High-Energy Astrophysics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ROSAT PSPC Observations of the Infrared Quasar IRAS 13349
Mon Not R Astron So c Printed August ROSAT PSPC observations of the infrared quasar IRAS evidence for a warm absorb er with internal dust WN Brandt AC Fabian and KA Pounds Institute of Astronomy Madingley Road Cambridge CB HA Internet wnbastcamacuk acfastcamacuk Xray Astronomy Group Department of Physics Astronomy University of Leicester University Road Leicester LE RH Internet kapstarleacuk ABSTRACT We present spatial temp oral and sp ectral analyses of ROSAT Position Sensitive Pro p ortional Counter PSPC observations of the infrared loud quasar IRAS IRAS is the archetypal highlyp olarized radioquiet QSO and has an op ticalinfrared luminosity of erg s We detect variability in the ROSAT count rate by a factor of in ab out one year and there is also evidence for p er cent variability within one week We nd no evidence for large intrinsic cold absorption of soft Xrays These two facts have imp ortant consequences for the scatteringplus transmission mo del of this ob ject which was developed to explain its high wavelength dep endent p olarization and other prop erties The soft Xray variability makes electron scattering of most of the soft Xrays dicult without a very p eculiar scattering mirror The lack of signicant intrinsic cold Xray absorption together with the large observed E B V suggests either a very p eculiar system geometry or more probably absorp tion by warm ionized gas with internal dust There is evidence for an ionized oxygen edge in the Xray sp ectrum IRAS has many prop erties that are similar to those -
AAS Worldwide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data
AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Rosenfield, Philip, Jonathan Fay, Ronald K Gilchrist, Chenzhou Cui, A. David Weigel, Thomas Robitaille, Oderah Justin Otor, and Alyssa Goodman. 2018. AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data. The Astrophysical Journal: Supplement Series 236, no. 1. Published Version https://iopscience-iop-org.ezp-prod1.hul.harvard.edu/ article/10.3847/1538-4365/aab776 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41504669 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Draft version January 30, 2018 Typeset using LATEX twocolumn style in AASTeX62 AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data Philip Rosenfield,1 Jonathan Fay,1 Ronald K Gilchrist,1 Chenzhou Cui,2 A. David Weigel,3 Thomas Robitaille,4 Oderah Justin Otor,1 and Alyssa Goodman5 1American Astronomical Society 1667 K St NW Suite 800 Washington, DC 20006, USA 2National Astronomical Observatories, Chinese Academy of Sciences 20A Datun Road, Chaoyang District Beijing, 100012, China 3Christenberry Planetarium, Samford University 800 Lakeshore Drive Birmingham, AL 35229, USA 4Aperio Software Ltd. Headingley Enterprise and Arts Centre, Bennett Road Leeds, LS6 3HN, United Kingdom 5Harvard Smithsonian Center for Astrophysics 60 Garden St. -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Space Astronomy in the 90S
Space Astronomy in the 90s Jonathan McDowell April 26, 1995 1 Why Space Astronomy? • SHARPER PICTURES (Spatial Resolution) The Earth’s atmosphere messes up the light coming in (stars twinkle, etc). • TECHNICOLOR (X-ray, infrared, etc) The atmosphere also absorbs light of different wavelengths (col- ors) outside the visible range. X-ray astronomy is impossible from the Earth’s surface. 2 What are the differences between satellite instruments? • Focussing optics or bare detectors • Wavelength or energy range - IR, UV, etc. Different technology used for different wavebands. • Spatial Resolution (how sharp a picture?) • Spatial Field of View (how large a piece of sky?) • Spectral Resolution (can it tell photons of different energies apart?) • Spectral Field of View (bandwidth) • Sensitivity • Pointing Accuracy • Lifetime • Orbit (hence operating efficiency, background, etc.) • Scan or Point What are the differences between satellites? • Spinning or 3-axis pointing (older satellites spun around a fixed axis, precession let them eventually see different parts of the sky) • Fixed or movable solar arrays (fixed arrays mean the spacecraft has to point near the plane perpendicular to the solar-satellite vector) 3 • Low or high orbit (low orbit has higher radiation, atmospheric drag, and more Earth occultation; high orbit has slower preces- sion and no refurbishment opportunity) • Propulsion to raise orbit? • Other consumables (proportional counter gas, attitude control gas, liquid helium coolant) 4 What are the differences in operation? • PI mission vs. GO mission PI = Principal Investigator. One of the people responsible for building the satellite. Nowadays often referred to as IPIs (In- strument PIs). GO = Guest Observer. Someone who just want to use the satel- lite. -
NASA's Goddard Space Flight Center Laboratory for High Energy
1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U. -
Particle Acceleration in Solar Flares What Is the Link Between Heating and Particle Acceleration?
