Toxicological Review of Trimethylbenzenes

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Review of Trimethylbenzenes EPA/635/R-16/161Fa www.epa.gov/iris Toxicological Review of Trimethylbenzenes [CASRNs 25551-13-7, 95-63-6, 526-73-8, and 108-67-8] September 2016 Integrated Risk Information System National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC Toxicological Review of Trimethylbenzenes DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii Toxicological Review of Trimethylbenzenes CONTENTS TABLES .............................................................................................................................................. v FIGURES ........................................................................................................................................... vi ABBREVIATIONS ..............................................................................................................................vii AUTHORS | CONTRIBUTORS | REVIEWERS ..................................................................................... ix PREFACE .......................................................................................................................................... xii PREAMBLE TO IRIS TOXICOLOGICAL REVIEWS................................................................................ xv EXECUTIVE SUMMARY ................................................................................................................. xxiii LITERATURE SEARCH STRATEGY | STUDY SELECTION AND EVALUATION ................................... xxxi 1. HAZARD IDENTIFICATION ....................................................................................................... 1-1 1.1. OVERVIEW OF THE TOXICOKINETICS OF TMBs ................................................................ 1-2 1.1.1. Toxicokinetics of TMB isomers ............................................................................. 1-2 1.1.2. Description of Toxicokinetic Models .................................................................... 1-4 1.2. SYNTHESIS OF EVIDENCE ................................................................................................. 1-5 1.2.1. Neurological Effects .............................................................................................. 1-5 1.2.2. Respiratory Effects ............................................................................................. 1-34 1.2.3. Reproductive and Developmental Effects .......................................................... 1-40 1.2.4. Hematological and Clinical Chemistry Effects .................................................... 1-46 1.2.5. General Toxicity .................................................................................................. 1-55 1.2.6. Carcinogenicity ................................................................................................... 1-56 1.2.7. Similarities among TMB Isomers Regarding Observed Inhalation and Oral Toxicity ............................................................................................................... 1-58 1.3. SUMMARY AND EVALUATION ....................................................................................... 1-62 1.3.1. Weight of Evidence for Effects Other than Cancer ............................................ 1-62 1.3.2. Weight of Evidence for Carcinogenicity ............................................................. 1-67 1.3.3. Susceptible Populations and Lifestages ............................................................. 1-68 2. DOSE-RESPONSE ANALYSIS .................................................................................................... 2-1 2.1. INHALATION REFERENCE CONCENTRATION FOR EFFECTS OTHER THAN CANCER FOR TMBs ................................................................................................................................ 2-1 2.1.1. Identification of Studies and Effects for Dose-Response Analysis and Derivation of Reference Concentrations for TMBs .................................................................... 2-1 iii Toxicological Review of Trimethylbenzenes 2.1.2. Methods of Analysis for Derivation of Reference Concentrations for TMBs ....... 2-8 2.1.3. Derivation of Candidate Inhalation Values for TMBs ......................................... 2-14 2.1.4. Derivation of Organ/System-Specific Reference Concentrations for TMBs ....... 2-21 2.1.5. Selection of the Overall Reference Concentration for TMBs ............................. 2-22 2.1.6. Uncertainties in the Derivation of the Reference Concentration for TMBs ....... 2-24 2.1.7. Confidence Statement for the Reference Concentration for TMBs ................... 2-26 2.1.8. Calculation of Subchronic Reference Concentrations for TMBs ........................ 2-26 2.2. ORAL REFERENCE DOSE FOR EFFECTS OTHER THAN CANCER FOR TMBs ..................... 2-28 2.2.1. Identification of Studies and Effects for Dose-Response Analysis and Derivation of Reference Doses for TMBs ................................................................................. 2-28 2.2.2. Methods of Analysis for Derivation of Reference Doses for TMBs .................... 2-29 2.2.3. Derivation of the Reference Dose for TMBs....................................................... 2-30 2.2.4. Uncertainties in the Derivation of the Reference Dose for TMBs ...................... 2-35 2.2.5. Confidence Statement for the Reference Dose for TMB ................................... 2-36 2.2.6. Calculation of Subchronic Reference Doses for TMBs ....................................... 2-36 2.3. CANCER RISK ESTIMATES FOR TMBs .............................................................................. 