Forest Health Technology Enterprise Team

Total Page:16

File Type:pdf, Size:1020Kb

Forest Health Technology Enterprise Team Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche, T. Murray, and R. Reardon (Eds.) Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo: Syngaster lepidus Brullè—Timothy Paine, University of California, Riverside. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. Department of Agriculture. ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R.G. Van Driesche and R. Reardon, Editors This publication is also available electronically through www.invasive.org. For additional copies of this publication, contact: Richard Reardon FHTET, USDA Forest Service 180 Canfield Street Morgantown, West Virginia 26505 (304) 285-1566 [email protected] Photographs used in this publication can be accessed online through reference codes (UGA0000000) in the captions for the figures. To load an image, point your browser at www.forestryimages.org, and enter the reference code at the search prompt. ___________________________________ Assessing Host Ranges of Parasitoids and Predators Contents Chapter 1. Introduction: Predicting Host Ranges of Parasitoids and Predacious Insects— What are the Issues? (by R. G. Van Driesche) .................................................................... 1 Chapter 2. The Effects of Compsilura concinnata, an Introduced Generalist Tachinid, on Non-target Species in North America: A Cautionary Tale (by J. S. Elkington and G. H. Boettner) ....................................................................................................................... 4 Chapter 3. Using the Scientific Literature to Estimate the Host Range of a Biological Control Agent (by D. P. A. Sands and R. G. Van Driesche) ............................................................. 15 Chapter 4. Analysis of Fauna in the Receiving Area for the Purpose of Identifying Native Species that Exotic Natural Enemies May Potentially Attack (by M. S. Hoddle) ................................................................................................................ 24 Chapter 5. Behavioral and Physiological Processes Affecting Outcomes of Host Range Testing (by T. M. Withers and L. B. Browne) ...................................................................... 40 Chapter 6. Parameters Used in Laboratory Host Range Tests (by R. G. Van Driesche and T. J. Murray) ........................................................................................................................ 56 Chapter 7. Overview of Testing Schemes and Designs Used to Estimate Host Ranges (by R. G. Van Driesche and T. J. Murray) ............................................................................. 68 Chapter 8. Estimating the Host Range of a Thrips Parasitoid (by K. J. Froud and P. S. Stevens) .. 90 Chapter 9. Microctonus Parasitoids and New Zealand Weevils: Comparing Laboratory Estimates of Host Ranges to Realized Host Ranges (by B. I. P. Barratt)................... 103 Chapter 10. Evaluation of Lily Leaf Beetle Parasitoids for North American Introduction (by R. A. Casagrande and M. Kenis) ................................................................................ 121 Chapter 11. Host Preference Testing for Parasitoids of a Eucalyptus Borer in California (by T. D. Paine, J. G. Millar, and L. M. Hanks)................................................................ 138 Chapter 12. Estimating the Host Range of the Tachinid Trichopoda giacomellii, Introduced into Australia for Biological Control of the Green Vegetable Bug (by M. Coombs) .............................................................................................................. 143 Chapter 13. Assessing Host Specificity and Field Release Potential of Fire Ant Decapitating Flies (by S. D. Porter and L. E. Gilbert)........................................................................... 152 Chapter 14. Determining the Host Range of Aphantorhaphopsis samarensis, a Specialized Tachinid Introduced Against the Gypsy Moth (by R. W. Fuester, K. S. Swan, M. Kenis, and F. Hérard) ................................................................................................. 177 Chapter 15. Predicting the Field Prey Range of an Introduced Predator, Rodolia cardinalis Mulsant, in the Galápagos (by C. E. Causton) .......................................................... 195 Chapter 16. Evaluating Host Range of Laricobius nigrinus for Introduction into the Eastern United States for Biological Control of Hemlock Woolly Adelgid (by G. Zilahi- Balogh) ........................................................................................................................... 224 Chapter 17. Conclusions (by R. G. Van Driesche)........................................................................... 239 iii ____________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 1. INTRODUCTION PREDICTING HOST RANGES OF PARASITOIDS AND PREDACIOUS INSECTS—WHAT ARE THE ISSUES? R. G. Van Driesche Department of Plant, Soil and Insect Science: Division of Entomology, University of Massachusetts, Amherst, MA 01003 USA [email protected] GOALS FOR HOST RANGE TESTING Estimating the likely nontarget impacts of agents released to suppress invasive plants has been legally required, to one degree or another, for many decades. Similar predictions were not formally required for introductions of parasitoids or predators of pest arthropods. That is now beginning to change. This book has as its goal an exploration of how such estimates can best be made. This requires overcoming a series of problems, some logistical, some technical, some tied to an unclear theoretical framework for the activity. In this book, the editors and authors have tried to address many of these needs, in some chapters as essays on important tasks that need to be achieved, in other chapters as case history explorations of how the tasks were done