Energetic Particles in the Solar Atmosphere (X- ray diagnostics) Nicole Vilmer LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot The Sun as a Particle Accelerator: First detection of energetic protons from the Sun(1942) (related to a solar flare) First X-ray observations of solar flares (1970) Chupp et al., 1974 First observations of -ray lines from solar flares (OSO7/Prognoz 1972) Since then many more observations With e.g. RHESSI (2002-2018) And also INTEGRAL, FERMI >120000 X-ray flares observed by RHESSI (NASA/SMEX; 2002-2018) But still a limited number of gamma- ray line flares ~30 Solar flare: Sudden release of magnetic energy Heating Particle acceleration X-rays 6-8 keV 25-80 keV 195 Å 304 Å 21 aug 2002 (extreme ultraviolet) 335 Å 15 fev 2011 HXR/GR diagnostics of energetic electrons and ions SXR emission Hot Plasma (7to 8 MK ) HXR emission Bremsstrahlung from non-thermal electrons Prompt -ray lines : Deexcitation lines(C and 0) (60%) Signature of energetic ions (>2 MeV/nuc) Neutron capture line: p –p ; p-α and p-ions interactions Production of neutrons Collisional slowing down of neutrons Radiative capture on ambient H deuterium + 2.2 MeV. line RHESSI Observations X/ spectrum Thermal components T= 2 10 7 K T= 4 10 7 K Electron bremsstrahlung Ultrarelativistic -ray lines Electron (ions > 3 MeV/nuc) Bremsstrahlung (INTEGRAL) SMM/GRS PHEBUS/GRANAT FERMI/LAT observations RHESSI Pion decay radiation(ions > ~300MeV/nuc) Particle acceleration in solar flares What is the link between heating and particle acceleration? Where are the acceleration sites? What is the transport of particles from acceleration sites to X/ γ ray emission sites? What are the characteristic acceleration times? RHESSI How many energetic particles? Energy spectra? Relative abundances of energetic ions? RHESSI Which acceleration mechanisms in solar flares? Shock acceleration? Stochastic acceleration? (wave-particle interaction) Direct Electric field acceleration. -
Nustar Observatory Guide
NuSTAR Guest Observer Program NuSTAR Observatory Guide Version 3.2 (June 2016) NuSTAR Science Operations Center, California Institute of Technology, Pasadena, CA NASA Goddard Spaceflight Center, Greenbelt, MD nustar.caltech.edu heasarc.gsfc.nasa.gov/docs/nustar/index.html i Revision History Revision Date Editor Comments D1,2,3 2014-08-01 NuSTAR SOC Initial draft 1.0 2014-08-15 NuSTAR GOF Release for AO-1 Addition of more information about CZT 2.0 2014-10-30 NuSTAR SOC detectors in section 3. 3.0 2015-09-24 NuSTAR SOC Update to section 4 for release of AO-2 Update for NuSTARDAS v1.6.0 release 3.1 2016-05-10 NuSTAR SOC (nusplitsc, Section 5) 3.2 2016-06-15 NuSTAR SOC Adjustment to section 9 ii Table of Contents Revision History ......................................................................................................................................................... ii 1. INTRODUCTION ................................................................................................................................................... 1 1.1 NuSTAR Program Organization ..................................................................................................................................................................................... 1 2. The NuSTAR observatory .................................................................................................................................... 2 2.1 NuSTAR Performance ........................................................................................................................................................................................................ -
Exep Science Plan Appendix (SPA) (This Document)
ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1. -
Centaurus a at Hard X-Rays and Gamma Rays
Centaurus A at Hard X-Rays and Soft Gamma-Rays Chandra 1-10 keV CGRO-COMPTEL 1 ± 30 MeV Fermi 100 MeV ± 100 GeV Helmut Steinle Max-Planck-Institut für extraterrestrische Physik Garching, Germany ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The Many Faces of Centaurus A ± Sydney, 28 June ± 3 July 2009; H. Steinle, MPE 1 / 35 Centaurus A at Hard X-Rays and Soft Gamma-Rays Contents · Introduction · The Spectral Energy Distribution · Properties of the existing measurements in the hard X-ray / soft Gamma-ray regime · Important satellites for this energy / frequency range · Variability of the X-ray / Gamma-ray emission · Two examples of models for the Cen A Spectral Energy Distribution · Problems (features) to be considered when using the hard X-ray / soft Gamma-ray data ± the ªsoft X-ray transient problemº ± the ªSED problemº · Outlook ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The Many Faces of Centaurus A ± Sydney, 28 June ± 3 July 2009; H. Steinle, MPE 2 / 35 Centaurus A at Hard X-Rays and Soft Gamma-Rays ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Introduction In the introductory (ªsetting the stageº) section of the -
