Programmed Factor Binding to Simian Virus 40 GC-Box Replication and Transcription Control Sequences ROBERT L

Total Page:16

File Type:pdf, Size:1020Kb

Programmed Factor Binding to Simian Virus 40 GC-Box Replication and Transcription Control Sequences ROBERT L JOURNAL OF VIROLOGY, Jan. 1990, p. 347-353 Vol. 64, No. 1 0022-538X/90/010347-07$02.00/0 Copyright C 1990, American Society for Microbiology Programmed Factor Binding to Simian Virus 40 GC-Box Replication and Transcription Control Sequences ROBERT L. BUCHANANt AND JAY D. GRALLA* Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90024 Received 6 July 1989/Accepted 22 September 1989 Nuclear footprinting revealed a temporal program involving factor binding to the repetitive GC-box DNA elements present in the simian virus 40 regulatory region. This program specified ordered and directional binding to these tandem regulatory sequences in vivo during the late phase of infection. The program was interrupted by the DNA replication inhibitor aphidicolin or by inactivation of the viral replication factor simian virus 40 T antigen, suggesting a link between viral DNA replication and new factor binding. Measurements of DNA accumulation in viruses lacking either the distal or proximal halves of the GC-box region suggested that the region has a dual role in replication control. Overall, the data point to important relationships between DNA replication and factor binding to the GC-box DNA, a multifunctional regulatory region. Factor binding to mammalian regulatory DNA elements is MATERIALS AND METHODS of central importance in gene control. The cellular distribu- Viral infections, preparation of nuclei, and DNA purifica- tion and activity of such factors likely contributes to cell- tion. SV40 strain tsA58 and parental strain VA45-54 were specific patterns of gene expression. Although many DNA- obtained from Peter Tegtmeyer. In general, CV-1 cells were binding factors have been identified (see reference 26 for an infected with 1 to 5 PFU of SV40 per cell and maintained in example), the mechanisms that control their distribution and Dulbecco modified Eagle medium plus 2% calf serum plus activity are not understood. Many models relevant to such antibiotics. Enough cells were infected to provide approxi- mechanisms center on programmed factor binding to DNA mately 0.1 to 0.5 ,ug of SV40 DNA per footprinting reaction. and especially on the influence of DNA replication on such Isotonic nuclei lysed with Nonidet P-40 (Sigma Chemical programs (see, for example, reference 5). Co.) were prepared and nicked with DNase I as previously Study of mammalian DNA tumor viruses has revealed described (6). DNA was purified as previously described (6), well-defined genetic programs that depend directly or indi- except that the order of RNase A and proteinase K diges- rectly on DNA replication (45). In simian virus 40 (SV40) tions was reversed to use endogenous RNA as a carrier in and adenovirus, components of the replication and transcrip- DNA precipitations. tion machinery involved in such programs have been purified In some experiments, DNA replication was inhibited (14, 26). Most of the protein components are host cell before isolation of infected nuclei. At 32 h postinfection, the proteins, which suggests that regulation of viral programs cell culture medium was brought to 5 ,ug of aphidicolin has important features in common with cellular regulation. (Sigma) per ml and infections were continued for up to 16 h Among these proteins are cell factors which control SV40 (29). replication and transcription through common DNA ele- Primer extension and gel electrophoresis. The sites of ments (10). A critical DNA target of these cellular proteins is DNase I nicking were determined by hybridizing 5'-end32P- the repeated motif (GGGCGG)6 or the GC box which is a labeled oligonucleotide primers to denatured samples and regulatory element adjacent to the viral core origin of extending them to breaks with Klenow DNA polymerase replication that influences DNA replication (24, 31, 32), as essentially as previously described (6, 20), except that all well as early (1, 11) and late transcription (4, 13). The role of extension reactions were done at 50 to 52°C. Base denatur- these factors in uninfected cells is also likely to be involved ation of viral DNA templates gave a lower background than with gene regulation, since GC boxes are often associated heat denaturation for samples isolated before 40 h. Base with regulatory DNA (27, 38). denaturation and subsequent primer extension have already In situ DNase I footprinting of nuclear SV40 templates been reported (3). isolated from infected CV-1 monkey cells showed abundant Quantitation of replicated viral DNA. Confluent CV-1 cells factor binding to the SV40 GC boxes at 48 h postinfection, were infected with equal titers of wild-type SV40 mutant but neither the identity ofthe factors nor their functional role virus strain 776, SV-P7, or PXS7. After 2 h, infected plates is known (6). In this report, we identify a genetic program were washed three or four times with warm