MAKARONESIA N14.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biospeleology in Macaronesia Pedro Oromí
98 AMCS Bulletin 19 / SMES Boletín 7 — 2004 Biospeleology in Macaronesia Pedro Oromí Dept. of Animal Biology, University of La Laguna, Tenerife, Canary Islands Geographical and speleological original basements, were uplifted over caves do not necessarily follow the sur- background the sea level and are now exposed on face topography, and normally open to the surface by the effects of erosion. On outside at cliffs and other steep terrains In the biogeographical sense Maca- other islands like Santa Maria (Azores) due to erosion. Some examples of this ronesia is a subregion of the Western and Porto Santo (Madeira) some lime- kina of caves are Gruta dos Anjos (Santa Palaearctic which includes southwest stone rocks of marine origin have been Maria), Gruta do Inferno (Selvagem continental Portugal, part of the coastal formed and are actually emerged because Grande) or Cueva de la Fajanita (La zone of south Morocco, and the Atlantic of eustatic movements of the sea level. Palma). archipelagos of the Azores, Madeira, These non volcanic rocks are anyway The volcanic pits often derive from Selvagens, Canaries and Cape Verde. very scarce, and have developed such a the emptying of volcanic chimneys when Since the establishment of the term in slight karstification that true caves are the eruption stops and the remaining lava the 19th century by the British botanist not found at all inside them. Therefore, contracts. The spatter cones are hollows P.B. Webb, much has been discussed in the Macaronesian islands the caves with limited dimensions, while other about the validity of Macaronesia as a enough developed as to be considered volcanic pits can exceed 100 m deep, biogeographic unit, about its appropri- of speleological interest occur only in like Algar do Montoso, in São Jorge ate space and boundaries, and about volcanic terrains. -
(Amsel, 1954) (Lepidoptera: Pyralidae, Phycitinae) – a New Species for the Croatian Pyraloid Moth Fauna, with an Updated Checklist
NAT. CROAT. VOL. 30 No 1 37–52 ZAGREB July 31, 2021 original scientific paper / izvorni znanstveni rad DOI 10.20302/NC.2021.30.4 PSOROSA MEDITERRANELLA (AMSEL, 1954) (LEPIDOPTERA: PYRALIDAE, PHYCITINAE) – A NEW SPECIES FOR THE CROATIAN PYRALOID MOTH FAUNA, WITH AN UPDATED CHECKLIST DANIJELA GUMHALTER Azuritweg 2, 70619 Stuttgart, Germany (e-mail: [email protected]) Gumhalter, D.: Psorosa mediterranella (Amsel, 1954) (Lepidoptera: Pyralidae, Phycitinae) – a new species for the Croatian pyraloid moth fauna, with an updated checklist. Nat. Croat., Vol. 30, No. 1, 37–52, 2021, Zagreb. From 2016 to 2020 numerous surveys were undertaken to improve the knowledge of the pyraloid moth fauna of Biokovo Nature Park. On August 27th, 2020 one specimen of Psorosa mediterranella (Amsel, 1954) from the family Pyralidae was collected on a small meadow (985 m a.s.l.) on Mt Biok- ovo. In this paper, the first data about the occurrence of this species in Croatia are presented. The previ- ous mention in the literature for Croatia was considered to be a misidentification of the past and has thus not been included in the checklist of Croatian pyraloid moth species. P. mediterranella was recorded for the first time in Croatia in recent investigations and, after other additions to the checklist have been counted, is the 396th species in the Croatian pyraloid moth fauna. An overview of the overall pyraloid moth fauna of Croatia is given in the updated species list. Keywords: Psorosa mediterranella, Pyraloidea, Pyralidae, fauna, Biokovo, Croatia Gumhalter, D.: Psorosa mediterranella (Amsel, 1954) (Lepidoptera: Pyralidae, Phycitinae) – nova vrsta u hrvatskoj fauni Pyraloidea, s nadopunjenim popisom vrsta. -
Recerca I Territori V12 B (002)(1).Pdf
