarter- EM ID turn low pressure valves • PVC and CPVC plumbing and industrial ball valves • H Bronze and iron y-strainers • Sample valves • Sanitary valves • Lead-free valves E • Hydronic valves • Labor saving valves • Manifold systems • Water temperature C control valves • System quality valves • Press x PEX transition valves FITTINGS Wrot and cast copper pressure and drainage fittings • Cast copper alloy flanges • Powder coated steel companion flanges • Wrot and cast press fittings • ABS and PVC DWV fittings • Schedule 40 PVC pressure fittings • CPVC CTS fittings • CPVC CTS-to-metal transition fittings • Schedule 80 PVC and CPVC systems • Lead-free fittings • Press x PEX transition fittings • Cast bronze push fittings LEAD-FREE: Weighted average lead content ≤0.25% FLEXIBLE PIPING SYSTEMS PE-RT and PEX tubing for potable and radiant applications • Insulated tubing • Risers
    [Show full text]
  • SAFETY DATA SHEET Sodium Hydrosulfide Solution
    SAFETY DATA SHEET Sodium Hydrosulfide Solution Section 1. Identification Product name : Sodium Hydrosulfide Solution Synonyms : NaHS, sodium hydrogen sulfide, sodium bisulfide, sodium mercaptan Relevant identified uses of the substance or mixture and uses advised against Product use : Industrial Manufacturer : HollyFrontier Refining & Marketing LLC 2828 North Harwood Suite 1300 Dallas, Texas 75201 USA Customer Service: (888) 286-8836 Emergency telephone : CHEMTREC® (800) 424-9300 number CCN 201319 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : CORROSIVE TO METALS - Category 1 substance or mixture ACUTE TOXICITY (oral) - Category 4 SKIN CORROSION - Category 1 SERIOUS EYE DAMAGE - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May be corrosive to metals. Harmful if swallowed. Causes severe skin burns and eye damage. Precautionary statements Prevention : Wear protective gloves. Wear eye or face protection. Wear protective clothing. Keep only in original container. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling. Response : Absorb spillage to prevent material damage. IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Immediately call a POISON CENTER or physician. IF SWALLOWED: Immediately call a POISON CENTER or physician. Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. Wash contaminated clothing before reuse. Immediately call a POISON CENTER or physician. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Technical Guide for Solutions of Sodium Hydrosulfide Technical Guide for Solutions of Sodium Hydrosulfide
    TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE TABLE OF CONTENTS TOPIC PAGE Overview 1 Health Hazards and First Aid 2 Flammability and Fire Response / Storage 3 Handling (PPE) 4 Equipment Recommendations / Transfers 5 Shipping 13 Releases 14 APPENDIX Material Safety Data Sheet 16 H2S Monitors 23 Hydrogen Sulfide Toxicity Chart 26 Density, Boiling and Freezing Points of 28 Sodium Hydrosulfide Viscosity of Typical 45% Sodium 30 Hydrosulfide Solution Sodium Hydrosulfide Site Assessment 32 Checklist TECHNICAL GUIDE FOR SOLUTIONS OF SODIUM HYDROSULFIDE Overview Sodium Hydrosulfide, chemical formula NaHS, is a highly alkaline salt solution with a pH of 11.5 to 12.5. The solution is typically yellow to dark green and has a rotten-egg odor due to the Hydrogen Sulfide (H2S) content. The product strength ranges from 20% to 45% by weight and weighs 9 to 11 pounds per gallon (specific gravity from 1.13 to 1.30 g/cm3). Solutions of NaHS are considered stable in normal transportation. The vapor space over NaHS solutions contains highly toxic Hydrogen Sulfide gas. The Hydrogen Sulfide gas is colorless and it is heavier than air. It will remain close to the ground and collect in low lying areas. The amount of Hydrogen Sulfide gas evolved from NaHS solutions is noticeably increased when the pH of the solution is below the pH of 10.2. This hap pens when the solution comes into contact with acidic materials or other materials that have a pH lower than 10.2. Dilution of the material will also create a minimal amount of Hydrogen Sulfide gas due to the lower pH of water coming in contact with the solution.
