© Cambridge University Press Cambridge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Solar System and Its Place in the Galaxy in Encyclopedia of the Solar System by Paul R
Giant Molecular Clouds http://www.astro.ncu.edu.tw/irlab/projects/project.htm Æ Galactic Open Clusters Æ Galactic Structure Æ GMCs The Solar System and its Place in the Galaxy In Encyclopedia of the Solar System By Paul R. Weissman http://www.academicpress.com/refer/solar/Contents/chap1.htm Stars in the galactic disk have different characteristic velocities as a function of their stellar classification, and hence age. Low-mass, older stars, like the Sun, have relatively high random velocities and as a result c an move farther out of the galactic plane. Younger, more massive stars have lower mean velocities and thus smaller scale heights above and below the plane. Giant molecular clouds, the birthplace of stars, also have low mean velocities and thus are confined to regions relatively close to the galactic plane. The disk rotates clockwise as viewed from "galactic north," at a relatively constant velocity of 160-220 km/sec. This motion is distinctly non-Keplerian, the result of the very nonspherical mass distribution. The rotation velocity for a circular galactic orbit in the galactic plane defines the Local Standard of Rest (LSR). The LSR is then used as the reference frame for describing local stellar dynamics. The Sun and the solar system are located approxi-mately 8.5 kpc from the galactic center, and 10-20 pc above the central plane of the galactic disk. The circular orbit velocity at the Sun's distance from the galactic center is 220 km/sec, and the Sun and the solar system are moving at approximately 17 to 22 km/sec relative to the LSR. -
SSSS It's About Time Division C Event by Syo Astro
SSSS It’s About Time Division C Event By syo_astro Directions * Each question is worth one point, where each part (ie. a, b, etc or i, ii, etc) is worth an additional point. The test is 71 points and 30 minutes. Use space provided for answers. * The test involves various types of questions relating to time, timekeeping, astronomy, physics, and/or mechanics. * Within plus or minus 10% of a quantitative answer is considered correct. Without units and significant figures, a correct answer is given a ½ point. * Don’t be afraid to guess (logically) for partial credit where possible, and have fun! PAGE 1 1. This man came up with the idea of absolute time. 2. In 1502, who built the first pocketwatch? 3. Who invented the 1st quartz clock in 1927? 4. In 1577, who invented the first minute hand? 5. Who completed the first documented astrarium clock? 6. In what year was daylight saving time first established in the US? 7. What type of clocks are H1, H2, H3, H4, and H5? 8. What escapement is shown below? 9. Describe one common problem with the escapement below. 10. Label the following referring to the escapement below. a. b. c. d. e. f. g. h. PAGE 2 11. What is the physical purpose of the pendulum in clocks? Why is one used? 12. What clockmaker’s tool is an iron vertical plunger that can place rollers and balanced wheels on staffs? 13. Circle the fusee in the device shown below. a. What is its purpose? 14. What is a silent timekeeping instrument traditionally called? 15. -
Mg Minigears and an Ancient Geared Clock That
ADDENDUM mG miniGears Products of Padua: and an Ancient Geared Clock that Tracks Planets’ Movements Some things take time, but a magazine ad more than 600 years in the making? That’s unusual, but it’s one way of looking at the ads for mG miniGears that featured a complex, highly geared, planet- tracking clock called the Astrarium. The Addendum team had noticed the clock in miniGears’ ads in Gear Technology; the last one appeared in the Jan./Feb. ’04 issue, and the top of it is at right. But we only recently learned the story behind the clock, why the ads featured it, and how a man’s interest in the Astrarium led to the creation of two books and a CD about the ancient device. The story starts with Giovanni Dondi, who lived in 14th-century Italy, in Padua. Although a doctor, Dondi was interested in astronomy and clockmaking, so much so he designed and built the original Astrarium in the 1360s. More than a regular clock, the Astrarium uses a year wheel and a geared assembly to track the movements of the sun, moon and fi ve planets: Venus, Mercury, Saturn, Jupiter and Mars. manufacturing company there. The thinner of the books is Dondi’s Dondi didn’t include the other three The coincidence of Dondi and de’ manuscript, reproduced page by page, planets because he didn’t know about Stefani both being Paduans might have cover to cover, in full-sized color them. No one did. It’s the 14th century, come to nothing if not for one other photographs. -