Dulbecco involving this factor and present experiments suggesting that modified Eagle medium to reduce the amount of unattached the programmed binding requires templates competent to virus. Viral DNA was prepared as described above and replicate. Since GC boxes and repetitive DNA are relatively electrophoresed on 1% agarose gels after linearization with common in cells, these observations may have interesting EcoRI. Full-length nick-translated ([32P]dATP) FIII SV40 implications for programming interactions with cellular reg- DNA was used to probe DNA from 12- to 24-h postinfection ulatory DNA. samples by Southern hybridization. DNA that hybridized to the labeled SV40 probe was visualized by autoradiography * Corresponding author. with Cronex film at room temperature. Several autoradio- t Present address: Division of Biology 156-29, California Institute grams at different exposures were scanned by densitometry. of Technology, Pasadena, CA 91125. Viral DNA samples prepared from experiments done at 24 347 348 BUCHANAN AND GRALLA J. VIROL. 5183 5203 5223 5243/0 20 40 60 80 100 120 I I EARLYmRNA 4- ILAE mRNA .- * L 21 21 21 T AG 1 TAG 2 T AG3 * 5145 -* 5230 11 III IV v v I AATT AGTCAGCCAT GGGGCGGAGA ATGGGCGGAA CTGGGCGGAG TTAGGGGCGG GATGGGCGGA GTTAGGGGCG GGACTATGGTT 28 31 41 51 61 71 81 91 101 FIG. 1. The SV40 control region with oligonucleotide primers used in footprinting experiments. The bidirectional arrow designates the linear SV40 DNA sequence with nucleotide numbers according to Tooze (45). The directions of early and late transcription are indicated. Relevant SV40 control regions are also shown, including the centers of three T-antigen (T AG)-binding domains. Three arrows labeled 21 depict the six GC-box regulatory elements. The wedge labeled 72 is the origin-proximal portion of the 72-base-pair viral enhancer element. Oligonucleotide primers are shown as arrows with numbers (5145 and 5230) indicating the 3' ends of the primers. At the bottom, the SV40 GC-box region is expanded to show the nucleotide sequence from nts 28 to 111. Within this expanded region, the GC boxes are numbered with roman numerals. ORI, Origin of replication. to 65 h postinfection were linearized and electrophoresed on was partially protected from DNase I digestion by a bound 1% agarose gels after dilutions typically in the range of 1:10 factor at 40 h postinfection (6). The technique detects only to 1:1,000. DNA was visualized by ethidium bromide stain- the interaction of abundant factors with nonencapsulated ing and photographed with Kodak Tri-X film. The amount of DNA; the approximately 90% of SV40 DNA in virions and DNA in each lane was determined by densitometry. A range previrions is relatively DNase I resistant (see reference 6) of exposures were taken to assure linear response. and does not contribute significantly to the signal in this assay. Factor binding to less than half of the remaining 10% RESULTS of the DNA is difficult to detect with this method (6). The late phase of the SV40 life cycle involves programmed Probing the replication core region in vivo. Figure 2 shows production of viral DNA and protein with the goal of the results of in situ probing of the replication core se- assembling infectious virus (45). As the late phase proceeds, quences and the adjacent T-antigen-binding site I. Factor is assessed of DNA com- more RNA is produced from the expanding pool of DNA, binding by comparing digestion with 2 to but the average transcriptional activity of SV40 DNA tem- plexed protein (nuclei, lanes 4) with digestion of plates remains constant (18). However, the average replica- naked DNA (in vitro, lane 1). There was significant protec- tion activity of SV40 DNA decreases during this time (24, tion of sequences over T-antigen site I at 32, 40, and 48 h 33). Thus, instead ofthe exponential production of DNA that postinfection. However, strong protection of sequences cor- would accompany uncontrolled replication, the amount of responding to the core elements for replication which are SV40 DNA simply increases linearly. This relationship be- adjacent to this site was not observed (compare lanes 2 to 4 tween replication and transcription apparently ensures a with lane 1). balanced ratio of protein to DNA. The purpose of these These footprinting results are in excellent accord with initial experiments was to probe the in situ interactions with long-standing observations in the literature. At this time in DNA elements near and within the replication core during the lytic cycle, the dominant interaction in this region is the time when the programmed decrease in average template expected to involve T antigen bound at site I acting as a activity occurs. repressor of early transcription (34). Immunological studies The method of probing DNA-protein interactions (6, 20) indicated that approximately 10% of SV40 DNA in vivo is involves adding DNase I to nuclei isolated from SV40- bound by T antigen (42), and this agrees well with strong infected CV-1 cells to lightly nick the endogenous SV40 protection of approximately 10% of the templates in these DNA.