in particular cases. This book will not be the fi nal answer, but we hope it might propel the search for such an answer along. LEGAL REQUIREMENTS Whether or not predicting the host ranges of parasitoids and predators is legally required var- ies among countries. There is an absolute requirement for such predictions in New Zealand and Australia, but not in most other countries. In the EU, there is a developing consensus that such information will be required, but in the United States legal authority is lacking to impose such a requirement. Rather, the degree of such an assessment currently depends on the agency of employment of the person importing the natural enemy, with more stringent requirements for federal employees. Chapter 1. Introduction 1 ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS ___________________________________ Regardless of the current legal status quo in any particular country, there is a trend to impose such requirements. The role of this book is in part to shape how such requirements are written, by revealing some of the complexities in the process of making such estimates and highlighting the risks of making overly sweeping assumptions about the utility of laboratory test data. PRACTICAL PROBLEMS Some of the problems posed by estimating the host ranges of candidate entomophagous biocontrol agents relative to the fauna of the receiving country are purely practical, rather than theoretical. Compared to plants, the number of species in a native biota of insects can be overwhelmingly large, with hundreds, thousands, even tens of thousands of native species in the target pest’s family in the receiving biogeographic region. Many of these are likely to have little or no information associated with museum specimens about such important matters as their biology, habitat, host plants, and so on. This double edged problem, too many species and too little information, can cripple efforts to rationally consider the impact of a new para- sitoid or predator on such a group. Many species that would be desirable members of a host range test list may be impossible to fi nd or, if found, information on how to rear them will be unavailable. Rearing diffi
Recommended publications
  • Rediscovery and Reclassification of the Dipteran Taxon Nothomicrodon
    www.nature.com/scientificreports OPEN Rediscovery and reclassification of the dipteran taxon Nothomicrodon Wheeler, an exclusive Received: 07 November 2016 Accepted: 28 February 2017 endoparasitoid of gyne ant larvae Published: 31 March 2017 Gabriela Pérez-Lachaud1, Benoit J. B. Jahyny2,3, Gunilla Ståhls4, Graham Rotheray5, Jacques H. C. Delabie6 & Jean-Paul Lachaud1,7 The myrmecophile larva of the dipteran taxon Nothomicrodon Wheeler is rediscovered, almost a century after its original description and unique report. The systematic position of this dipteran has remained enigmatic due to the absence of reared imagos to confirm indentity. We also failed to rear imagos, but we scrutinized entire nests of the Brazilian arboreal dolichoderine ant Azteca chartifex which, combined with morphological and molecular studies, enabled us to establish beyond doubt that Nothomicrodon belongs to the Phoridae (Insecta: Diptera), not the Syrphidae where it was first placed, and that the species we studied is an endoparasitoid of the larvae of A. chartifex, exclusively attacking sexual female (gyne) larvae. Northomicrodon parasitism can exert high fitness costs to a host colony. Our discovery adds one more case to the growing number of phorid taxa known to parasitize ant larvae and suggests that many others remain to be discovered. Our findings and literature review confirm that the Phoridae is the only taxon known that parasitizes both adults and the immature stages of different castes of ants, thus threatening ants on all fronts. Ants are hosts to at least 17 orders of myrmecophilous arthropods (organisms dependent on ants), ranging from general scavengers to highly selective predators and parasitoids that attack either ants, their brood or other myr- mecophiles1–3.
    [Show full text]
  • Data Sheets on Quarantine Pests
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Aonidiella citrina IDENTITY Name: Aonidiella citrina (Coquillett) Synonyms: Aspidiotus citrinus Coquillett Chrysomphalus aurantii citrinus (Coquillett) Taxonomic position: Insecta: Hemiptera: Homoptera: Diaspididae Common names: Yellow scale (English) Cochenille jaune (French) Escama amarilla de los cítricos (Spanish) Notes on taxonomy and nomenclature: The original description by Coquillett is inadequate and simply refers to 'the yellow scale' on orange (Nel, 1933). A. citrina is morphologically very similar to the Californian red scale, Aonidiella aurantii (Maskell), and was considered to be a variety until Nel (1933) raised it to specific level based on a comparative study of their ecology, biology and morphology. Bayer computer code: AONDCI EU Annex designation: II/A1 HOSTS A. citrina is polyphagous attacking plant species belonging to more than 50 genera in 32 families. The main hosts of economic importance are Citrus spp., especially oranges (C. sinensis), but the insect is also recorded incidentally on a wide range of ornamentals and some fruit crops including Acacia, bananas (Musa paradisiaca), Camellia including tea (C. sinensis), Clematis, Cucurbitaceae, Eucalyptus, Euonymus, guavas (Psidium guajava), Hedera helix, Jasminum, Ficus, Ligustrum, Magnolia, mangoes (Mangifera indica), Myrica, olives (Olea europea), peaches (Prunus persica), poplars (Populus), Rosa, Schefflera actinophylla, Strelitzia reginae, Viburnum and Yucca. The main potential hosts in the EPPO region are Citrus spp. growing in the southern part of the region, around the Mediterranean. GEOGRAPHICAL DISTRIBUTION A. citrina originated in Asia and has spread to various tropical and subtropical regions throughout the world. The precise distribution of A.