Decoding the Mechanisms of Antikythera Astronomical Device Decoding the Mechanisms of Antikythera Astronomical Device Jian-Liang Lin · Hong-Sen Yan
Jian-Liang Lin · Hong-Sen Yan Decoding the Mechanisms of Antikythera Astronomical Device Decoding the Mechanisms of Antikythera Astronomical Device Jian-Liang Lin · Hong-Sen Yan Decoding the Mechanisms of Antikythera Astronomical Device 1 3 Jian-Liang Lin Hong-Sen Yan Department of Mechanical Department of Mechanical Engineering Engineering National Cheng Kung University National Cheng Kung University Tainan Tainan Taiwan Taiwan ISBN 978-3-662-48445-6 ISBN 978-3-662-48447-0 (eBook) DOI 10.1007/978-3-662-48447-0 Library of Congress Control Number: 2015950021 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifcally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microflms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifc statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
The Milky Way
Unit 4: The Milky Way This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion questions at the end of each topic in this Unit. These should give more background on each subject and spark further classroom ideas. We would be happy to help you expand on each topic and develop your own ideas for your students. Contact us at the [email protected]. Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them. -
Beckett Rosenfeld Hercules O
272 Feature Star Field STARS 273 HERCULES BY CHRIS BECKETT & RANDALL ROSENFELD Right there in its orbit wheels a Phantom form, like to a man that strives at a task. That sign no man knows how to read clearly, nor on what task he is bent, but men simply call him On His Knees [Engonasin]. Now that Phantom, that toils on his knees, seems to sit on bended knee, and from both his shoulders his hands are upraised and stretch, one this way, one that, a fathom’s length. Over the middle of the head of the crooked Dragon, he has the tip of his right foot; Aratus (fl. ca. 390–240 BC), Phaenomena, Mair trs. 1921, 384–387. The keystone star pattern of Hercules keeps the celestial sphere of summer suspended overhead for northern observers and just fits in a º9 binocular. The Romans associated the “Kneeling One” to the mythical strongman Hercules, now known as home to one of the first deep-sky objects observers learn to locate by heart, Messier 13. However, there is much more worth taking a gaze at as the constellation passes through zenith. Rasalgethi represents the “head of the kneeler” and means northern observers imagine Hercules upside down. William Herschel discovered the variability of Rasalgethi changes from an eye-catching 2.7 magnitude to a 4.0 over a six-year period, greatly altering the region of the sky. Small telescopes split it into two components, a brilliant red-orange pri- mary and rare blue-green secondary. For those more interested in star patterns than variables, DoDz 7’s sailboat-shaped pattern of stars is a low-power telescope field to the north. -
How Ptolemy's Geocentric Astronomy Helped Build the Modern World
How the Discredited Geocentric Cosmos Was a Critical Component of the Scientific Revolution by Rick Doble Copyright © 2015 Rick Doble From Doble's blog, DeconstructingTime, deconstructingtime.blogspot.com All pictures and photos are from commons.wikimedia.org How Ptolemy's Geocentric Astronomy Helped Build the Modern World If you took the standard required western history course in college as I did, you learned that about 400 years ago astronomers Copernicus, Galileo and Kepler along with Isaac Newton were key players in the scientific revolution that overturned the cumbersome system of geocentric astronomy. In this outdated system the Sun, moon and stars went around the stationary Earth. Instead these early scientists proved that the Earth and the planets went around the Sun. Known as the Copernican Revolution, it is considered the beginning of the scientific revolution, a new way