Recommended publications
  • System with Positive Induction by Glucocorticoid and Metal Ions
    MOLECULAR AND CELLULAR BIOLOGY, Dec. 1990, p. 6141-6151 Vol. 10, No. 12 0270-7306/90/126141-11$02.00/0 Copyright ©3 1990, American Society for Microbiology A Combination of Derepression of the lac Operator-Repressor System with Positive Induction by Glucocorticoid and Metal Ions Provides a High-Level-Inducible Gene Expression System Based on the Human Metallothionein-JIA Promoter MICKEY C.-T. HUt* AND NORMAN DAVIDSON Division ofBiology, California Institute of Technology, Pasadena, California 91125 Received 11 June 1990/Accepted 24 September 1990 We and others have introduced the use of the lac operator-repressor system as a method for providing inducible gene expression for gene transfer experiments in animal cells (M. C.-T. Hu, and N. Davidson, Cell 48:555-566, 1987; J. Figge, C. Wright, C. J. Collins, T. M. Roberts, and D. M. Livingston, Cell 52:713-722, 1988). To improve the dynamic range of such an inducible system, we have investigated the effects of combining the relief by isopropyl-4-D-thiogalactoside (IPTG) of negative control by the lac system with positive induction by the natural inducers glucocorticoids and cadmium ion for a system based on the human metallothionein-HA gene promoter. We used the chloramphenicol acetyltransferase gene as a reporter gene and inserted a lacO sequence into the promoter between the GC box and metal-responsive element 1, between metal-responsive element 1 and the TATA box, or between the TATA box and the transcription start site. Surprisingly, all of these insertions had a significant inhibitory effect on promoter activity even in the absence of repressor.
    [Show full text]
  • Focused Transcription from the Human CR2/CD21 Core Promoter Is Regulated by Synergistic Activity of TATA and Initiator Elements in Mature B Cells
    Cellular & Molecular Immunology (2016) 13, 119–131 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi RESEARCH ARTICLE Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells Rhonda L Taylor1,2, Mark N Cruickshank3, Mahdad Karimi2, Han Leng Ng1, Elizabeth Quail2, Kenneth M Kaufman4,5, John B Harley4,5, Lawrence J Abraham1, Betty P Tsao6, Susan A Boackle7 and Daniela Ulgiati1 Complement receptor 2 (CR2/CD21) is predominantly expressed on the surface of mature B cells where it forms part of a coreceptor complex that functions, in part, to modulate B-cell receptor signal strength. CR2/CD21 expression is tightly regulated throughout B-cell development such that CR2/CD21 cannot be detected on pre-B or terminally differentiated plasma cells. CR2/CD21 expression is upregulated at B-cell maturation and can be induced by IL-4 and CD40 signaling pathways. We have previously characterized elements in the proximal promoter and first intron of CR2/CD21 that are involved in regulating basal and tissue-specific expression. We now extend these analyses to the CR2/CD21 core promoter. We show that in mature B cells, CR2/CD21 transcription proceeds from a focused TSS regulated by a non-consensus TATA box, an initiator element and a downstream promoter element. Furthermore, occupancy of the general transcriptional machinery in pre-B versus mature B-cell lines correlate with CR2/CD21 expression level and indicate that promoter accessibility must switch from inactive to active during the transitional B-cell window.