    [Show full text]
  • Fate of Sodium Sulfide.Pdf
    ---· fate of SodiuM Sulfide and SodiuM ·sisul'ticte . ' 3 in SteaM Muffler Effluent ·,·:,· ~Jr l'f·;'.lfR & -..... _, __ . --.-- _,_,-; .'~;ENT The cheMical species generated by the treatMent of geotherMal steaM with sodiuM hydroxide <HaOH> include sodiuM carbonate <Haf0 3>, sodiuM bicarbonate <HaHCO?, sodiuM sulfide <HazS>, and sodiuM bisulfide <HaHS>. The forMer t~o cheMicals are environMentally benign and their disposal will have no significant effect on groundwater quality. SodiuM sulfide and bisulfide can 7 however~ have substantial iMpacts on water quality due to their toxicity at Moderate concentrations and their potential for odor generation at extreMely low concentrations. Hence 7 the fate of these cheMicals under norMal environMental conditions is of concern in considering their production and disposal as a result of treatMent of geotherMal steaM. Hydrogen sulfide abateMent froM geotherMal steaM has been accoMplished in Hawaii by the injection of a lOX solution of sodiuM hydroxide into the steaM phase at a Mole ratio of three Moles of sodiuM hydroxide to one Mole of hydrogen sulfide. The pH of the resultant solution will be in the range of 12 to 13 and hence the predoMinant sulfide species in solution will be sodiuM sulfide- Because a quantitative reaction of hydrogen sulfide to sodiuM sulfide ~auld require only two Moles of caustic to one MOle of sulfide~ an excess of caustic will be present that will Maintain the pH at a high level for a substantial period after the scrubber effluent is exposed to atMospheric air. Upon exposure of the sodiuM sulfide solution to air 7 the Most iMportant reaction that will occur is the oxidation of the sodiuM sulfide.
    [Show full text]
  • In Situ Continuous Measurement of Dissolved Sulfide in Sewer Systems
    In Situ Continuous Measurement of Dissolved Sulfide in Sewer Systems L Sutherland-Stacey 1, 2, S. Corrie 3, A. Neethling 2, I. Johnson 3, O. Gutierrez 4, R. Dexter 2, Z. Yuan 4, J. Keller 4, G. Hamilton 3 1 Physics Department, University of Auckland, Symonds Street, Auckland (Email: [email protected] ) 2 DCM Process Control, (Email: [email protected] ; [email protected] ; [email protected] ) 3 Gold Coast City Council (Email: [email protected]; [email protected]; [email protected] ) 4 Advanced Wastewater Management Centre, University of Queensland, (Email: [email protected]; [email protected]; [email protected] ) Abstract Sulfides are particularly problematic in the sewage industry. Hydrogen sulfide causes corrosion of concrete infrastructure, is dangerous at high concentrations and foul smelling at low concentrations. Despite the importance of sulfide monitoring there is no commercially available system to quantify sulfide in situ in waste water. In this article we report on our use of an s::can spectro::lyser TM to quantify bisulfide in waste water and additional analysis with a pH probe to calculate total dissolved sulfide. Our results show it is possible to use existing commercially available and field proven sensors to measure sulfide to mg/L levels continuously with little operator intervention and no sample preparation. Keywords: In-situ, on-line, sulfide, septic sewage, real-time INTRODUCTION Hydrogen sulfide (H 2S) is generated in the aqueous phase of wastewater by bacterial reduction of sulfate under anaerobic conditions (Tanaka et al. , 2000).
    [Show full text]
  • Sodium Hydrogen Sulfide
    Product Safety Summary Sodium Hydrogen Sulfide, Solid (70-72% with Crystallization Waters < 25%) CAS No. 16721-80-5 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names Sodium hydrogen sulfide (sulphide) Sodium hydrosulfide (hydrosulphide) Sodium mercaptan Sodium sulfhydrate Sodium bisulfide Sodium mercaptide Product Overview Solvay Fluorides, LLC does not sell sodium hydrogen sulfide directly to consumers. Consumers are unlikely to be exposed to sodium hydrogen sulfide in any of the consumer product applications listed below and only where the sodium hydrogen sulfide is not transformed or reacted. Sodium hydrogen sulfide is a yellow, solid flake with a sulfurous (rotten egg) smell. It is used in water treatment, the pulp and paper industry, and in leather processing as a tanning agent or hair remover (from hides). Sodium hydrogen sulfide may be used in the making of colors and dyes. It can also be used in the manufacture of other chemicals, metals or in ore processing (mining) and in waste water, soil and process sludge treatment. Exposure to sodium hydrogen sulfide can cause severe irritation to the skin, eyes, and respiratory tract. Sodium hydrogen sulfide may cause sensitization (develop an allergic reaction). Breathing sodium hydrogen sulfide dusts may aggravate asthma or other pulmonary (breathing) diseases and may cause headaches, dizziness, nausea and vomiting.
