Water and Asexual Reproduction in the Ingoldian Fungi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Relationships Among Some Cercosporoid Anamorphs of Mycosphaerella Based on Rdna Sequence Analysis
Mycol. Res. 103 (11): 1491–1499 (1999) Printed in the United Kingdom 1491 Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis ELWIN L.STEWART, ZHAOWEI LIU, PEDRO W.CROUS1, AND LES J.SZABO2 " Department of Plant Pathology, The Pennsylvania State University, Buckhout Laboratory, University Park, PA, 16802, U.S.A., Department of # Plant Pathology, University of Stellenbosch, P. Bag X1, Matieland 7602, South Africa, and USDA ARS Cereal Disease Laboratory, 1551 Lindig Street, St Paul, MN 55108, U.S.A. Partial rDNA sequences were obtained from 26 isolates representing species of Cercospora, Passalora, Paracercospora, Pseudocercospora, Ramulispora, Pseudocercosporella and Mycocentrospora. The combined internal transcribed spacers (ITS) including the 5n8S rRNA gene and 5h end of the 25S gene (primer pairs F63\R635) on rDNA were amplified using PCR and sequenced directly. The ITS regions including the 5n8S varied in length from 502 to 595 bp. The F63\R635 region varied from 508 to 519 bp among isolates sequenced. Reconstructed phylogenies inferred from both regions had highly similar topologies for the taxa examined. Phylogenetic analysis of the sequences resulted in four well-supported clades corresponding to Cercospora, Paracercospora\Pseudocercospora, Passalora and Ramulispora, with bootstrap values greater than 92% for each clade. Based on the results of the analysis, a new combination for Pseudocercosporella aestiva is proposed in Ramulispora, and Paracercospora is reduced to synonymy with Pseudocercospora. Mycosphaerella (Dothideales, Mycosphaerellaceae) is one of Colletogloeopsis (Crous & Wingfield, 1997a), Uwebraunia (Crous the largest genera of ascomycetes (Corlett, 1991, 1995), and & Wingfield, 1996) and Sonderhenia (Park & Keane, 1984; has been linked to at least 27 different coelomycete or Swart & Walker, 1988). -
Identification of the Extent and Cause of Parsnip Canker
Identification of the extent and cause of parsnip canker Elizabeth Minchinton Victorian Department of Primary Industries (VICDPI) Project Number: VG05045 VG05045 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetables industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1687 X Published and distributed by: Horticultural Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2008 DEPARTMENT OF PRIMARY INDUSTRIES HAL Report VG04016 The extent and cause of parsnip canker Horticulture Australia VG05045 (January 2008) Minchinton et al. Department of Primary Industries, Knoxfield Centre HAL Report VG05045 Horticulture Australia Project No: VG05045 Project Leader: Dr Elizabeth Minchinton Contact Details: Department of Primary Industries, Knoxfield Centre Private Bag 15, Ferntree Gully DC, Victoria 3156 Tel: (03) 9210 9222 Fax: (03) 9800 3521 Email: [email protected] Project Team: Desmond Auer, Fiona Thomson and Slobodan Vujovic Address: Department of Primary Industries, Knoxfield Centre, Private Bag 15, Ferntree Gully DC, Victoria 3156. Purpose of project: This report details the outcomes of a 24-month project investigating parsnip canker. -
Identification of Fungi That Cause Tip Rot of Carrot and Determine Effect of Storage Temperature and Cultivar on Tip Rot Development
Master’s Thesis 2021 30 ECTS Faculty of Biosciences (BIOVIT-IPV) Identification of fungi that cause tip rot of carrot and determine effect of storage temperature and cultivar on tip rot development Photo: Belachew Asalf Rizan Amin Manla Mohamad Master in plant science 1 Abstract: Carrot is one of the important vegetables in Norway, and after harvesting it stored in cold storage for up to 7 months. During such long storage time, there is great yield and quality losses due to various diseases, and one of the most severe problem is tip rot of carrots. Tip rot starts as discoloration and necrosis from the tip (base) of the taproot and goes upwards in the edible part of the root. The symptom appears during and