Butterfly and moths in l’Empordà and their response to global change Recerca i territori Volume 12 NUMBER 12 / SEPTEMBER 2020 Edition Graphic design Càtedra d’Ecosistemes Litorals Mediterranis Mostra Comunicació Parc Natural del Montgrí, les Illes Medes i el Baix Ter Museu de la Mediterrània Printing Gràfiques Agustí Coordinadors of the volume Constantí Stefanescu, Tristan Lafranchis ISSN: 2013-5939 Dipòsit legal: GI 896-2020 “Recerca i Territori” Collection Coordinator Printed on recycled paper Cyclus print Xavier Quintana With the support of: Summary Foreword ......................................................................................................................................................................................................... 7 Xavier Quintana Butterflies of the Montgrí-Baix Ter region ................................................................................................................. 11 Tristan Lafranchis Moths of the Montgrí-Baix Ter region ............................................................................................................................31 Tristan Lafranchis The dispersion of Lepidoptera in the Montgrí-Baix Ter region ...........................................................51 Tristan Lafranchis Three decades of butterfly monitoring at El Cortalet ...................................................................................69 (Aiguamolls de l’Empordà Natural Park) Constantí Stefanescu Effects of abandonment and restoration in Mediterranean meadows .......................................87 -
Lepidoptera: Pyralidae, Crambidae) Ростовской Области
Эверсманния. Энтомологические исследования Eversmannia в России и соседних регионах. Вып. 17-18. 15. VI. 2009: 57–70 No. 17-18. 2009 А.Н. Полтавский 1, К.С. Артохин 2, Ю.А. Силкин 3 1г. Ростов-на-Дону, Ботанический сад Южного Федерального университета 2г. Ростов-на-Дону, ООО «Агролига России» 3г. Ростов-на-Дону, Ростовское отделение РЭО К фауне огнёвок (Lepidoptera: Pyralidae, Crambidae) Ростовской области A.N. Poltavsky, K.S. Artokhin, Y.A. Silkin. To the fauna of Pyralid and Crambid moths (Lepidoptera: Pyralidae, Crambidae) of Rostov-on-Don Province. SUMMARY. Since 1978, during day- and night-time moth monitoring in Rostov-on-Don Province, 5397 ex. of 137 species Pyralidae and Crambidae were collected in 36 localities. Preliminary studies of S.N. Alpheraky [Алфера- ки, 1876] represented 63 species. The total list now includes 157 species of both families. Two species of Pyralidae (Phycitinae), Pempelia amoenella (Zeller, 1848) and Metallosticha argyrogrammos (Zeller, 1847), re reported from Russia for the first time. The most common and mass species are: Nomophila noctuella ([Den. & Schiff.]), Etiella zinckenella (Tr.), Aporodes floralis (Hb.), Euchromius ocellea (Hw.), Actenia brunnealis (Tr.), Homoeosoma nimbella (Dup.), Mecyna flavalis ([Den. & Schiff.]), Synaphe moldavica (Esp.), Pediasia luteella ([Den. & Schiff.]), Lamoria anella ([Den. & Schiff.]), Endotricha flammealis ([Den. & Schiff.]), Parapoynx stratiotata (L.), Hypsopygia costalis (F.), Calamotropha paludella (Hb.), Thisanotia chrysonuchella (Scop.), Agriphila tristella ([Den. & Schiff.]). Введение Для Ростовской области известен единственный список огнёвок, включающий 63 вида [Ал- фераки, 1876], причем часть указаний нуждается в уточнении. Особую актуальность изучение региональной фауны огнёвок имеет в связи с тем, что эта группа представляет весомую часть биоразнообразия, включает значительное число угрожаемых видов и индикаторов малонару- шенных природных комплексов [Большаков, 1999]. -
Efficient Assessment of Nocturnal Flying Insect Communities by Combining Automatic Light Traps and DNA Metabarcoding
Received: 7 May 2020 | Revised: 18 July 2020 | Accepted: 24 July 2020 DOI: 10.1002/edn3.125 ORIGINAL ARTICLE Efficient assessment of nocturnal flying insect communities by combining automatic light traps and DNA metabarcoding Vanessa A. Mata1 | Sónia Ferreira1 | Rebeca M. Campos1 | Luís P. da Silva1 | Joana Veríssimo1,2 | Martin F. V. Corley1 | Pedro Beja1,3 1CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Abstract Universidade do Porto, Vila do Conde, Increasing evidence for global insect declines is prompting a renewed interest in the Portugal survey of whole insect communities. DNA metabarcoding can contribute to assess- 2Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, ing diverse insect communities over a range of spatial and temporal scales, but ef- Portugal