of thinking which continues to this day and has created our modern world and our modern hi-tech marvels. Well, that story is sort of true, but in hindsight it greatly simplifies the complex path that the scientific revolution took, the path that ultimately led to today's scientific and technological wonders. Specifically it leaves out the fact that the geometry of a geocentric universe and its foremost astronomer, Ptolemy, who perfected the geocentric system, were key players in this new scientific outlook. In fact the discredited geocentric theory was, oddly, essential for building our new scientific/technological world. Doble, Rick How the Discredited Geocentric Cosmos Was a Critical Component of the Scientific Revolution Page 1 of 11 BACKGROUND OF THE GEOCENTRIC/PTOLEMAIC SYSTEM Over hundreds of years the early ancient Greeks put together a concept of the Solar System as a coherent system of concentric circles -- which was a major advance for Western thought. -
Crucifying the Earth on the Galactic Cross 1
Crucifying the Earth on the Galactic Cross 1 CRUCIFYING THE EARTH ON THE GALACTIC CROSS Sergey Smelyakov, Jan Wicherink The Cross of Hendaye presenting the Astronomical and Eight-pointed Crosses (See Supplements 1, 2) 1. INTRODUCTION While the world is anticipating the effects of the End of the Maya Long Count Calendar on December 21 2012, they have already started to develop right in front of our eyes. The Cross, in all its forms, presents the most ancient symbol, and a series of meanings stands behind each of them (See Supplement 1). Some of these meanings are not widely known until our days; some other ones are still veiling the ancient esoteric concepts. The meaning of the majority of these corresponds to astronomical facts and evolution of the Earth and mankind that was kept secret for millennia . But from the 19th century a significant part of these symbols was explained – partly due to the disclosing of the Ancient Knowledge in works of Helen Blavatsky, – partly due to the progress of the sciences. For this reason we may suggest that this disclosure, by itself, presents great importance defining the last two centuries as the age of great revelations; if so, we may expect that they are given purposefully, in order to prepare us for something important. And we actually see this from a series of independent studies that the current decades can be characterised as the outstanding ones over the millennia; a series of seldom Space phenomena and the End of the Mayan calendar are evidently between them. In 1996, the concept of the Solar System Zodiac (SZ) was developed as a natural affiliate to the Tropical Zodiac (TZ). -
Fixed Stars Report
FIXED STARS A Solar Writer Report for Andy Gibb Written by Diana K Rosenberg Compliments of:- Cornerstone Astrology http://www.cornerstone-astrology.com/astrology-shop/ Table of Contents · Chart Wheel · Introduction · Fixed Stars · The Tropical And Sidereal Zodiacs · About this Report · Abbreviations · Sources · Your Starsets · Conclusion http://www.cornerstone-astrology.com/astrology-shop/ Page 1 Chart Wheel Andy Gibb 49' 44' 29°‡ Male 18°ˆ 00° 5 Mar 1958 22' À ‡ 6:30 am UT +0:00 ‰ ¾ ɽ 44' Manchester 05° 04°02° 24° 01° ‡ ‡ 53°N30' 46' ˆ ‡ 33'16' 002°W15' ‰ 56' Œ 10' Tropical ¼ Œ Œ 24° 21° 9 8 Placidus ‰ 10 » 13' 04° 11 Š ‘‘ 42' 7 ’ ¶ á ’ …07° 12 ” 05' ” ‘ 06° Ï 29° 29' … 29° Œ45' … 00° Á àà Š à „ 24' ‘ 24' 11' á 6 14°‹ á ¸ 28' Œ14' 15°‹ 1 “ „08° º 5 ¿ 4 2 3 Œ 46' 16' ƒ Ý 24° 02° 22' Ê ƒ 00° 05° Ý 44' 44' 18°‚ 29°Ý 49' http://www.cornerstone-astrology.com/astrology-shop/ Page 2 Astrological Summary Chart Point Positions: Andy Gibb Planet Sign Position House Comment The Moon Virgo 7°Vi05' 7th The Sun Pisces 14°Pi11' 1st Mercury Pisces 15°Pi28' 1st Venus Aquarius 4°Aq42' 12th Mars Capricorn 21°Cp13' 11th Jupiter Scorpio 1°Sc10' 8th Saturn Sagittarius 24°Sg56' 10th Uranus Leo 8°Le14' 6th Neptune Scorpio 4°Sc33' 8th Pluto Virgo 0°Vi45' 7th The North Node Scorpio 2°Sc16' 8th The South Node Taurus 2°Ta16' 2nd The Ascendant Aquarius 29°Aq24' 1st The Midheaven Sagittarius 18°Sg44' 10th The Part of Fortune Virgo 6°Vi29' 7th http://www.cornerstone-astrology.com/astrology-shop/ Page 3 Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon -
OBSERVATION of LYMAN-~T EMISSION in INTERPLANETARY SPACE J