after cold storage but may be seen already at harvesting. In this study, we hypothesized that fungi have a role in tip rot disease development. To identify the primary causal agents of tip rot in Norway, we took samples from four fixed fields from Rogaland, Trøndelag, Innlandet, Viken and six commercial cold storages, in Rogaland, Trøndelag, Innlandet and Viken. Selection of fields and cold storages and sampling were caried out in close collaboration with advisors in Norsk Landbruksrådgiving (NLR). Based on morphological (symptoms appearance, isolation, and microscopy) and molecular approaches like (DNA sequencing and metabarcoding), the most frequently appearing pathogens were selected for further studies. The pathogenicity of the candidate pathogens was tested on four carrot cultivars, Dailyance, Brillyance, Namdal and Romance. In addition, the effect of temperature on the latent period of tip rot was determined by incubating inoculated carrots with candidate pathogens at 0+1°C, 3±1°C and 6±1°C. -
Genera of Phytopathogenic Fungi: GOPHY 1
Accepted Manuscript Genera of phytopathogenic fungi: GOPHY 1 Y. Marin-Felix, J.Z. Groenewald, L. Cai, Q. Chen, S. Marincowitz, I. Barnes, K. Bensch, U. Braun, E. Camporesi, U. Damm, Z.W. de Beer, A. Dissanayake, J. Edwards, A. Giraldo, M. Hernández-Restrepo, K.D. Hyde, R.S. Jayawardena, L. Lombard, J. Luangsa-ard, A.R. McTaggart, A.Y. Rossman, M. Sandoval-Denis, M. Shen, R.G. Shivas, Y.P. Tan, E.J. van der Linde, M.J. Wingfield, A.R. Wood, J.Q. Zhang, Y. Zhang, P.W. Crous PII: S0166-0616(17)30020-9 DOI: 10.1016/j.simyco.2017.04.002 Reference: SIMYCO 47 To appear in: Studies in Mycology Please cite this article as: Marin-Felix Y, Groenewald JZ, Cai L, Chen Q, Marincowitz S, Barnes I, Bensch K, Braun U, Camporesi E, Damm U, de Beer ZW, Dissanayake A, Edwards J, Giraldo A, Hernández-Restrepo M, Hyde KD, Jayawardena RS, Lombard L, Luangsa-ard J, McTaggart AR, Rossman AY, Sandoval-Denis M, Shen M, Shivas RG, Tan YP, van der Linde EJ, Wingfield MJ, Wood AR, Zhang JQ, Zhang Y, Crous PW, Genera of phytopathogenic fungi: GOPHY 1, Studies in Mycology (2017), doi: 10.1016/j.simyco.2017.04.002. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. -
Bartz & Brecht Ch. 20
20 Fungi USE KORSTEN and FRITZ C. WEHNER University of Pretoria, Pretoria, South Africa I. INTRODUCTION Traditionally fungi were accepted as a single kingdom along with bacteria (Monera), plants (Plantae), animals (Animalia), and protists (Protista) according to the five-kingdom scheme of Whittaker (1969). However, with advances in ultrastructural, biochemical, and particularly molecular biology, treatment of fungi as one of the five kingdoms of life has become increasingly untenable. The organisms studied by mycologists are now established as polyphyletic and are referred to in 11 phyla and one form-phylum in three kingdoms of Eukaryota—namely Protozoa, Chromista, and Fungi. Members of the Protozoa are predominantly unicellular, plasmodial, or colonial phagotrophic, wall-less in the trophic state, with tubular mitochondrial cristae and nontubular flagellar mastigonemes. The Chromista are unicellular, filamentous or colonial primarily phototrophic organisms, often with cellulosic cell walls and with tubular mitochondrial cristae and flagellar mastigo nemes. True fungi feed by absorption, contain chitin and |3-glucans in their cell walls, have mitochondria with flattened cristae and are mostly non-flagellate; if flagellate, flagellar mastigonemes are absent (Hawksworth et al., 1995). Of the more than 70,000 fungal species that have been described, only a relatively small number can be regarded as primary postharvest pathogens of vegetables. Most of these belong to the Ascomycota or Deuteromycota, with a few species in the Basidiomy- cota, Zygomycota (all true fungi) or Oomycota (kingdom Chromista). These phyla are characterized by the following: Ascomycota: Meiospores (ascospores) produced endogenously in asci, which are either naked or contained within an ascoma. Basidiomycota: Meiospores (basidiospores) produced exogenously on basidia of various shapes.