    [Show full text]
  • European Format of Cv
    EUROPEAN FORMAT OF CV PERSONAL INFORMATION Name Kolarov Janko Angelov Address 236 Bulgaria Boul., 4000 Plovdiv, Bulgaria Tel. +359 32 261721 Fax +359 32 964 689 E-mail [email protected] Nationality Bulgarian Date of birth 20.06.1947 Length of service • Date (from-to) 2009-2014 Professor in Faculty of Pedagogy, University of Plovdiv 2000-2009 Associated professor in Faculty of Pedagogy, University of Plovdiv 1990-2000 Associated professor in Biological faculty, University of Sofia 1983-1990 A research worker of entomology in Institute of introduction and plant resources, Sadovo 1981-1983 Senior teacher of biology in Medical university, Plovdiv 1972-1981 Teacher Education and teaching 1996 Doctor of science 1980 PHD 1973 Magister of biology Mother tongue Bulgarian Other languages [RUSSIAN} [ENGLISH} [GERMAN} • reading excellent good middle • writing excellent good middle • conversation excellent good middle Participation in projects 2010-2012 Kuzeydoğu Anadolu Bölgesi’nin Cryptinae (Hymenoptera: Position Ichneumonidae) Altfamilyası üzerinde sistematik, sayısal taksonomi ve moleküler filogeni çalışmaları (Turkey) – member of team 2009-2011 Project Nr. 5362 entitled “State of Entomofauna Along the Pipeline Baku-Tbilisi-Jeyhan (Azerbaijan Territory)”, with leader I. A. Nuriyeva - – member of team 2006-2007 Investigation of the Ichneumonidae (Hymenoptera, Insecta) Fauna of Bulgaria – member of team 2004 A study of Ichneumonidae fauna of Isparta province, Turkey – member of team 2003 Fauna Еуропеа – member of team 1993 National strategy of protection of biological in Bulgaria – member of team Proffesional area Zoology Entomology Ecology Biogeography L I S T of the scientific works of Prof. DSc Janko Angelov Kolarov 1. Kolarov, J., 1977. Tryphoninae (Hymenoptera, Ichneumonidae) Genera and Species unknown in Bulgarian Fauna up to now.
    [Show full text]
  • Terrestrial Insects and Climate Change: Adaptive Responses in Key Traits
    Physiological Entomology (2019), DOI: 10.1111/phen.12282 Terrestrial insects and climate change: adaptive responses in key traits VANESSA KELLERMANN andBELINDA VAN HEERWAARDEN School of Biological Sciences, Monash University, Melbourne, Victoria, Australia Abstract. Understanding and predicting how adaptation will contribute to species’ resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health-related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait-based models suggest that low- to mid-latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species’ distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments.
    [Show full text]
  • Can Anastatus Bifasciatus Be Used for Augmentative Biological Control of the Brown Marmorated Stink Bug in Fruit Orchards?
