Chapter 26: Reproductive System Chapter 26: Reproductive System: Reproductive System

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 26: Reproductive System Chapter 26: Reproductive System: Reproductive System Chapter 26: Reproductive System Chapter 26: Reproductive System: Reproductive System Only system not essential to life of individual Zygote: Diploid cell Gonads: Reproductive organs (testes / ovaries) Gametes: Reproductive cells (sperm / egg) Similar to Marieb & Hoehn – Figure 26.1 Chapter 26: Reproductive System Chapter 26: Reproductive System Testes: Cryptorchidsm (“hidden testis”) Male Reproductive Anatomy: • Testes (spermatozoa production) • Descent of the testes (~ 7 months in utero) • Undescended testis(es) (spermatozoa transport) • Duct system • ~ 3% full-term (~ 30% premies) • Glands (seminal fluids) • Undescended = sterile Semen = spermatozoa (20 – 100 million) + seminal fluids (2 – 5 ml) Chapter 26: Reproductive System Chapter 26: Reproductive System Leydig Cells (interstitial cells) Testes: Testes - Histology: • Testosterone production Spermatic Cord: • Includes ductus deferens, blood vessels, nerves, and lymphatic vessels • Passes via inguinal canal (weak point – inguinal hernia…) Scrotum: • Divided internally into two chambers Seminiferous Tubule • Cremaster Muscles: Regulate testes location (cold = muscle contraction) • Sperm development ~ 97.0F • Each testis divided into lobules (tunica albuginea) Seminiferous Tubules: Slender, tightly coiled tubules (~ 0.5 miles / testis); sperm production Sertoli Cells (sustentacular cells) Rete Testis: • Spermatogenesis Passageways collecting sperm from seminiferous tubules 1 Chapter 26: Reproductive System Chapter 26: Reproductive System Spermatogenesis (sperm production): Anatomy of a Sperm: (Diploid) Spermatogonia (stem cell) • ~ 14 yrs. of age Mitosis • 9 week process • 400 million / day 1) Head: • Nucleus - contains DNA Primary (Diploid) Spermatocyte • Acrosomal cap • Hydrolytic enzymes • Egg penetration Meiosis (crossing over) 2) Midpiece: • Mitochondria - ATP Spermatids 3) Tail: (Haploid) • Flagellum - movement Spermiogenesis Lack most intracellular structures Lumen of • Nutrients from environment Spermatozoa seminiferous tubule (Haploid) Chapter 26: Reproductive System Chapter 26: Reproductive System Male Reproductive Tract: Male Reproductive Accessory Glands: 1) Epididymis: Functions: 1) Activate spermatozoa • 7 m long; move immature sperm via currents (2 week journey) 2) Provide nutrients (power mitochondria) A) Monitors / Adjusts tubule fluid composition 3) Propel sperm / fluids (peristalsis) B) Recycles damaged / non-utilized sperm 4) Provide buffers (neutralize urethra / vagina) C) Facilitates functional maturation of sperm • Secrete chemicals that prevent capacitation (mobile sperm) • Sperm activated via seminal fluids & female reproductive tract 2) Ductus Deferens: 1) Seminal Vesicles (60% semen volume): • ~ 18 in. long; thick layer of smooth muscle • [fructose] = Activate sperm • Propel sperm via peristaltic contractions • Prostaglandins = smooth muscle contraction • Stores sperm (several months) • Fibrinogen = temporary clot in vagina • Ejaculatory Duct: Portion through prostate gland • Buffers = Neutralize acids 3) Urethra 2) Prostate Gland (30% semen volume): • Seminalplasmin (antibiotic) 3) Bulbourethral Glands (5% semen volume): • Thick, alkaline solution (buffer / lubricant) Chapter 26: Reproductive System Chapter 26: Reproductive System Penis: Male Reproductive System - Hormones: (-) 1) Root • Maintains accessory Gonadotropin-releasing Hypothalamus • Attaches penis to body wall glands Hormone (GnRH) 2) Shaft (erectile tissue) • Stimulates metabolic processes (-) • Corpora cavernosa / Corpus spongiosum (-) • Secondary sex 3) Glans