OBSERVATION OF LYMAN-~t EMISSION IN INTERPLANETARY SPACE J. L. Bertaux and J. E. Blamont The extraterrestrial Lyman-a emission was mapped by the OGO 5 satellite, when it was ABSTRACT outside the geocorona. Three maps, obtained at different periods of the year, are presented and analyzed. The results suggest that at least half of the emission takes place in the solar system, and give strong support to the theory that in its motion towards the apex, the sun crosses neutral atomic hydrogen of interstellar origin, giving rise to an apparent interstellar wind. INTRODUCTION DESCRIPTION OF THE DATA The extraterrestrial Lyman-a emission could be provided At our request, OGO 5 was temporarily placed in a spe- by the free atoms of hydrogen in interstellar space, cial spinning mode on three occasions: 12- 14 Septem- which are excited by light emission of the stars at the ber 1969, 15-17 December 1969, and 1-3 April 1970. wavelength of Lyman-a. Then it is expected that they These spinup operations, referred to as SU 1, SU 2, and would absorb and re-emit Lyman-a photons. This emis- SU 3, respectively, took place when OGO 5 was well sion could have two possible angular distributions: outside the geocorona (above 90,000 km altitude). 1. The emission could come directly from the distant Two different experiments on board OGO 5 were parts of the galaxy. Because of Doppler shifting, the able to map the Lymana background from these maneu- emission would not be completely absorbed by the vers. One was the two-channel photometer of C. -
The Visual Representation of Time in Timelines, Graphs and Charts
Bond University Research Repository The visual representation of time in timelines, graphs, and charts Mitchell, Marilyn Published in: Refereed Proceedings of the Annual Meeting of the ANZCA, Sydney 2004 Licence: Unspecified Link to output in Bond University research repository. Recommended citation(APA): Mitchell, M. (2004). The visual representation of time in timelines, graphs, and charts. In Refereed Proceedings of the Annual Meeting of the ANZCA, Sydney 2004: Making a Difference (pp. 1-12). The Australian and New Zealand Communication Association (ANZCA). http://www.anzca.net/documents/2004-conf-papers/300-the- visual-representation-of-time-in-timelines-graphs-and-charts-1/file.html General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator. Download date: 02 Oct 2021 Bond University ePublications@bond Humanities & Social Sciences papers Faculty of Humanities and Social Sciences 10-28-2004 The iV sual Representation of Time in Timelines, Graphs and Charts Marilyn Mitchell Bond University, [email protected] Follow this and additional works at: http://epublications.bond.edu.au/hss_pubs Part of the Mass Communication Commons Recommended Citation Marilyn Mitchell. (2004) "The iV sual Representation of Time in Timelines, Graphs and Charts".Oct. 2004. http://epublications.bond.edu.au/hss_pubs/107 This Conference Paper is brought to you by the Faculty of Humanities and Social Sciences at ePublications@bond. -
The Astrology of Space
The Astrology of Space 1 The Astrology of Space The Astrology Of Space By Michael Erlewine 2 The Astrology of Space An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 Fist published 2006 © 2006 Michael Erlewine/StarTypes.com ISBN 978-0-9794970-8-7 All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. Graphics designed by Michael Erlewine Some graphic elements © 2007JupiterImages Corp. Some Photos Courtesy of NASA/JPL-Caltech 3 The Astrology of Space This book is dedicated to Charles A. Jayne And also to: Dr. Theodor Landscheidt John D. Kraus 4 The Astrology of Space Table of Contents Table of Contents ..................................................... 5 Chapter 1: Introduction .......................................... 15 Astrophysics for Astrologers .................................. 17 Astrophysics for Astrologers .................................. 22 Interpreting Deep Space Points ............................. 25 Part II: The Radio Sky ............................................ 34 The Earth's Aura .................................................... 38 The Kinds of Celestial Light ................................... 39 The Types of Light ................................................. 41 Radio Frequencies ................................................. 43 Higher Frequencies ...............................................