    insects Article Can Anastatus bifasciatus Be Used for Augmentative Biological Control of the Brown Marmorated Stink Bug in Fruit Orchards? Judith M. Stahl 1,2,* , Dirk Babendreier 1, Cristina Marazzi 3, Stefano Caruso 4, Elena Costi 5, Lara Maistrello 5 and Tim Haye 1 1 CABI, Rue des Grillons 1, 2800 Delémont, Switzerland; [email protected] (D.B.); [email protected] (T.H.) 2 Institute of Ecology and Evolutionary Biology, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany 3 Servizio Fitosanitario Cantonale, Dipartimento Delle Finanze e Dell’economia, Sezione Dell’agricoltura Viale S. Franscini 17, 6501 Bellinzona, Switzerland; [email protected] 4 Consorzio Fitosanitario Provinciale di Modena, Via Santi Venceslao 14, 41123 Modena, Italy; [email protected] 5 Dipartimento di Scienze della Vita, Centro BIOGEST-SITEIA, Università di Modena e Reggio Emilia, Via G. Amendola 2, 42122 Reggio-Emilia, Italy; [email protected] (E.C.); [email protected] (L.M.) * Correspondence: [email protected] Received: 20 March 2019; Accepted: 12 April 2019; Published: 15 April 2019 Abstract: The generalist egg parasitoid Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) is the most prevalent egg parasitoid of the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in Europe. To assess its efficacy against the pest H. halys and to validate the potential risks for non-target species in a realistic field setting, inundative releases were conducted over three consecutive years in four fruit orchards in Switzerland and Italy. In total, more than 4300 A. bifasciatus females were released, which was equivalent to 11,000 to 26,000 females per hectare, depending on distances between trees in each orchard.
    [Show full text]
  • A Note on the Recent Distribution of Aporia Crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2000 Band/Volume: 31 Autor(en)/Author(s): Fric Zdenek Flatynek, Hula Vladimir, Konvicka Martin, Pavlicko Alois Artikel/Article: A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (December 2000) 31 (3/4):453-454, Würzburg, ISSN 0171-0079 A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) by Z d e n e k Fr ic, V l a d im ír H u la , M a r t in K o n v ic k a & A lo is Pa v l ic k o received 20.X.2000 Eitschberger & Steiniger (2000), in their overview of records of Aporia crataegi in Germany, mentioned an interesting occurrence of this species in Wellertal, Silberbach and between Hohenberg, Fichtelgebirge and Dubina, closely to the German-Czech Republic border. The au­ thors speculated that the individuals originated from Czech territory. To understand the con­ text of their records, it is necessary to take into account the recent distribution of this species in the Czech Republic. Approximately since the 1950s, this butterfly species had been declining and gradually disap­ peared from both Bohemia and Moravia (Novak & Liska, 1997; Lastuvka, 1998; Beun, 1999), although there were occasional invasions followed by establishments of transient populations, such as near Pribram in the 1970s (Zeleny, 1977).
    [Show full text]
  • Biological Control of Insect Pests in the Tropics - M
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. III - Biological Control of Insect Pests In The Tropics - M. V. Sampaio, V. H. P. Bueno, L. C. P. Silveira and A. M. Auad BIOLOGICAL CONTROL OF INSECT PESTS IN THE TROPICS M. V. Sampaio Instituto de Ciências Agrária, Universidade Federal de Uberlândia, Brazil V. H. P. Bueno and L. C. P. Silveira Departamento de Entomologia, Universidade Federal de Lavras, Brazil A. M. Auad Embrapa Gado de Leite, Empresa Brasileira de Pesquisa Agropecuária, Brazil Keywords: Augmentative biological control, bacteria, classical biological control, conservation of natural enemies, fungi, insect, mite, natural enemy, nematode, predator, parasitoid, pathogen, virus. Contents 1. Introduction 2. Natural enemies of insects and mites 2.1. Entomophagous 2.1.1. Predators 2.1.2. Parasitoids 2.2. Entomopathogens 2.2.1. Fungi 2.2.2. Bacteria 2.2.3. Viruses 2.2.4. Nematodes 3. Categories of biological control 3.1. Natural Biological Control 3.2. Applied Biological Control 3.2.1. Classical Biological Control 3.2.2. Augmentative Biological Control 3.2.3. Conservation of Natural Enemies 4. Conclusions Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS Biological control is a pest control method with low environmental impact and small contamination risk for humans, domestic animals and the environment. Several success cases of biological control can be found in the tropics around the world. The classical biological control has been applied with greater emphasis in Australia and Latin America, with many success cases of exotic natural enemies’ introduction for the control of exotic pests. Augmentative biocontrol is used in extensive areas in Latin America, especially in the cultures of sugar cane, coffee, and soybeans.