Luteinizing Follicle-stimulating characteristics Anterior Pituitary • Prepuce (foreskin) Hormone (LH) Hormone (FSH) • Influences brain Sexual Response: development 1) Erection = Enlargement / stiffening of the penis • Parasympathetic reflex: Testes • Nitric oxide relaxes erectile tissue sphincters • Bulbourethral gland stimulated (pre-ejaculate) Leydig Sertoli Cells Cells 2) Ejaculation = Propulsion of semen from duct system Spermatogenesis / Ejaculate: Testosterone • Accessory glands contract (seminal fluids) Spermiogenesis • 2 – 5 ml semen (+) • Bladder sphincters contract (close off bladder) • ~ 20 – 100 million sperm Inhibin • Penis musculature rhythmically contracts (semen = 200 in / sec) 2 Chapter 26: Reproductive System Chapter 26: Reproductive System Females: • Ovaries (egg production) Ovary: • Duct / Development System • Composed of cortex (egg formation) and medulla (blood/nerve supply) • Function: 1) Production of eggs (ova) 2) Secretion of sex hormones Oogenesis (ovum production – long process): Primary Oocytes (~ 400,000) Atresia: Degeneration of primary oocytes • ~ 500 eggs released / life Oogonia 1st polar body 2nd polar body Secondary Mature Oocyte Ovum Mitosis Meiosis (I) Meiosis (II) After Before Birth At Puberty Fertilization Chapter 26: Reproductive System Chapter 26: Reproductive System Ovary: Ovary: • Oogenesis occurs within ovarian follicles: • Oogenesis occurs within ovarian follicles: Primordial Follicle: Primordial Follicle: Primary Oocyte + Follicle cells Primary Oocyte + Follicle cells Ovarian Cycle: (~ 28 days) Ovarian Cycle: (~ 28 days) (Graafian Follicle) Only one oocyte ovulated / cycle 1) Primary Follicle 2) Secondary Follicle 3) Tertiary Follicle 4) Ovulation 5) Corpus Luteum Follicle cells enlarge / replicate Fluid-filled cavity forms Central chamber appears (antrum) Primary oocyte matures Follicle cells collapse; Zona Pellucida: between follicle cells 15 mm diameter; bulge in to secondary oocyte form endocrine structure (1st polar body formed) Increased surface area ovarian wall appears Pregnancy = CL remains Ovarian wall ruptures around egg for absorption No Pregnancy = CL degenerates (12 days) Chapter 26: Reproductive System Chapter 26: Reproductive System Duct / Development System: 1) Mechanical protection Duct / Development System: Uterus layers = Endometrium / myometrium • Oocytes pass through Fallopian tubes to uterus 2) Nutritional support • Uterine (Menstrual) Cycle: 3) Waste removal 1) Menses: Endometrium sloughs off from uterine wall (~ 7 days) 4) Ejection Infundibulum: Ampulla: 2) Proliferative Phase: Cells multiple across endometrium ( ~ 7 days) Expanded funnel Middle segment of tube 3) Secretory Phase: Endometrial glands enlarge / increase secretions • ~ 14 days; prepares uterus for embryo Fundus Fimbriae: Finger-like projections Uterus (collect egg) Body Isthmus: Connection of tube to uterus wall Cervix Trip takes 3 – 4 days Fertilization must occur within • Ciliated columnar epithelium ~ 24 hours of release • Thick smooth muscle layer 3 Chapter 26: Reproductive System Chapter 26: Reproductive System Duct / Development System: Hormonal Regulation of Female Reproductive Cycle: Birth Control Pill • Vagina: Elastic, muscular tube between uterus and external environment 1) Passageway for elimination of menstrual fluids 2) Receives penis during sexual intercourse E2 triggers LH surge Corpus Luteum = Follicle cells LH surge triggers ovulation • Release progesterone 3) Holds spermatozoa prior to uterus entrance • Maintains uterine lining 4) Forms birth canal during fetus delivery Stratified squamous epithelium Devoid of glands (mucus = cervix) Very slight keratinization Follicular cells = Estrogen Support bacteria (= lactic acid) • Stimulated by FSH Inhibits FSH release 4 .