    [Show full text]
  • Sulfoxide Directed Metal-Free Cross Coupling: Propargylation of Aromatic and Heteroaromatic Systems
    Sulfoxide Directed Metal-free Cross Coupling: Propargylation of Aromatic and Heteroaromatic Systems A dissertation submitted to The University of Manchester for the degree of Master of Science by Research in the Faculty of Engineering and Physical Science. 2015 Yuntong Zhang School of Chemistry Contents List of Tables: ............................................................................... 4 List of Abbreviations ..................................................................... 5 Abstract ......................................................................................... 9 Declaration .................................................................................. 10 Copyright Statement .................................................................... 11 Acknowledgement ....................................................................... 12 Chapter 1: Introduction ............................................................... 13 1.1 Pummerer and Pummerer-type Reactions............................ 13 1.1.1 The Classical Pummerer Rearrangement .................... 13 1.1.2 Additive and Vinylogous Pummerer Reactions .......... 14 1.1.3 Interrupted Pummerer Reactions ................................ 18 1.2 Pummerer-Type Reactions Extended to Aromatic Systems . 24 1.2.1 Aromatic and Hetero-aromatic Pummerer-type Reactions ................................................................................. 24 1.2.2 Ortho Alkylations of Aryl and Heteroaryl Systems .... 29 1.3 Beyond Classical Pummerer Reaction Electrophiles
    [Show full text]
  • Chemistry of Boranes Pdf
    Chemistry of boranes pdf Continue Boron is a compound consisting of boron and hydrogen. In the early 19th century they were systematically examined by the German scientist Alfred Stock. The most basic example is diborán (\(\ce{B2H6}\)), all borons are electron-deficient compounds. \(\ce{B2H6}\) typically require 14 electrons to create 2c,2e bonds, but only 12 electron cylinders are present. For this reason, there are two B-H-B bonds that have three centers, but only two electrons (3c, 2e bond). This can be interpreted as molecular orbital, which is formed by a combination of contributed atomic orbits of three atoms. In the more complex boranes not only B-H-B bonds, but also B-B-B 3c, 2e-bonds occur. In such a bond, three B-atoms lie at the corners of an equilateral triangle with their sp3 hybrid orbits overlapping at its center. One of the common properties of borons is that they are flammable or react spontaneously through air. They burn with a characteristic green flame. And they're colorless, diamagnetic substances. In neutral boranes, the number of boron atoms is given by the prefix and the number of hydrogen atoms is given in brackets after the name. example: \(\ce{B5H11}\) -&gt; pentaborán(11), \(\ce{B4H10}\) -&gt; tetraborán(10) For ions, the number of hydrogen atoms is given in brackets and, as indicated by the number of boron-atoms, the fee is given in brackets after the name. example: \(\ce{[B6H6]^{2-}}\) -&gt; hexahydrohexaborat(2-) Wades rule helps predict the total boron shape from its formula.
    [Show full text]
  • ACS ENVR Final Program
    Division of Environmental Chemistry Technical Program Division of Environmental Chemistry Contacts CHAIR CHAIR-ELECT George P. Cobb Dionysios Dionysiou Baylor University University of Cincinnati [email protected] [email protected] IMMEDIATE PAST CHAIR TREASURER Tracy Williamson Xiaoping Pan U.S. EPA East Carolina University [email protected] [email protected] SECRETARY WEBMASTER Lindsey Welch Aditya (Ashi) Savara Cedar Crest College Oak Ridge National Laboratory [email protected] [email protected] PROGRAM CHAIRS: BUSINESS OFFICE Spring: Sherine Obare Peney Patton, Manager Western Michigan University [email protected] [email protected] Fall: Jillian Goldfarb www.acsenvr.com Boston University @ACS_envr [email protected] ACSenvr ENVR Acknowledgments Financial