    [Show full text]
  • Cat Box Gene Transcription
    Cat Box Gene Transcription Melvyn recommencing perversely. Dangerously abstemious, Dante damns oblong and toggles setter. Ligular Ferdie regiments eftsoons. Department of the identity of the proteins in gene transcription start site are shown to definitively answer Here's JAK2B The Janus kinase 2 gene JAK2 codes for a tyrosine kinase. The need for equity and technological development. Dna polymerase required for pcr results in ne homeostasis during plant biotechnology is oriented so that cats are provided important environmental pressure and. How are sigma factors regulated? Fibronectin and its receptors. The position of indicated RPGs ORF are shown above of the tracks. To provide closure and to make sure students understand the basic concepts of transcription and translations, depending on the changing requirements of the organism. Dna strand of endometriosis patients in mice or in a cooperative involvement of cat gene transcription bacteria a great idea that. Group work activity to practise asking and answering questions. Engineers often use models to simplify complex processes; in this activity, and special activities. These oligonucleotides carried a stop codon in frame. This exotic blend makes him this unique and valuable cat to be associated with. It is likely that competitive DNA binding of Dof proteins with different activity for transactivation may provide a mechanism for transcriptional regulation. The initiation of gene transcription requires the ordered sequential assembly of abundant of. Fungal small rna responsible for activation domain. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. These differences are reflected by subtle nucleotide variations in the sequences spanning OC box I and the TATA box in the three species.
    [Show full text]
  • Distinct Factors with Spl and NF-A Specificities Bind to Adjacent Functional Elements of the Human U2 Snrna Gene Enhancer
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Distinct factors with Spl and NF-A specificities bind to adjacent functional elements of the human U2 snRNA gene enhancer Manuel Ares, Jr., 1 Jo-San Chung, Linda Giglio, and Alan M. Weiner Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510 USA The enhancer regions of mammalian and avian U1 and U2 small nuclear RNA (snRNA) genes are unusual in containing the sequence GGGCGG (GC-box) immediately upstream from the sequence ATGCAAAT (octamer). We made point mutations in the human U2 snRNA enhancer and tested them for the ability to direct U2 transcription in HeLa cells, as well as for the ability to form complexes with factors present in HeLa cell nuclear extracts. We show that neither the GC-box nor the octamer alone is sufficient for enhancer activity in vivo. Mutations in the GC-box reduce the ability of enhancer DNA fragments to bind a factor (probably Spl), whereas mutations in the octamer independently reduce the ability to bind a second factor (probably nuclear factor A, NF-A). The results suggest that adjacent binding of Spl and NF-A is an important feature of some U- snRNA gene enhancers. [Key Words: U2 snRNA~ U2 enhancer~ enhancer binding proteins; transcription factors] Received July 7, 1987~ revised version accepted August 12, 1987. The stable small nuclear RNAs U1-U5 (U-snRNAs) are moter in transfected HeLa ceils were not successful (M. encoded by a special class of genes apparently tran- Ares, unpubl.).