STUDIES on HARD X-RAY EMISSION from SOLAR FLARES and on Cyclotrop ~- RADIATION from a COLD Magnelt)Pllima
STUDIES ON HARD X-RAY EMISSION FROM SOLAR FLARES AND ON CYCLOTROp ~- RADIATION FROM A COLD MAGNElt)PLliMA PETER HOYNG 30VST: Solar flare of 7 August 1972, taken 0.5 A offband Ha at UT 1520:20. field of viev 3' x 4' (courtesy Big Bear Solar Observatory) STELLINGEN Het elektromagnetische veld in een willekeurig medium is op na- tuurlijke -wijze splitsbaar in stralingsvelden (index s) en Coulomb- velden (index c) -. ->->-->-->- 1 S •"*• **•_ p = D [p ^ o] ; J=J + J ; J =--— -r— D [div J - o] ; c s sec 4TT dt c s -> -+.-•-»•-* -+• E - E + E ; B = 3 [B Ho]. se s c Beide deelvelden met hun bronnen voldoen aan de volledige Maxwell vergelijkingen: div. D = o; div B ~ o div D = 4TTO s 3 c ' c -* 13-* rot E = -—•=— B rot E = o s c at s c * 4T -* 1 J •* rot H = J + — T— D s c s c ót s Het verdient aanbeveling bij de behandeling van elektromagnetische problemen deze splitsing vóóraf uit te voeren en (zonodig) beide vergelijkingssystemen gescheiden op te lossen. II Het leidt ir. principe tot onjuiste resultaten wanneer men bij de berekening van het uitgestraalde vermogen per eenheid van ruimte- hoek een scalaire uitdrukking als uitgangspunt neemt -- zoals bij- .-r -f 3-f- •+• voorbeeld . E"J d r, de arbeid verricht door het door J opgewekte elektrische veld. dit proefschrift, hoofdstuk VI. UI Het onlangs door Molodensky gegeven bewijs van de stabiliteit van het randwaardeprobleem van een krachtvrij magnetisch veld is onjuist; veeleer wordt nogmaals aangetoond dat zeer kritische beoordeling onontbeerlijk is om een tijdschrift op peil te houden. -
19710023003.Pdf
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) X-625-71-308 PkEFRlil NASA T1:1 X- ELECTRON AND POSITIVE ION DENSITY ALTITUDE DISTRIBUTIONS IN THE EQUATORIAL Q REGION A. C. AIKIN R. A. GOLDBERG Y. V. SOMAYAJULU Aq ^F q "9,>/ #44#i4 a^F/j/F C-r; AI!riICT 1471 Jp ,32479 Ole °o (ACCESSi JN N MBCR) (THR 0 'i (NASA CR R TMX OR AD NUMBER) (CATEGORY) --- GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND - it %0 ELECTRON AND POSITIVE ION DENSITY ALTITUDE DISTRIBUTIONS IN THE EQUATORIAL D REGION by A. C. Aikin R. A. Goldberg • Laboratory for .Planetary Atmospheres NASA/Goddard !7nace Flight Center Greenb?.. , Maryland and Y. V. Somayajulu National Physical Laboratory New Delhi, India ABSTRACT Three simultaneous rocket measurements of P region ionization sources and electron and ion densities have been made in one day. -
Experiments on the Differential Vlbi Measurements with the Former Russian Deep Space Network
EXPERIMENTS ON THE DIFFERENTIAL VLBI MEASUREMENTS WITH THE FORMER RUSSIAN DEEP SPACE NETWORK Igor E. Molotov(1,2,3) (1)Bear Lakes Radio Astronomy Station of Central (Pulkovo) Astronomical Observatory, Pulkovskoye chosse 65/1, Saint-Petersburg, 196140, Russia , E-mail: [email protected] (2)Keldysh Institute of Applied Mathematics, Miusskaja sq. 4, 125047 Moscow, Russia (3)Central Research Institute for Machine Building, 4 Pionerskaya Street, Korolev, 141070, Russia ABSTRACT The differential VLBI technique (delta-VLBI) is applied transforms the signals into video frequencies, which for measuring spacecraft position with accuracy up to 1 then are sampled with 1- or 2-bit quantization, formatted in any standard VLBI format (Mk-4, S2, K-4, mas. This procedure allows to link the sky position of object with the position of close ICRF quasar on the Mk-2) and recorded on magnetic tapes or PC-disks celestial sphere. Few delta-VLBI measurements can together with precise clock using VLBI terminal. All frequency transformations are connected with atomic urgently improve the knowledge of object trajectory in the times of critical maneuvers. frequency standard. The tapes/disks from all radio telescopes of VLBI array are collected at data The Russian Deep Space Network that was based on processing center, where the data are cross-correlated. three large antennas: 70 m in Evpatoria (Ukraine) and The processing is aimed to measure the time delay of Ussuriysk (Far East), and 64 m in Bear Lakes (near emitted wavefront arrival to receiving antennas, and Moscow) arranged the trial delta-VLBI experiments frequency of interference (fringe rate), that contain the with help of four scientific institutions.