Recommended publications
  • Identification of Differentially Expressed Genes of Primary
    Cell Research (2004); 14(6):507-512 ARTICLE http://www.cell-research.com Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique Gang LIANG1,4, Xiao Dong ZHANG1, Lu Jing WANG1, Yu Shen SHA2, Jian Chao ZHANG2, Shi Ying MIAO1, Shu Dong ZONG2, Lin Fang WANG1,*, S.S. KOIDE3 1National Laboratory Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, 5 Dong Dan San Tiao, 100005 Beijing, China 2National Research Institute for Family Planning, WHO Collaboration Center for Research in Human Reproduction, Beijing, 12 Da Hui Si, 100081 Beijing, China 3Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA 4Chinese National Human Genome Center, Beijing, 3-707 North Yong Chang Road BDA, Beijing 100176, China ABSTRACT The method of laser capture microdissection (LCM) combined with suppressive subtractive hybridization (SSH) was developed to isolate specific germ cells from human testis sections and to identify the genes expressed during differen- tiation and development. In the present study, over 10,000 primary spermatocytes and round spermatid cells were successfully isolated by LCM. Using the cDNAs from primary spermatocytes and round spermatids, SSH cDNAs library of primary spermatocyte-specific was constructed. The average insert size of the cDNA isolated from 75 randomly picked white clones was 500 bp, ranging from 250 bp to 1.7 kb. Using the dot-blot method, a total of 421 clones were examined, resulting in the identification of 390 positive clones emitting strong signals.
    [Show full text]
  • Male Reproductive System
    MALE REPRODUCTIVE SYSTEM DR RAJARSHI ASH M.B.B.S.(CAL); D.O.(EYE) ; M.D.-PGT(2ND YEAR) DEPARTMENT OF PHYSIOLOGY CALCUTTA NATIONAL MEDICAL COLLEGE PARTS OF MALE REPRODUCTIVE SYSTEM A. Gonads – Two ovoid testes present in scrotal sac, out side the abdominal cavity B. Accessory sex organs - epididymis, vas deferens, seminal vesicles, ejaculatory ducts, prostate gland and bulbo-urethral glands C. External genitalia – penis and scrotum ANATOMY OF MALE INTERNAL GENITALIA AND ACCESSORY SEX ORGANS SEMINIFEROUS TUBULE Two principal cell types in seminiferous tubule Sertoli cell Germ cell INTERACTION BETWEEN SERTOLI CELLS AND SPERM BLOOD- TESTIS BARRIER • Blood – testis barrier protects germ cells in seminiferous tubules from harmful elements in blood. • The blood- testis barrier prevents entry of antigenic substances from the developing germ cells into circulation. • High local concentration of androgen, inositol, glutamic acid, aspartic acid can be maintained in the lumen of seminiferous tubule without difficulty. • Blood- testis barrier maintains higher osmolality of luminal content of seminiferous tubules. FUNCTIONS OF SERTOLI CELLS 1.Germ cell development 2.Phagocytosis 3.Nourishment and growth of spermatids 4.Formation of tubular fluid 5.Support spermiation 6.FSH and testosterone sensitivity 7.Endocrine functions of sertoli cells i)Inhibin ii)Activin iii)Follistatin iv)MIS v)Estrogen 8.Sertoli cell secretes ‘Androgen binding protein’(ABP) and H-Y antigen. 9.Sertoli cell contributes formation of blood testis barrier. LEYDIG CELL • Leydig cells are present near the capillaries in the interstitial space between seminiferous tubules. • They are rich in mitochondria & endoplasmic reticulum. • Leydig cells secrete testosterone,DHEA & Androstenedione. • The activity of leydig cell is different in different phases of life.
    [Show full text]
  • Determination of the Elongate Spermatid\P=N-\Sertolicell Ratio in Various Mammals
    Determination of the elongate spermatid\p=n-\Sertolicell ratio in various mammals L. D. Russell and R. N. Peterson Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, U.S.A. Summary. Criteria were devised for determining the elongate spermatid\p=n-\Sertolicell ratio in various mammalian species at the electron microscope level. When data from particular species were pooled, the values were: rabbit, 12\m=.\17:1,hamster, 10\m=.\75:1; gerbil, 10\m=.\64:1;rat, 10\m=.\32:1; guinea-pig, 10\m=.\10:1;vole, 9\m=.\75:1;and monkey, 5\m=.\94:1. The elongate spermatid\p=n-\Sertolicell ratio is a measure of the workload of the Sertoli cell and is a prime factor determining their efficiency. The higher the ratio, the higher the sperm output is likely to be per given weight of seminiferous tubule parenchyma for a particular species. Introduction The number of spermatozoa provided in the ejaculate is determined by a number of factors but the major influence is the number of spermatozoa produced in the testis. In mammals that breed continuously testicular sperm production appears to be related to the size of the testis, especially the seminiferous tubule compartment. Here the kinetics of spermatogenesis dictate how many germ cells (spermatogonia) become committed to the spermatogenic process and also the time it takes these germ cells to go through various cell divisions and transformations to become a spermatozoon. The index of sperm production, or the daily sperm production, is expressed as the number of spermatozoa produced per day by the two testes of an individual, whereas the index of efficiency of sperm production is the number of spermatozoa produced per unit weight or volume of testicular tissue (Amann, 1970).