    [Show full text]
  • The Leukemia Associated Nuclear Corepressor ETO Homologue Genes MTG16 and MTGR1 Are Regulated Differently in Hematopoietic Cells
    Ajore et al. BMC Molecular Biology 2012, 13:11 http://www.biomedcentral.com/1471-2199/13/11 RESEARCH ARTICLE Open Access The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells Ram Ajore1*, Parveen Kumar1, Rakesh Singh Dhanda2, Urban Gullberg1 and Inge Olsson1 Abstract Background: MTG16, MTGR1 and ETO are nuclear transcriptional corepressors of the human ETO protein family. MTG16 is implicated in hematopoietic development and in controlling erythropoiesis/megakaryopoiesis. Furthermore, ETO homologue genes are 3’participants in leukemia fusions generated by chromosomal translocations responsible of hematopoietic dysregulation. We tried to identify structural and functional promoter elements of MTG16 and MTGR1 genes in order to find associations between their regulation and hematopoiesis. Results: 5’ deletion examinations and luciferase reporter gene studies indicated that a 492 bp sequence upstream of the transcription start site is essential for transcriptional activity by the MTG16 promoter. The TATA- and CCAAT-less promoter with a GC box close to the start site showed strong reporter activity when examined in erythroid/ megakaryocytic cells. Mutation of an evolutionary conserved GATA -301 consensus binding site repressed promoter function. Furthermore, results from in vitro antibody-enhanced electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation indicated binding of GATA-1 to the GATA -301 site. A role of GATA-1 was also supported by transfection of small interfering RNA, which diminished MTG16 expression. Furthermore, expression of the transcription factor HERP2, which represses GATA-1, produced strong inhibition of the MTG16 promoter reporter consistent with a role of GATA-1 in transcriptional activation.
    [Show full text]
  • The Leukemia Associated Nuclear Corepressor ETO Homologue Genes MTG16 and MTGR1 Are Regulated Differently in Hematopoietic Cells
    The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells Ajore, Ram; Kumar, Parveen; Dhanda, Rakesh Singh; Gullberg, Urban; Olsson, Inge Published in: BMC Molecular Biology DOI: 10.1186/1471-2199-13-11 2012 Link to publication Citation for published version (APA): Ajore, R., Kumar, P., Dhanda, R. S., Gullberg, U., & Olsson, I. (2012). The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells. BMC Molecular Biology, 13(11). https://doi.org/10.1186/1471-2199-13-11 Total number of authors: 5 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Ajore et al.
    [Show full text]
  • Gene Regulation in Eukaryotes
    Gene Regulation in Eukaryotes • All cells in an organism contain all the DNA: – all genetic info • Must regulate or control which genes are turned on in which cells • Genes turned on determine cells’ function – E.g.) liver cells express genes for liver enzymes but not genes for stomach enzymes 1 Proteins act in trans DNA sites act only in cis • Trans acting elements (not DNA) can diffuse through cytoplasm and act at target DNA sites on any DNA molecule in cell (usually proteins) • Cis acting elements (DNA sequences) can only influence expression of adjacent genes on same DNA molecule 2/27 Eukaryotic Promoters trans-acting proteins control transcription from class II (RNA pol II) promoters • Basal factors bind to the core promoter – TBP – TATA box binding protein – TAF – TBP associated factors • RNA polymerase II binds to basal factors 3 Fig. 17.4 a Eukaryotic Promoters • Promoter proximal elements are required for high levels of transcription. • They are further upstream from the start site, usually at positions between -50 and -500. • These elements generally function in either orientation. • Examples include: – The CAAT box consensus sequence CCAAT – The GC box consensus sequence GGGCGG – Octamer consensus sequence AGCTAAAT 4 Regulatory elements that map near a gene are cis-acting DNA sequences Core • cis-acting elements – Core Promoter – Basal level expression • Binding site for TATA-binding protein and associated factors – Promoter Proximal Elements - True level of expression • Binding sites for transcription factors 5 Eukaryotic Promoter Elements • Various combinations of core and proximal elements are found near different genes. • Promoter proximal elements are key to gene expression.