    [Show full text]
  • Deleterious Effects of Low Temperature Exposure on Learning Expression in a Parasitoid
    International Journal of Comparative Psychology, 2006, 19 , 368-385. Copyright 2006 by the International Society for Comparative Psychology Deleterious Effects of Low Temperature Exposure on Learning Expression in a Parasitoid Joan van Baaren Université de Rennes I, France Guy Boivin Centre de Recherche et de Développement en Horticulture Agriculture et Agroalimentaire, Canada Yannick Outreman UMR INRA/Agrocampus Rennes BiO3P, France In this paper, we review the learning capacities of insect parasitoids. We present data on the learning capacity of the parasitoid wasp, Anaphes victus (Hymenoptera: Mymaridae), in the host (egg) dis- crimination process. In addition, we examine the effect of low temperature exposure on the wasp’s learning. Our results showed that A. victus females learned rapidly to recognize their own chemical cues that they left on the host eggs, and retained this learning from patch to patch. Conspecific chemical cues left on the eggs took more time to be learned, but two learning trials induced a pro- longed memory for the cues. Our results also showed that the use of learned, conspecific chemical cues was more affected by cold exposure than was the use of learned personal cues. Learning in Parasitoids Insect parasitoids develop on or in a single host and kill it (Eggleton & Gaston, 1990). More than 100,000 species of insect parasitoids are known and while 75% of these species are Hymenoptera, the parasitoid lifestyle has evolved also in Diptera (flies), Coleoptera (beetles), Neuroptera (lacewings), Lepidoptera (butterflies) and Trichoptera (caddisflies). Learning in parasitoids was demon- strated as early as 1937 by Thorpe and Jones, but research on the topic did not flourish until the end of the 1980s.
    [Show full text]
  • Biological Responses and Control of California Red Scale Aonidiella Aurantii (Maskell) (Hemiptera: Diaspididae)
    Biological responses and control of California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae) by Khalid Omairy Mohammed Submitted to Murdoch University in fulfilment of the requirements for the degree of Doctor of Philosophy College of Science, Health, Engineering and Education Murdoch University Perth, Western Australia March 2020 Declaration The work described in this thesis was undertaken while I was an enrolled student for the degree of Doctor of Philosophy at Murdoch University, Western Australia. I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. To the best of my knowledge, all work performed by others, published or unpublished, has been duly acknowledged. Khalid O. Mohammed Date: March 10, 2020 I Acknowledgements بِ ْس ِمِِاللَّ ِـه َِّالر ْح َم ٰـ ِن َِّالر ِح ِيمِ ُ َويَ ْسأَلُ َونَك َِع ِن ُِّالروحِِِۖقُ ِل ُِّالر ُوح ِِم ْنِأَ ْم ِر َِر ِب َيِو َماِأ ِوتيتُ ْم ِِم َن ِْال ِع ْل ِمِإِ ََّّل َِق ِل ايًلِ﴿٨٥﴾ The research for this thesis was undertaken in the School of Veterinary and Life Science, Murdoch University. I would like to express my heartfelt gratitude to my supervisors Professor Yonglin Ren and Dr Manjree Agarwal “Postharvest Biosecurity and Food Safety Laboratory Murdoch” for their support with enthusiasm, constructive editing, and patience throughout the years of this wonderful project. I deeply appreciate their encouragement, assistance and for being so willing to take me on as a student. I would like to express my sincere gratitude to all those who helped me in completing this thesis.
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha Halys in Europe with a Large-Scale Monitoring Program
    insects Article Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program Livia Zapponi 1 , Francesco Tortorici 2 , Gianfranco Anfora 1,3 , Simone Bardella 4, Massimo Bariselli 5, Luca Benvenuto 6, Iris Bernardinelli 6, Alda Butturini 5, Stefano Caruso 7, Ruggero Colla 8, Elena Costi 9, Paolo Culatti 10, Emanuele Di Bella 9, Martina Falagiarda 11, Lucrezia Giovannini 12, Tim Haye 13 , Lara Maistrello 9 , Giorgio Malossini 6, Cristina Marazzi 14, Leonardo Marianelli 12 , Alberto Mele 15 , Lorenza Michelon 16, Silvia Teresa Moraglio 2 , Alberto Pozzebon 15 , Michele Preti 17 , Martino Salvetti 18, Davide Scaccini 15 , Silvia Schmidt 11, David Szalatnay 19, Pio Federico Roversi 12 , Luciana Tavella 2, Maria Grazia Tommasini 20, Giacomo Vaccari 7, Pietro Zandigiacomo 21 and Giuseppino Sabbatini-Peverieri 12,* 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via Mach 1, 38098 S. Michele all’Adige, TN, Italy; [email protected] (L.Z.); [email protected] (G.A.) 2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, University di Torino (UniTO), Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; [email protected] (F.T.); [email protected] (S.T.M.); [email protected] (L.T.) 3 Centro Agricoltura Alimenti Ambiente (C3A), Università di Trento, Via Mach 1, 38098 S. Michele all’Adige, TN, Italy 4 Fondazione per la Ricerca l’Innovazione e lo Sviluppo Tecnologico dell’Agricoltura Piemontese (AGRION), Via Falicetto 24, 12100 Manta, CN,
    [Show full text]