    [Show full text]
  • Cytology and Kinetics of Spermatogenesis in the Rabbit
    CYTOLOGY AND KINETICS OF SPERMATOGENESIS IN THE RABBIT E. E. SWIERSTRA and R. H. FOOTE Department of Animal Husbandry, Cornell University, Ithaca, New York, U.S.A. {Received 21st August 1962) Summary. The cycle of the seminiferous epithelium of the rabbit was divided into eight stages, using as criteria the shape of the spermatid nucleus, the location of the spermatids and spermatozoa in regard to the basement membrane, the presence of meiotic figures and the release of spermatozoa from the lumen. The relative duration (frequency) of Stages 1 to 8 were 27-7, 13-4, 7-3, 11-0, 4-1, 15-7, 12-2 and 8-6%, respectively. Each stem cell (Type A spermatogonium) divided to produce two Type A spermatogonia. One of these was the starting cell for the next genera¬ tion, while the other gave rise to two intermediate-type spermatogonia. Three more spermatogonial divisions followed, producing sixteen primary spermatocytes from one Type A spermatogonium, as is characteristic for the bull and the ram, but unlike the rat, mouse and hamster. It was estimated that only 3-1 spermatids were generated from one primary spermatocyte, suggesting that in the rabbit there is considerable degeneration of spermatogenic cells during the two maturation divisions. INTRODUCTION Since the end of the last century, it has been known that well-defined cellular associations succeed one another in time in any one area of the semini¬ ferous tubules, and that along the tubules a more or less regular pattern of cell populations exists (Brown, 1885; Benda, 1887; von Ebner, 1888). This succession of cellular associations at any one location in the seminiferous tubules led to the concept of the cycle of the seminiferous epithelium defined by Leblond & Clermont (1952b) as that "series of changes occurring in a given area of the seminiferous epithelium between two successive appearances of the same cellular association".
    [Show full text]
  • Male Reproductive Organs Testes (Paired Gonads)
    Male Reproductive Organs Testes (paired Gonads) Penis Series of passageways . Epididymis . Ductus Deferens . Urethra Accessory Glands . Seminal vesicle . Prostate Functions • Paired Gonads (Testes) – Produce Spermatozoa (male germ cells) & Androgens (male sex hormones) •Penis– Copulatory organ • Series of passageways & ducts – To store the spermatozoa , ready for delivery to male copulatory organ • Male accessory glands – provide fluid vehicle for carrying spermatozoa Coverings Tunica Vaginalis Tunica Albuginea Tunica Vasculosa Outermost Layer . Tunica Albuginea (Dense connective tissue fibrous Memb.) – Consist of closely packed collagen Fibres with a few Elastic Fibres . form septa ,Project from Mediastinum Testis . Divide incompletely into pyramidal lobules with apex towards Mediatinum . Each Testis Approx-200 lobule . Each lobule has Approx1-4 seminiferous Tubules . Form loop to end in Straight tubule (20-30) • Straight tubules end up unite to form network (Rete testis) which gives off 15-20 efferent ductules • Space between tubules filled up by Loose connective tissue (collagen fibres & fibroblasts,macrophases , mast cells), blood vessels, Lymphatics & Interstitial cells of Leydig Seminiferous Tubules • Fill most of interior of Each Testes • Two types of cells • Germ cells (represent different stages of spermatogenesis) Spermatogonia (Type A & type B) Primary spermatocyte Secondary spermatocyte Spermatids Spermatozoa • Sustantacular cells (Sertoli) Mitosis Spermatogonium 44+X 44+X Type A +Y +Y Spermatogonium 44+X+ Y Type B Enlarge/Mitosis
    [Show full text]
  • Seminiferous Tubules to Epididymis in the Mouse: a Histological and Quantitative Study