Contributors The Division of Environmental Chemistry gratefully acknowledges the financial and other contributions made to the ENVR program by the individuals and institutions listed below. Jeff and Lynne Rosen Shanghai AB Sciex Analytical Instrument Trading Co., Ltd. Michael J. McGuire Non-Financial Supporters Association of Environmental Engineering & Science Professors ACS Committee on Environmental Improvement Division of Agricultural and Food Chemistry Division of Agrochemicals Division of Analytical Chemistry Division of Chemical Education Division of Geochemistry Division of Medicinal Chemistry Division of Organic Chemistry Division of Small Chemical Business ENVR Governance Meetings Sunday, April 2, 2017 Golden Gate Ballroom C3, San Francisco Marriott
    [Show full text]
  • Laboratory Manual of Inorganic Chemistry and Elementary
    Class Q~D 4* ^_ Book._MU_ Copyright^0_ COPYRIGHT DEPOSIT GPO f * . ■ ■ ■ ■ ' * ' • * • . • nr i f«K . »J ’ P ‘ ' , v » 1 • ^ ‘ *-• ■ 1 * / ‘ ■ i LABORATORY MANUAL OF INORGANIC CHEMISTRY ----- AND ELEMENTARY QUALITATIVE ANALYSIS C. C. HEDGES HEAD OF DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING H. R. BRAYTON PROFESSOR OF INORGANIC CHEMISTRY IN THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS D. C. HEATH AND COMPANY BOSTON NEW YORK CHICAGO ATLANTA SAN FRANCISCO DALLAS LONDON ABRIDGED TABLE ATOMIC ATOMIC ELEMENT SYMBOL ELEMENT SYMBOL WEIGHT WEIGHT Aluminum. A1 26.97 Lithium.... Li 6.94 Antimony. Sb 121.77 Magnesium. 24.32 Arsenic. 74.96 Manganese. .. Mn 54.93 Barium. Ba 137.37 Mercury.. Hg 200.6 Bismuth. Bi 209.00 Molybdenum.. Mo 96.0 Boron. B 10.82 Nickel. ... Ni 58.69 Bromine..... Br 79.92 Nitrogen. N 14.01 Calcium. 40.07 Oxygen.. O 16.0 Carbon. C 12.00 Phosphorus. P 31.03 Chlorine. Cl 35.46 Platinum.... Pt 195.23 Chromium. Cr 52.00 Potassium. K 39.10 Cobalt. Co 58.94 Silicon.. Si 28.06 Copper. Cu 63.57 Silver ... Ag 107.88 Fluorine. .. F 19.00 Sodium. Na 23.00 Gold. Au 197.20 Strontium. Sr 87.63 Hydrogen. H 1.008 Sulfur.. .. S 32.06 Iodine. I 126.93 Tin. .. Sn 118.70 Iron. Fe 55.84 Uranium. U 238.17 Lead. Pb 207.20 Zinc. Zn 65.38 COMMON VALENCE OF ELEMENTS AND RADICALS i 2 3 4 5 6 Br Ba A1 C Sb Cr Cl Ca Sb N As S Cu C As Pt N F Co Bi Si P H Cu B s I Fe Cr Sn Li Pb Au (Si04) Hg Mg Fe N Mn N K Hg Ni Ag Ni P Na N (BO,) (NO*) O (AsO,) (NO,) Sr (As04) (Mn04) S (PO,) (C*H,0*) Sn (P04) (OH) Zn (CIO) (SO,) (CIO*) (S04) (ClOa) (CO,) (CIO*) (Cr04) (Cr*07) (B407) Note.
    [Show full text]
  • Dairygem Reference Manual | 0
    Title Page DAIRY GAS EMISSIONS MODEL Reference Manual Version 3.3 C. Alan Rotz, Dawn S. Chianese, Felipe Montes, Sasha Hafner and Henry F. Bonifacio Pasture Systems and Watershed Management Research Unit Agricultural Research Service United States Department of Agriculture September 2016 1 Table of Contents Title Page -2 1. Table of Contents -1-1 EXECUTIVE SUMMARY 2-3 INTRODUCTION 4-5 Model Scope 5-6 Model Overview 6-8 Figure 1.1 - Production System Boundaries and Components 9 AVAILABLE FEEDS 10 Pasture Use 10-12 Feed Characteristics 12-14 Table 2.1 - Fill and Roughage Factors 14 DAIRY HERD 15 Animal and Herd Characteristics 15-16 Feed Allocation 16-17 Animal Nutrient Requirements 17-19 Feed Intake and Milk Production 19-20 Manure DM and Nutrient Production 20-21 Table 2.2 - Dairy Cow Characteristics 22 Table 2.3 - Dairy Ration Constraints 23-24 MANURE AND NUTRIENTS 25 Manure Handling 25-26 Manure Import and Export 27-28 Anaerobic Digestion 28-31 Manure Composting 31-38 Table 3.1 - Model Equations 39-41 Table 3.2 - Simulation Settings 42 Figure 3.1 - Model flow for a compost windrow 43 Figure 3.2 - Compost Simulation Profiles 43 Figure 3.3 - Compost carbon and nitrogen flows 44 AMMONIA EMISSIONS 45 Formation and Emission Processes 45-49 Animal Housing 49-57 DairyGEM Reference Manual | 0 Manure Storage 57-58 Field Application 58-60 Grazing Deposits 60-61 Table 4.1 - Bedding Material Properties 62 HYDROGEN SULFIDE 63 Formation and Emission Processes 63-68 Enteric Emission 68 Housing Floor 68-69 Manure Storage 69-70 Field Applied Manure
    [Show full text]