2-37 REFERENCES .................................................................................................................................. R-1 SUPPLEMENTAL INFORMATION ............................................................................................. (see Volume 2) iv Toxicological Review of Trimethylbenzenes TABLES Table P-1. Physical properties and chemical identities of TMB isomers ...................................... xiv Table ES-1. Organ/system-specific chronic RfCs for individual TMB isomers .............................. xxv Table ES-2. Organ/system-specific subchronic RfCs for individual TMB isomers ....................... xxvi Table LS-1. Details of the initial search strategy employed for TMBs ........................................ xxxi Table 1-1. Toxicokinetic similarities between TMB isomers ........................................................ 1-3 Table 1-2. Evidence pertaining to neurological effects of TMBs in animals—inhalation exposures .................................................................................................................. 1-17 Table 1-3. Evidence pertaining to neurological effects of TMBs in animals—oral exposures ... 1-23 Table 1-4. Evidence pertaining to respiratory effects of TMBs in animals—inhalation exposures .................................................................................................................. 1-36 Table 1-5. Evidence pertaining to reproductive and developmental effects of TMBs in animals— inhalation exposures ................................................................................................. 1-43 Table 1-6. Evidence pertaining to hematological and clinical chemistry effects of TMBs in animals—inhalation exposures ................................................................................. 1-49 Table 1-7. Evidence pertaining to hematological and clinical chemistry effects of TMBs in animals—oral exposures ........................................................................................... 1-52 Table 1-8. Similarities between 1,2,3-TMB, 1,2,4-TMB, and 1,3,5-TMB regarding observed inhalation and oral toxicity ....................................................................................... 1-62 Table 2-1. Target and actual exposure concentrations used in BMD modeling of 1,2,4-TMB, 1,2,3-TMB, and 1,3,5-TMB endpoints considered for the derivation of the RfC ........ 2-4 Table 2-2. Endpoints observed in rats in the Korsak studies (Korsak et al., 2000a, b; Korsak et al., 1997; Korsak and Rydzyński, 1996) considered for the derivation of the RfC for TMBs ........................................................................................................................... 2-5 Table 2-3. Endpoints observed in rats in the Saillenfait et al. (2005) study considered for the derivation of the RfC for TMBs ................................................................................... 2-6 Table 2-4. Isomer-specific DAFs using default dosimetric methods .......................................... 2-13 Table 2-5. Summary of derivation of PODs for TMBs ................................................................ 2-14 Table 2-6. Summary of derivation of candidate inhalation values for TMBs............................. 2-19 Table 2-7. Organ/system-specific RfCs and overall RfC for TMBs .............................................. 2-22 Table 2-8. Summary of derivation of subchronic RfC values for TMBs ...................................... 2-27 v Toxicological Review of Trimethylbenzenes FIGURES Figure LS-1. Literature search and study selection strategy for TMBs. .................................... xxxiii
Recommended publications
  • Products of OH + Furan Reactions and Some Implications for Aromatic Hydrocarbon Atmospheric Degradation
    Products of OH + Furan Reactions and Some Implications for Aromatic Hydrocarbon Atmospheric Degradation Roger Atkinson, Air Pollution Research Center, University of California, Riverside Unsaturated 1,4-dicarbonyls are important products of the atmospheric degradations of aromatic hydrocarbons such as benzene, toluene, xylenes and trimethylbenzenes, which comprise 20% of the non- methane volatile organic compounds present in urban air masses in the USA. However, in many cases the measured formation yields of the unsaturated 1,4-dicarbonyls are significantly lower than those of these presumed co-product 1,2-dicarbonyls. These discrepancies could be due to analytical problems and/or rapid photolysis of unsaturated 1,4-keto-aldehydes and unsaturated 1,4-dialdehydes, or to incorrect reaction mechanisms for the OH radical-initiated reactions of aromatic hydrocarbons. Since unsaturated 1,4- dicarbonyls are major products of OH + furans, with apparently simpler product distributions and mechanisms, we have investigated the reactions of OH radicals with furan, 2- and 3-methylfuran, and 2,3- and 2,5- dimethylfuran, in the presence of NO. Using direct air sampling atmospheric pressure ionization tandem mass spectrometry and gas chromatography, the unsaturated 1,4-dicarbonyls were observed and quantified. The measured unsaturated 1,4-dicarbonyl formation yields ranged from 8 ± 2% from OH + 2,3-dimethylfuran to 75 ± 5% from OH + furan. Other products were also formed. These data will be presented and discussed and, time permitting, a brief discussion of in situ nitro-aromatic and nitro-PAH formation from the atmospheric degradations of aromatic hydrocarbons and PAHs will also be presented. Live cast on the link below: http://www.fin.ucar.edu/it/mms/fl-live.htm A recording will be available on ACD’s website for viewing at a later date.