    [Show full text]
  • Chapter 31 Lecture Notes
    BCH 4054 Fall 2000 Chapter 31 Lecture Notes Slide 1 Chapter 31 Transcription and Regulation of Gene Expression Slide Early labeling experiments showed 2 ribosomes as the site of protein Messenger RNA synthesis. An alternate hypothesis was that each protein had its own • Central Dogma (Francis Crick, 1958) specific ribosome where it is made. • DNA ® RNA ® Protein (Fig 31.1) • Jacob-Monod Hypothesis: Four properties • Base composition reflecting DNA • Heterogeneous in size • Can associate with ribosomes • High rate of turnover Slide All forms are made by copying a 3 DNA template (excepting some Other Forms of RNA RNA viruses), so the process of transcription is common to all. • Ribosomal RNA • Major RNA component of cell • Transfer RNA • Small RNA molecules carrying the amino acids in protein synthesis • Eukaryotic “small nuclear” RNA • mRNA processing in eukaryotes • Viral RNA Chapter 31, page 1 Slide 4 Transcription, General Features • A “template” DNA strand is copied using the Watson Crick base pairing rules • See Fig Page 1016 for nomenclature convention • Only small segments of DNA copied at any one time. • Must be specific start and stop sites • Copying must be regulated • Chemistry is similar to that of DNA polymerase • Nucleoside triphosphates add to 3’ OH end with pyrophosphate as the product. Slide 5 Transcription, General Features, con’t. • DNA separates and forms a “transcription bubble” • No 3’-5’ proofreading, so error rate is about 1 in 104 • Topoisomerases needed to introduce negative supercoiling in front, remove it in
    [Show full text]
  • RNA Structure & Synthesis
    (2nd) BIOCHEMISTRY NOTES RNA structure & synthesis [ ☺ ^ `\S ^ / - . – , !"# + P"& ]()* +)& 5a +4 2301 ،،، ا .. رآ ☺ RNA Structure & synthesis ل : Team leader وا ه اا رة ا ه وأ : ﺃﺑﻮ ﻳﺴﺮﺍ ﻋﺒﺪﺍﻟﻌﺰﻳﺰ ﺍﻟﱰﻛﻲ Ocean Blue eye ☺ ﻭﺟﻨﻮﺩﻧﺎ ﺍﻬﻮﻟﲔ (2nd) BIOCHEMISTRY NOTES RNA structure & synthesis RNA STRUCTURE & SYNTHESIS C. Transcription from bacterial operons : ◙ structural genes ( that code for the enzymes of a metabolic pathway ) ◙ regulatory genes ( that determine their transcription as a single long piece of mRNA ) - in bn bacteriab acteria , structural genes are often found grouped together on chromosome together with the regulatory genes ( هااااااااام )(thus , the genes are coordinately expressed (MCQ • ( this entire package is referred to as an operonoperon) & we will speak about the best understood examples –lactose operon of E.coli -- which illustrates both +ve & ---ve-ve regulation . 1. the lactose operon (lac operon) : ( is coordinated expressed gene ) • It (structural portion )(MCQ) codes for 3 enzymes involved in the catabolism of the sugar lactose : lacZ genes lacy genes lacA genes -codes for β– -codes for permease -codes for galactosidase thiogalactoside transacetylase -(which hydrolyzes -(that facilitates the -(its physiologic function lactose to galactose & movement of galactose is un known) glucose into the cell these enzymes are all produced when lactose is availableavailable to the cell (but glucose is notnot) (MCQ) - note : bacteria use glucose as a fuel in preference to any other sugar Biochemistry 1 (2nd) BIOCHEMISTRY NOTES RNA structure & synthesis • the regulatory portion (MCQ) of the operon consists of ::: (MCQ)(always come ) I. catabolite gene activator protein ( CAP , sometimes called : cAMP regulatory portion or CRP) binding site II. the promoter (P): where RNA polymerase binds IIIIIIIII.III ..
    [Show full text]
  • Is There an Aesthetics in Golden Ratio As Regards to the Common Cis-Regulatory Elements Versus to Atomic Numbers of Elements
    Neurology and Neuroscience Reports Review Article ISSN: 2631-4010 Is there an aesthetics in golden ratio as regards to the common cis-regulatory elements versus to atomic numbers of elements with respect to Quantum perspective model? Tahir Ölmez* Selçuk University, Social Sciences Dept., Selcuklu/Konya, Turkey Abstract One of the modern management and organization theory is system approach theory which is consisted of mathematics, biology and genetics. …etc. With the holistic perspective to variety of scientific disciplines have many sustainable relationships between each of them. As regards to numbers and genetic algorithms, system approach is not only seen in golden ratio but also sequenced in nucleotide bases in DNA, too. So at macro level, either in common regulations of many sciences or at micro level in gene expressions, quantum perspective model can be visible. This article is searching for the relation between identical cis regulatory elements and golden mean. Namely, atomic mass structures of TATA Box, CAAT box and GC box relations with golden mean. Researching of TATAA box and CAAT Box gene regulation, the outcome of calculations is approximately very likely to golden mean numbers [1]. Even in one of the step of DNA transcription named as GC Box is also surprisingly unique resemblance to special mathematics number “142”. In sum, pertaining to quantum perspective model at minor level, interrelationship of sciences is ranged from mathematics (Pi and Phi numbers), biochemistry (nucleotide bases and chemical structures), genetics (transcription elements) and also aesthetics in many biological living creatures. At last, the outcome of this article is not only related to golden ratio in mathematics but also nucleotide sequence in cis regulatory elements during transcription in genetics.