    TRANSPORT OF SPERMATOZOA FROM SEMINIFEROUS TUBULES TO EPIDIDYMIS IN THE MOUSE: A HISTOLOGICAL AND QUANTITATIVE STUDY BRUCE M. BARACK Department of Anatomy, Washington University School of Medicine, St. Louis, Missouri, U.S.A. (Received 1st May 1967) Summary. The histology and structure of the seminiferous tubules, the tubuli recti, the rete testis and the ductuli efferentes of the adult albino mouse were studied in conjunction with the effect of unilateral ligation of the ductuli efferentes on the testis of the operated side under various experimental conditions. Results indicate that the amount of fluid produced within the testis is sufficient to flush the tubular system at least once a day and therefore eight times/spermatogenic cycle and that this fluid passage is the major factor in the transport of spermatozoa from the seminiferous tubules to the ductuli efferentes. The possibility of an interaction between the Sertoli cell and associated spermatids in early spermiogenesis resulting in secretion of fluid by the Sertoli cell is discussed. INTRODUCTION The mechanism of transport of immotile spermatozoa from the seminiferous tubules to the epididymis is still in question. The consequences of unilateral ligation of the ductuli efferentes or the head of the epididymis on the testis of the operated side have been described by Van Wagenen (1924, 1925), White (1933), Harrison (1953) and Harrison & Macmillan (1954) in the rat; Ladman & Young (1958) in the guinea-pig; Baillie (1962) in the mouse and Gaddum & Glover (1965) in the rabbit. These investigators found that following ligation there occurs a generalized dilatation of the seminiferous tubules accompanied by a varying degree of shedding and/or degeneration of the seminiferous epithelium.
    [Show full text]
  • PROTEINS of the SEMINIFEROUS TUBULE FLUID in MAN\P=M-\EVIDENCEFOR a BLOOD\P=M-\TESTISBARRIER
    PROTEINS OF THE SEMINIFEROUS TUBULE FLUID IN MAN\p=m-\EVIDENCEFOR A BLOOD\p=m-\TESTISBARRIER AARNE I. KOSKIMIES, MARTTI KORMANO and OLOF ALFTHAN Department of Anatomy, University of Helsinki, and Department of Urology of the Second Surgical Clinic, University Central Hospital, Helsinki, Finland (Received 16th December 1971) Summary. Seminiferous tubule fluid was collected by micropuncture from ten human testes immediately after orchidectomy and subjected to high resolution step gradient acrylamide gel electrophoresis. The pro- tein patterns of the fluid were compared with those of serum and intratesticular lymph. The seminiferous tubule fluid always contained a number of proteins not seen in serum or in testicular lymph and a few proteins which were electrophoretically identical with those in serum. The bulk of these relatively weak serum bands consisted of albumin. Disturbance of spermatogenesis did not influence either the appearance of specific proteins or the degree of serum contamination. The present results are interpreted to mean that in man, as in ani- mals, there is an effective blood\p=m-\testisbarrier. The specific proteins of the seminiferous tubules may be elaborated by Sertoli cells. INTRODUCTION The seminiferous tubules secrete a fluid which carries the spermatozoa out of the testis and into the epididymis. The existence of such a fluid has been recognized for some time (von Mihalkovics, 1873; Stieda, 1877), and its circulation was studied microscopically either in normal testes (Rolshoven, 1936) or after ligation of the efferent ducts in experimental animals (Young, 1933). However, it has only recently been shown that the composition of the fluid is unique. This is due both to the existence of a barrier mechanism which prevents the entry of various substances into the seminiferous tubule and to secretory phenomena within the seminiferous epithelium (Setchell, 1971).