    [Show full text]
  • Formation of Highly Oxygenated Organic Molecules from Aromatic Compounds
    Formation of highly oxygenated organic molecules from aromatic compounds. Ugo Molteni1, Federico Bianchi1-2, Felix Klein1, Imad El Haddad1, Carla Frege1, Michel J. Rossi1, Josef Dommen1, Urs Baltensperger1,* 5 1Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland 2Department of Physics, University of Helsinki, 00014 Helsinki, Finland Correspondence to: Urs Baltensperger ([email protected]) Abstract 10 Anthropogenic volatile organic compounds (AVOC) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHC), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g. from handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Despite their recognized importance as atmospheric reactants, the formation of highly oxygenated molecules (HOMs) in the gas phase leading to (extremely) low volatility compounds has not been studied in the past. Here we show that oxidation of 15 aromatics with OH leads to a subsequent autoxidation chain reaction forming HOMs with an O:C ratio of up to 1.09. This is exemplified for five single-ring ArHC (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHC (naphthalene and biphenyl). We present the identified compounds, differences in the observed oxidation patterns and discuss mechanistic pathways. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the 20 formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOC may contribute substantially to new particle formation events that have been detected in urban areas.
    [Show full text]
  • Including Toluene Derivatives
    RSC Advances View Article Online PAPER View Journal | View Issue Catalytic C–H aerobic and oxidant-induced oxidation of alkylbenzenes (including toluene Cite this: RSC Adv., 2020, 10,23543 derivatives) over VO2+ immobilized on core–shell Fe3O4@SiO2 at room temperature in water† Pegah Mohammadpour and Elham Safaei * Direct C–H bond oxidation of organic materials, and producing the necessary oxygenated compounds under mild conditions, has attracted increasing interest. The selective oxidation of various alkylbenzenes 2+ was carried out by means of a new catalyst containing VO species supported on silica-coated Fe3O4 nanoparticles using t-butyl hydroperoxide as an oxidant at room temperature in H2O or solvent-free media. The chemical and structural characterization of the catalyst using several methods such as FTIR spectroscopy, XRD, FETEM, FESEM, SAED, EDX and XPS showed that VO2+ is covalently bonded to the silica surface. High selectivity and excellent conversion of various toluene derivatives, with less reactive Creative Commons Attribution 3.0 Unported Licence. Received 18th April 2020 aliphatic (sp3)C–H bonds, to related benzoic acids were quite noticeable. The aerobic oxygenation Accepted 15th May 2020 reaction of these alkylbenzenes was studied under the same conditions. All the results accompanied by DOI: 10.1039/d0ra03483e sustainability of the inexpensive and simple magnetically separable heterogeneous catalyst proved the rsc.li/rsc-advances important criteria for commercial applications. Introduction industrial communities. Among
    [Show full text]
  • P-Cymene Based Ruthenium Complexes As Catalysts