    [Show full text]
  • Cdna Cloning and Transcriptional Properties of a Novel GO Box-Binding Protein, BTEB2
    Nucleic Acids Research, 1993, Vol. 21, No. 7 1527-1532 cDNA cloning and transcriptional properties of a novel GO box-binding protein, BTEB2 Kazuhiro Sogawa, Hiroaki Imataka1, Yuichi Yamasaki, Hiroshi Kusume, Hisaku Abe and Yoshiaki Fujii-Kuriyama Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980 and 'institute for Virus Research, Kyoto University, Kyoto 606, Japan Received February 5, 1993; Revised and Accepted March 8, 1993 DDBJ accession no. D14520 ABSTRACT We have cloned a cDNA for a novel GC box-binding transcription of eukaryotic genes through a limited number of protein designated BTEB2 from a human placenta cis-acting elements located in their promoter region. cDNA library using rat BTEB cDNA (Imataka et al. GC box sequence is one of the most widely distributed (1992). EMBO J. 11,3663-3671. as a hybridization promoter elements in cellular and viral genes (1, 2). Tjian and probe. BTEB2 consists of 219 amino acids and contains his colleagues found Spl as the GC box-binding factor, and three contiguous zinc finger motifs at its C-terminus. established its role on transcription by elucidating its molecular The zinc finger domains showed 59% and 64% properties (3, 4). SpI contains three contiguous zinc finger motifs sequence similarity to those of Spl and BTEB, and glutamine-rich domains as the DNA-binding and respectively. Adjacent to the N-terminal of the zinc transcriptional activation domains, respectively. Although Spl finger motifs, a short sequence rich in basic amino has long been thought to be a unique GC box-binding protein, acids is conserved between BTEB2 and Spl.
    [Show full text]
  • ERK Pathway Regulates EZH2 Overexpression in Association with Aggressive Breast Cancer Subtypes
    Oncogene (2011) 30, 4118–4128 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE MEK–ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes S Fujii1, K Tokita1, N Wada2, K Ito3, C Yamauchi1, Y Ito4 and A Ochiai1 1Pathology Division, Research Center for Innovative Oncology, National Cancer Center at Kashiwa, Kashiwa, Chiba, Japan; 2Breast Surgery Division, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; 3Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan and 4Cancer Science Institute of Singapore, Proteos, Singapore EZH2 overexpression occurs in various malignancies and some inactivation (Plath et al., 2003). On the other is associated with a poor outcome. We have so far hand, there have been several reports that overexpres- demonstrated that EZH2 downregulates the important sion of EZH2 occurs in various malignancies and that it genes such as E-cadherin and RUNX3 by increasing is associated with a poor outcome in prostate cancer and histone H3K27 trimethylation. However, the mechanism breast cancer (Varambally et al., 2002; Kleer et al., of EZH2 overexpression in various cancer cells remains 2003). In an attempt to determine the functional role of unclear. In this study we carried out a promoter analysis EZH2 overexpression in cancer tissue, we have already of the EZH2 gene and investigated whether a survival demonstrated that EZH2 downregulates important signal that is upregulated in cancer cells is related to genes, such as E-cadherin and RUNX3, by increasing overexpression at the transcription level. We also explored histone H3K27 trimethylation, which suggests that it the clinical relevance of the signaling pathway that leads may be an oncogene (Fujii et al., 2008; Fujii and Ochiai, to EZH2 overexpression in breast cancer and demon- 2008).
    [Show full text]