    [Show full text]
  • Seminiferous Tubules in Hypophysectomizedrams Treated with Pituitary
    Effects of a single brief period of moderate heating of the testes on seminiferous tubules in hypophysectomized rams treated with pituitary extract M. T. Hochereau-de Reviers, A. Locatelli, C. Perreau, C. Pisselet and B. P. Setchell Reproductive Physiology Station, INRA. URA CNRS 1291, Nouzilly 37380, Monnaie, France; and 2On study leave from Department of Animal Sciences, Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond 5064, South Australia, Australia An experiment was conducted to examine the appearance of the seminiferous tubule 20 days after a single exposure of the testes of rams to a scrotal temperature of about 42\s=deg\Cfor 45 min. Ten of the animals were surgically hypophysectomized and five were simultaneously heated; these rams were treated twice a day with ovine pituitary extract to avoid modifi- cations in the negative feedback from the testes to the pituitary and consequent changes in gonadotrophin secretion. Six intact rams (three heated and three unheated) were also studied. The pituitary extract significantly increased the testis weight and spermatogonial multipli- cations from A1 spermatogonia onwards. Twenty days after the heat treatment, testis weight was significantly reduced by heating; both tubular and intertubular tissues were affected. The total length of seminiferous tubules per testis was not modified, whereas the mean seminiferous tubule diameter was significantly reduced after heating. The total number of Sertoli cells per testis was not significantly modified, while their mean cross-sectional nuclear area was significantly reduced by heat treatment. A decrease in the number of all germ cells except A0 spermatogonia, from A1 spermatogonia onwards, was observed.
    [Show full text]
  • Pdf (726.57 K)
    The Egyptian Journal of Hospital Medicine (July 2017) Vol.68 (2), Page 1260-1271 The Diagnostic Value of Combined Conventional MRI and Diffusion Weighted MRI in Diagnosis of Non-Palpable Undescended Testes Aisha Dabnon Abd Alnabie Faculty of Medicine, Ain Shams University ABSTRACT Background: MRI is noninvasive imaging tool, does not involve ionizing radiation and yields multiplanar images but it is sometimes less efficient in locating intra-abdominal functioning testicles and it fails to locate most of the atrophied testicles. Additional MRI assessments, as fat-suppressed T2WI and DWI are useful methods to improve the accuracy and sensitivity of diagnosis of non-palpable testes. Objective of the Study: is to assess the value of adding diffusion-weighted sequences (DWI) to routine magnetic resonance imaging (MRI) in identifying and locating nonpalpable undescended testes. Results: a combination of DWI and conventional MRI including Fat-supp. T2WI sequence is the most accurate means of detecting and localizing non-palpable undescended testes. The findings of DWI complement the information on the location of undescended testes obtained with conventional MRI. In addition, DWI is helpful in detection of testicular viability or atrophy properly before the operation. Keywords: magnetic resonance imaging; undescended testes, diffusion, fat-suppression T2WI. been shown to have low sensitivity in identifying INTRODUCTION non- Undescended testis or cryptorchidism, a condition in which one or both testicles are not appropriately positioned in the scrotum at birth. It is the most palpable testicles preoperatively in a recent meta- common congenital genitourinary anomaly in boys analysis (4). and has an incidence of 1–3% in term and 15–30% in Conventional MRI is moderately specific in premature male infants.
    [Show full text]
  • Histology of Male Reproductive System
    Histology of Male Reproductive System Dr. Rajesh Ranjan Assistant Professor Deptt. of Veterinary Anatomy C.V.Sc, Rewa 1 Male Reproductive System A-Testis B-Epididymis C-Ductus Deferens D-Urethra 1-Pelvic part 2-Penile part E-Penis G-Accessory Glands 1. Seminal vesicles 2-Prostate gland 3-Bulbouretheral gland/ Cowper’s gland Testis The testis remains covered by: Tunica vaginalis- The outermost covering (peritoneal covering of the testis and epididymis). It has a parietal and visceral layer. The parietal layer remains adhered to the scrotum while the visceral layer adheres to the capsule of the testis. The space between the these two layers is called the vaginal cavity. The layers consists of mesothelium lining and connective tissue that blends with the underlying connective tissue of the scrotum. Tunica albuginea: Capsule of the testis Consists of dense irregular connective tissue, predominantly collagen fibers, few elastic fibers and myofibroblast. It has vascular layer (Tunica vasculosa) that contains anatomizing branches of testicular artery and veins. The tunica albuginea gives connective tissue trabeculae called septula testis which converge towards the mediastinum testis. The septula testis divides the testicular parenchyma into number of testicular lobules. Each lobule contains 1-4 seminiferous tubules. Mediastinum testis is a connective tissue area containing the channels of rete testis, large blood and lymph vessels. In bull it occupies the central position along the longitudinal axis of the gonad. Interstitial cells (Leydig cells) The inter-tubular spaces of the testis contain loose C.T., blood and lymph vessels, fibrocytes, free mononuclear cells and interstitial cells called Leydig cells.