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA p-Cymene Based Ruthenium Complexes as Catalysts Joel David Avelino Fonseca MESTRADO EM QUÍMICA TECNOLÓGICA Especialização em Química Tecnológica e Qualidade 2011 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA p-Cymene Based Ruthenium Complexes as Catalysts Joel David Avelino Fonseca MESTRADO EM QUÍMICA TECNOLÓGICA Especialização em Química Tecnológica e Qualidade Dissertação de mestrado orientada pela Professora Dra. Maria Helena Garcia 2011 p-Cymene Based Ruthenium Complexes as Catalysts This project took place in the School of Chemistry of the University of Leeds, United Kingdom, under the scope of Erasmus Placements. It was co-supervised by Dr. Patrick C. McGowan and Dr. John A. Blacker Acknowledgements First, I would like to express my deepest gratitude to Professor Patrick C. McGowan for giving me the opportunity of doing my master placement in his work group, also for his mentorship, guidance, insightful discussions, continuous support, patience and encouragements during ten months at the University of Leeds. Then I would like to thank Professor John A. Blacker for his valuable discussions and suggestions during my research. My special thanks to Professor Maria H. Garcia for being so supportive in the decision of going abroad, for making this placement possible, for her mentorship, guidance and carefully reviewing the dissertation. I would like to thank the European Commission for providing financial support, namely by giving me an ERASMUS Placement scholarship. I am thankful to all the colleagues with whom I have shared the laboratory, namely from the McGowan and Halcrow groups, who have made my work days so pleasant.
    [Show full text]
  • Reactions of Benzene Or Alkylbenzenes with Steam Over a Silica-Supported Nickel Catalyst*
    54 Reactions of Benzene or Alkylbenzenes with Steam over a Silica-supported Nickel Catalyst* by .Masahiro Saito**, Yoshio Sohda** Michiaki Tokuno** and Yoshiro Morita** Summary: Benzene-steam and alkylbenzenes-steam reactions over a silica-supported nickel catalyst have been studied under atmospheric pressure in a temperature range of 370~430℃. In the reactionof benzene-steam,the methaneyield is lower and the carbon dioxideyield is higher than the estimatedvalue. The reactionis zero order with respectto benzeneand approxi- mately first order with respect to steam. In the reactionof alkylbenzenes-steam,ring breakdownand dealkylationoccur at the initial stage of reaction, and theformer occursmore easily than the latter at high conversionand at high temperature. The number and the position of the alkyl group on the benzene ring influencethe reaction rate and the selectivity. The reactionpath of dealkylationis proposed as follows: most effective catalyst for dealkylation with 1 Introduction steam, and they investigated reactivity and reac- The catalytic reaction of hydrocarbon with tion path on Ni/BeO at 450℃. steam is important for the production of hydrogen, In the present work, the reactions of benzene synthesis gas and town gas. The authors have or alkylbenzenes with steam were carried out previously reported the works on olefins-steam over a silica-supported nickel catalyst under and paraffins-steam reactions over a silica-sup- atmospheric pressure in a temperature range of ported nickel catalyst1)~3), and this study on 370~430℃, and the effects of reaction conditions, aromatics-steam reactions has been carried out rate of each reaction and the reaction path were as a consecutive one.