forts are still needed to optimize and standardize procedures. Here, we describe and 3CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, test a methodological pipeline for surveying nocturnal flying insects, combining auto- Instituto Superior de Agronomia, matic light traps and DNA metabarcoding. We optimized laboratory procedures and Universidade de Lisboa, Lisboa, Portugal then tested the methodological pipeline using 12 field samples collected in northern Correspondence Portugal in 2017. We focused on Lepidoptera to compare metabarcoding results with Vanessa A. Mata, CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos those from morphological identification, using three types of bulk samples produced Genéticos, Universidade do Porto, Campus from each field sample (individuals, legs, and the unsorted mixture). The customized de Vairão, Vila do Conde, Portugal. Email: [email protected] trap was highly efficient at collecting nocturnal flying insects, allowing a small team to operate several traps per night, and a fast field processing of samples for subse- Funding information Energias de Portugal (EDP); Agência quent metabarcoding. -
Field Journal 2014 Tenerife FINAL
Canary Islands, Spain The Canary Islands are part of the Canary Island Seamount Province (CISP) that consists of more than 100 volcanic seamounts. They are part of a hotspot track that extends across the African plate with a very general northeast-southwest age progression. The track begins near Essaouira seamount (68 Ma) and terminates near El Hierro and La Palma (0.4 Ma). It is approximately 1300 kms long and 350 kms wide and trends parallel to the African continental margin. Presently, there is a submarine eruption occurring south of El Age vs distance for Canary and Hawaiian Islands (Carracedo Hierro, extending the track. et al., 1998) The track is not well defined; the distribution of “oldest” ages of the seamounts is varies considerably and the seamount trend is parallel to paleomagnetic anomaly M25 (142 Ma) in the Atlantic seafloor. Ar40/Ar39 data indicate a physical connection between the mantle plume and the moving plate. The most probable model for the plume is shallow mantle upwelling beneath the Atlantic basin that generated Island age trend and overlap of the island aprons (Guillou et al., 2004) recurrent melting from the Late Jurassic to Recent (van den Bogaard, 2013). This is very different than the fixed-plume, deep source, high production Hawaii-Emperor hotspot track. A deep fixed- plume mantle upwelling would have generated a track that trends more east-west. Herman (1975) related the magmatism to a propagating fracture system from the Atlas mountains (trans-Agadir fault) that created a conduit through the lithosphere but this model has significant evidence against it (Guillou et al., 2004). -
Heathlands a Lost World?
Heathlands A Lost World? Mattias Lindholm Institutionen för biologi och miljövetenskap Naturvetenskapliga fakulteten Akademisk avhandling för filosofie doktorsexamen i naturvetenskap med inriktning biologi, som med tillstånd från Naturvetenskapliga fakulteten kommer att offentligt försvaras fredag den 24 maj 2019, kl. 10.00 i Hörsalen, Botanhuset, Institutionen för biologi och miljövetenskap, Carl Skottsbergs gata 22B, Göteborg. Fakultetsopponent är Docent Erik Öckinger, Institutionen för ekologi, Sveriges lantbruksuniversitet, Uppsala. Heathlands – A Lost World? Mattias Lindholm Department of Biological and Environmental Sciences University of Gothenburg Box 461 SE405 30 Göteborg Sweden E-mail: [email protected] © Mattias Lindholm 2019 Cover: Heathland. Illustration by Per Axell ISBN 978-91-7833-446-9 (Printed) ISBN 978-91-7833-447-6 (PDF) http://hdl.handle.net/2077/59796 Printed by BrandFactory Group AB 2019 Till Valle och Arvid Figure 1. Arnica montana. Illustration by Kerstin Hagstrand-Velicu. Lindholm M. (2019) Heathlands – A Lost World? Mattias Lindholm, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE405 30 Göteborg, Sweden E-mail: [email protected] Keywords Heathland, Calluna, Conservation, Coleoptera, Carabidae, Lycosidae, Management, Restoration, Conservation strategy Abstract Heathland is a familiar landscape type in southwest Sweden. It is open with few trees, and the vegetation is dominated by dwarf-shrubs growing on nutrient-poor soils. Dry heaths with Heather Calluna vulgaris and wet heaths with Bell Heather Erica tetralix are common vegetation communities in the heathland, and they often form mosaics. The heathland landscape is highly threatened, with large substantial areal losses of 95% in Sweden since the 1800s. Heathland supports around 200 red-listed species, including plants, insects, birds and reptiles. -