    [Show full text]
  • Histological Examination of Testicular Cell Development and Apoptosis in the Ostrich Chick
    L. WEI, K. M. PENG, H. LIU, H. SONG, Y. WANG, L. TANG Turk. J. Vet. Anim. Sci. 2011; 35(1): 7-14 © TÜBİTAK Research Article doi:10.3906/vet-0806-2 Histological examination of testicular cell development and apoptosis in the ostrich chick Lan WEI1,2, Ke-Mei PENG1,*, Huazhen LIU1, Hui SONG1, Yan WANG1, Lia TANG1 1Department of Anatomy, Histology and Embryology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 - CHINA 2College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003 - CHINA Received: 06.06.2008 Abstract: Th e aim of this study was to observe the microstructure and ultrastructure of the testis, demonstrate testicular cell development and apoptosis, and elucidate regularity of development and apoptosis in ostrich chick testes. By employing light microscopy 3 obvious development characteristics were detected with ostrich age increasing: fi rst, many primordial germ cells and a few spermatogonia were found while seminiferous tubule integrity was not evident in testes of 1-day-old ostrich chicks nor were primordial germ cells. In the 30-day-old ostrich chicks spermatogonia were completely diff erentiated, but very few primary spermatocytes were observed in testes at 45 days of age. Second, the quantity of mitochondria in spermatogonia and lipid droplet in Leydig cells increased gradually with the increasing age of astrish. Th ird, testicular cell apoptosis was observed and the number of apoptotic testicular cells showed a peak in the testis of 45-day-old ostrich chicks (P < 0.05), as testicular cells were prone to apoptosis at that age.
    [Show full text]
  • EFFECTS of RECOMBINANT HUMAN INTERFERON-Α-2B on TESTICULAR MORPHOLOGY, TESTOSTERONE PRODUCTION and AROMATASE GENE in ALBINO RAT MODEL
    EFFECTS OF RECOMBINANT HUMAN INTERFERON-α-2b ON TESTICULAR MORPHOLOGY, TESTOSTERONE PRODUCTION AND AROMATASE GENE IN ALBINO RAT MODEL A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Anatomy By Salman Ahmed Farsi Kazi MBBS,M.Phil Department of Anatomy Faculty of Medicine & Allied Medical Sciences Isra University, Hyderabad, Sindh October 2016 EFFECTS OF RECOMBINANT HUMAN INTERFERON-α-2b ON TESTICULAR MORPHOLOGY, TESTOSTERONE PRODUCTION AND AROMATASE GENE IN ALBINO RAT MODEL By Salman Ahmed Farsi Kazi MBBS,M.Phil Name Supervisor/Co-supervisors Prof. Dr. M. Ghiasuddin Shah Rashdi Ph.D Prof. Dr Fatehuddin Khand Ph.D Dr Jameel Ahmed Gandahi Ph.D DEDICATION This thesis is dedicated to my beloved mother and father My wife, kids and my teachers CERTIFICATE This is to certify that Dr Salman Ahmed Farsi Kazi s/o Muhammad Khan Kazi has carried out research work on the topic “Effects of Recombinant Human Interferon-α-2b on testicular morphology, testosterone production and aromatase gene in albino rat model” under my supervision and that his work is original and his thesis is worthy of presentation to Isra University for awarding the degree of “Doctor of Philosophy” in the subject of Anatomy. Prof. Dr. M. Ghiasuddin Shah Rashdi Supervisor _____________________ Signature of Supervisor iv ACKNOWLEDGEMENT With the deep and profound sense of gratitude and thanks to the almighty ALLAH for giving me the chance for completing this thesis, I am greatly indebted to my respected Supervisor, Professor Dr Ghiasuddin Shah Rashdi and Co-supervisors Professor Dr Fatehuddin Khand and Dr Jameel Ahmed Gandahi for their cooperation, guidance and constructive criticism in the successful completion of this thesis and without their help, this manuscript was not possible to complete.
    [Show full text]