    [Show full text]
  • Disproportionation and Transalkylation of Alkylbenzenes Over Zeolite Catalysts
    Applied Catalysis A: General 181 (1999) 355±398 Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts Tseng-Chang Tsaia, Shang-Bin Liub, Ikai Wangc,* aRe®ning and Manufacturing Research Center, Chinese Petroleum Corporation, Chiayi 600, Taiwan bInstitute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 106, Taiwan cDepartment of Chemical Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan Received 13 June 1998; received in revised form 3 October 1998; accepted 5 November 1998 Abstract Disproportionation and transalkylation are important processes for the interconversion of mono-, di-, and tri-alkylbenzenes. In this review, we discuss the recent advances in process technology with special focus on improvements of para-isomer selectivity and catalyst stability. Extensive patent search and discussion on technology development are presented. The key criteria for process development are identi®ed. The working principles of para-isomer selectivity improvements involve the reduction of diffusivity and the inactivation of external surface. In conjunction with the fundamental research, various practical modi®cation aspects particularly the pre-coking and the silica deposition techniques, are extensively reviewed. The impact of para-isomer selective technology on process economics and product recovery strategy is discussed. Furthermore, perspective trends in related research and development are provided. # 1999 Elsevier Science B.V. All rights reserved. Keywords: Disproportionation; Transalkylation;
    [Show full text]
  • Trimethylbenzenes CAS Registry Numbers: 526-73-6 (1,2,3-TMB) 95-63-6 (1,2,4-TMB) 108-67-8 (1,3,5-TMB) 25551-13-7 (Mixed Isomers)
    Development Support Document Final, September 4, 2015 Trimethylbenzenes CAS Registry Numbers: 526-73-6 (1,2,3-TMB) 95-63-6 (1,2,4-TMB) 108-67-8 (1,3,5-TMB) 25551-13-7 (Mixed Isomers) Prepared by Joseph T. Haney, Jr., M.S. Angela Curry, M.S. Toxicology Division Office of the Executive Director TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Trimethylbenzenes Page i TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................................ I LIST OF TABLES ......................................................................................................................................................II ACRONYMS AND ABBREVIATIONS ................................................................................................................. III CHAPTER 1 SUMMARY TABLES .......................................................................................................................... 1 CHAPTER 2 MAJOR SOURCES AND USES ......................................................................................................... 4 CHAPTER 3 ACUTE EVALUATION ...................................................................................................................... 4 ACUTE 3.1 HEALTH-BASED ACUTE REV AND ESL ........................................................................................................ 4 3.1.1 Physical/Chemical Properties ....................................................................................................................
    [Show full text]
  • Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Burrow Publications Research Papers in Physics and Astronomy 1978 Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy Kenneth D. Jordan Paul Burrow Follow this and additional works at: https://digitalcommons.unl.edu/physicsburrow Part of the Atomic, Molecular and Optical Physics Commons This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Burrow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy Kenneth D. Jordan Mason Laboratory, Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520 Paul D. Burrow Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588 The concept of occupied and unoccupied orbitals has provided a useful means for visualizing many of the most important properties of mo- lecular systems. Yet, there is a curious imbalance in our experimen- tal knowledge of the energies of occupied and unoccupied orbitals. Whereas photoelectron spectroscopy has provided a wealth of data on positive ion states and has established that they can be associated, within the context of Koopmans’ theorem, with the occupied orbitals of the neutral molecule, the corresponding information for the neg- ative ion states, associated with the normally unoccupied orbitals, is sparse. In part this reflects the experimental difficulties connected with measuring the electron affinities of molecules which possess sta- ble anions.
    [Show full text]
  • BENZENE Disclaimer