Biodiversity Response to Land Use Change Across Scales
Biodiversity response to land use change across scales Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I - Biowissenschaften - der Martin-Luther-Universität Halle Wittenberg, vorgelegt von Herr Murilo Dantas de Miranda, M.Sc. geboren am 16.05.1986 in Ribeira do Pombal, Brasilien Namen der Gutacher: (1) Prof. Dr. Henrique Pereira - Martin-Luther-Universität Halle-Wittenberg, Deutschland (2) Prof. Dr. Ulrich Brose - Friedrich Schiller Universität Jena, Deutschland (3) Prof. Dr. Paulo Borges - Universidade dos Açores, Portugal Datum der Verteidigung: 04 Juli 2017 Dedico as minhas mainhas e a meu painho Contents List of Tables 5 List of Figures 7 Summary 9 Chapter 1: Introduction 11 Land use change and biodiversity . 11 Diversity components: alpha, beta and gamma diversity . 12 Species abundance distribution . 14 Chapter overview . 16 Chapter 2: Testing the habitat amount hypothesis 23 Chapter 3: Moth diversity patterns under farmland abandonment 60 Chapter 4: Species traits shape the relationship between local and regional SADs 84 Chapter 5: Synthesis 112 Habitat amount, not patch size and isolation . 112 Moth diversity patterns under farmland abandonment . 114 Species traits shape the relationship between local and regional SADs 115 Appendix 121 Curriculum Vitae . 121 List of publications and conference participations . 123 Authors’ contributions . 125 Eigenständigkeitserklärung . 126 List of Tables 1 Fit output of both classic and countryside species-area relationship (SAR) models. 32 2 Ranking and autocovariate model output following the Information-Theoretic approach of five statistical models explaining species richness for forest (A) and meadow (B) species as a function of forest habitat amount (Hab) at the 160 and 320 m radius scale, respectevily, patch size (Size), distance to nearest patch (Dist), and their interactions with habitat amount (Hab:Size and Hab:Dist), both with (A/B1) and without (A/B2) spatial autocorrelation (AS) . -
Michaux, Jacques; Talavera, Francisco Garcia; Van Der Plicht, Johannes
University of Groningen Extinction of endemic vertebrates on islands Bocherens, Herve; Michaux, Jacques; Talavera, Francisco Garcia; van der Plicht, Johannes Published in: Comptes Rendus. Palévol DOI: 10.1016/j.crpv.2006.04.001 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2006 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Bocherens, H., Michaux, J., Talavera, F. G., & Van der Plicht, J. (2006). Extinction of endemic vertebrates on islands: The case of the giant rat Canariomys bravoi (Mammalia, Rodentia) on Tenerife (Canary Islands, Spain). Comptes Rendus. Palévol, 5(7), 885-891. DOI: 10.1016/j.crpv.2006.04.001 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 10-02-2018 C. -
South-Central England Regional Action Plan
Butterfly Conservation South-Central England Regional Action Plan This action plan was produced in response to the Action for Butterflies project funded by WWF, EN, SNH and CCW by Dr Andy Barker, Mike Fuller & Bill Shreeves August 2000 Registered Office of Butterfly Conservation: Manor Yard, East Lulworth, Wareham, Dorset, BH20 5QP. Registered in England No. 2206468 Registered Charity No. 254937. Executive Summary This document sets out the 'Action Plan' for butterflies, moths and their habitats in South- Central England (Dorset, Hampshire, Isle of Wight & Wiltshire), for the period 2000- 2010. It has been produced by the three Branches of Butterfly Conservation within the region, in consultation with various other governmental and non-governmental organisations. Some of the aims and objectives will