    United States Office of Air Quality EPA-454/R-98-011 Environmental Protection Planning And Standards June 1998 Agency Research Triangle Park, NC 27711 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF BENZENE Disclaimer This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation of use. EPA-454/R-98-011 ii TABLE OF CONTENTS Section Page LIST OF TABLES.....................................................x LIST OF FIGURES.................................................. xvi EXECUTIVE SUMMARY.............................................xx 1.0 PURPOSE OF DOCUMENT .......................................... 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS.............................. 2-1 3.0 BACKGROUND INFORMATION ...................................... 3-1 3.1 NATURE OF POLLUTANT..................................... 3-1 3.2 OVERVIEW OF PRODUCTION AND USE ......................... 3-4 3.3 OVERVIEW OF EMISSIONS.................................... 3-8 4.0 EMISSIONS FROM BENZENE PRODUCTION ........................... 4-1 4.1 CATALYTIC REFORMING/SEPARATION PROCESS................ 4-7 4.1.1 Process Description for Catalytic Reforming/Separation........... 4-7 4.1.2 Benzene Emissions from Catalytic Reforming/Separation .......... 4-9 4.2 TOLUENE DEALKYLATION AND TOLUENE DISPROPORTIONATION PROCESS ............................ 4-11 4.2.1 Toluene Dealkylation
    [Show full text]
  • Photophysical and Photochemical Studies of Polycyclic Aromatic Hydrocarbons in Solutions Containing Tetrachloromethane
    Photophysical and Photochemical Studies of Polycyclic Aromatic Hydrocarbons in Solutions containing Tetrachloromethane. I. Fluorescence Quenching of Anthracene by Tetrachloromethane and its Complexes with Benzene, p-Xylene and Mesitylene Wiesfaw M. Wiczk Institute of Chemistry, University of Gdahsk, 80-952 Gdansk, Poland Tadeusz Latowski * Institute of Chemistry, Pedagogical University, Kielce, Poland Z. Naturforsch. 41a, 761-766 (1986); received January 7, 1986 Fluorescence quenching of anthracene has been studied in two-component mixtures of CC14 with cyclohexane, benzene, p-xylene and mesitylene. Non-typical quenching curves have been found in mixtures containing benzene and its derivatives. 1. Introduction cules. Consequently, different quenching efficiencies in either of the two forms of the CC14 molecules Chloromethane have been found to quench the might be expected. fluorescence of aromatic hydrocarbons in solution [1-14]. The quenching in these systems is usually accompanied by chemical transformations resulting 2. Experimental in the generation of free radicals [15-19]. Two mechanisms of the fluorescence quenching by CC14 Spectroscopically pure anthracene, benzene and have been envisaged: cyclohexane were used as supplied for fluorescence (i) Transfer of the electronic excitation energy of experiments. A spectrograde tetrachloromethane was the hydrocarbon to vibrations of the CC14 molecule. additionally purified by a procedure reported in (ii) Formation of a labile CT complex between [24], p-xylene and mesitylene (sym-trimethylben- the hydrocarbon in its S] state and the quencher zene) were purified by refluxing over sodium metal molecule. for 5 h followed by fractional distillation. There is ample evidence for the preponderance of Luminescence spectra were measured on a mod­ the latter mechanism involving “external electron ular spectrofluorimeter according to Jasny [25], ab­ transfer”.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Classification Tests for Hydrocarbons Using Solubility, Ignition, Nitration, Baeyer’S Test, Bromine Test and Basic Oxidation Test
    CLASSIFICATION TESTS FOR HYDROCARBONS USING SOLUBILITY, IGNITION, NITRATION, BAEYER’S TEST, BROMINE TEST AND BASIC OXIDATION TEST Jasher Christian Boado, Alyanna Cacas, Phoebe Calimag, Caryl Angelica Chin, Haidee Cosilet, John Francis Creencia Group 2, 2BMT, Faculty of Pharmacy, University of Santo Tomas ABSTRACT Hydrocarbons are classified as saturated, actively unsaturated, aromatic or an arene based on various classification tests involving test for solubility in concentrated H2SO4, ignition, active unsaturation using Baeyer’s test and Bromine test, aromaticity using nitration test, and basic oxidation test. This experiment aims to differentiate the intrinsic physical and the chemical properties of hydrocarbons, and to determine if it is saturated, actively unsaturated, aromatic or an arene. The sample compounds hexane, heptane, cyclohexane, cyclohexene, benzene and toluene were analyzed for their physical state in room temperature, color, and odor. Using solubility test, a drop of a sample was added cautiously into 1ml of concentrated H2SO4. Using the Baeyer’s Test and/or Bromine test in which 2 drops of 2% KmnO4 solution and 10 drops of 0.5% Br2 in CCl4 reagent, respectively, was added into 5 drops of a sample in a dry test tube, was shaken vigourously until the reagent is decolorized compared with water. Using Nitration test, 8 drops of nitrating mixture was added into 5 drops of a sample in a dry test tube, was observed for the formation of a yellow oily layer or droplet and was diluted with 20 drops of water. Using Basic Oxidation test, 8 drops of 2% KmnO4 solution and 3 drops of 10% NaOH solution was added into 4 drops of a sample in a dry test tube and was heated in a water bath for 2 minutes.
    [Show full text]