undoubtedly be achieved during this period, but some of the more fundamental challenges may well take much longer, and will probably continue for several decades. The main conservation priorities identified for the region are as follows: a) Species Protection ! To arrest the decline of all butterfly and moth species in South-Central region, with special emphasis on the 15 high priority and 6 medium priority butterfly species and the 37 high priority and 96 medium priority macro-moths. ! To seek opportunities to extend breeding areas, and connectivity of breeding areas, of high and medium priority butterflies and moths. b) Surveys, Monitoring & Research ! To undertake ecological research on those species for which existing knowledge is inadequate. Aim to publish findings of research. ! To continue the high level of butterfly transect monitoring, and to develop a programme of survey work and monitoring for the high and medium priority moths. -
The Vartian Collection Part I. Noctuoidea. Fibigeriana
1 2 3 4 5 6 7 8 9 10 11 12 13 Plate 1: 1. Dudusa nobilis; 2. Anticyra combusta; 3—4. Cerura vinula; 5—6. C. iberica; 7-8. C. delavoiei delavoiei; 9—11. C. delavoiei canariensis; 12—13. C. intermedia. 12 3 4 5 67 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Plate 102: 1—2. Dryobotodes carbonis europaea; 3—4. D. tenebrosa; 5. Blepharosis paspa; 6—7. B. grumi; 8—9. Bryopolia chamaeleon; 10—11. B. holosericea; 12—13. B. tsvetaevi; 14—15. B. virescens; 15. Bryoxena constricta; 16—17. B.tribulis; 18—20. B. centralasiae; 21—22. B. boursini; 23—26. Antitype chi; 27—28. A. jonis; 29—30. A. suda suda; 31—32. A. suda astfaelleri. 123 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Plate 30: 1—2. Zanclognatha zelleralis; 3. Hydrillodes repugnalis; 4. Plusiodonta coelonota; 5. Oresia emarginata; 6. O. excavata; 7—8. Calyptra thalictri thalictri; 9—10. C. thalictri pallida; 11. C. hokkaida; 12. Eudocima okurai; 13. E. materna; 14—15. E. falonia; 16—17. Hypenodes humidalis; 18—19. H. orientalis; 20. H. turcomanica; 21. Schrankia balneorum; 22. S. costaestrigalis costaestrigalis; 23—24. S. costaestrigalis ssp. from Canary Islands; 25—26. S. taenialis; 27—28. Neachrostia kasyi; 29—30. Parascotia robiginosa. 1234 5 6 7 8 9 10 11 12 13 14 17 16 15 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Plate 58: 1—2. -
Revisiting the Foraging Ecology and Extinction History of Two Endemic Vertebrates from Tenerife, Canary Islands
quaternary Article Revisiting the Foraging Ecology and Extinction History of Two Endemic Vertebrates from Tenerife, Canary Islands Brooke Erin Crowley 1,* , Yurena Yanes 2, Stella Grace Mosher 3 and Juan Carlos Rando 4 1 University of Cincinnati, Departments of Geology and Anthropology, Cincinnati, OH 45221, USA 2 University of Cincinnati, Department of Geology, Cincinnati, Ohio 45221, USA; [email protected] 3 Salt Lake Community College, Division of Natural Sciences, Salt Lake City, UT 84123, USA; [email protected] 4 Universidad de La Laguna, Departamento de Biología Animal, Edafología y Geología, 38200 Santa Cruz de Tenerife, Spain; [email protected] * Correspondence: [email protected]; Tel.: +1-513-221-1039 Received: 11 January 2019; Accepted: 18 February 2019; Published: 21 February 2019 Abstract: We used carbon (δ13C) and nitrogen (δ15N) isotopes to examine the foraging ecology of Tenerife giant rats (Canariomys bravoi) and lizards (Gallotia goliath) in northwestern Tenerife, which until recently, were the island’s largest terrestrial vertebrates. We combined new isotope data for 28 C. bravoi and 14 G. goliath with published regional data for both species and then compared these with data for co-occurring extant taxa and modern C3 plants. Isotope data suggest both extinct species relied primarily on C3 resources and were trophic omnivores. However, the two species appear to have partitioned their resources when living in sympatry. Isotopic overlap between C. bravoi and Rattus spp., and between G. goliath, extant Gallotia galloti, and introduced rabbits (Oryctolagus cuniculus) suggests reliance on similar foods. We radiocarbon dated four C. bravoi and two G. goliath with the most extreme isotope values.