NOAA Technical Report NOS NGS 69

Total Page:16

File Type:pdf, Size:1020Kb

NOAA Technical Report NOS NGS 69 ,. NOAA Technical Report NOS NGS 69 A Preliminary Investigation of the NGS's Geoid Monitoring Service (GeMS) Silver Spring, MD 2019 National Oceanic and Atmospheric Administration National Geodetic Survey Acknowledgements: A document like this requires the tireless work of many individuals at NGS. Recognition and thanks goes to the following individuals (in alphabetical order) for their contribution: Kevin Ahlgren, Vicki Childers, Theresa Damiani, Ryan Hardy, Jeff Kanney, Nicole Kinsman, Jordan Krcmaric, Daniel Roman, Dru Smith, Derek van Westrum, Daniel Winester, and Monica Youngman 1 Executive Summary For more than 200 years, the National Geodetic Survey (NGS) has defined, maintained, and provided access to the positioning framework for the United States of America and its Territories. For the majority of this 200 years, the datums that defined this positioning framework have been held fixed with respect to time. However, the Earth is not a static object, and we now have the scientific and observing capability to understand a vast number of physical changes occurring on Earth and incorporate them into a time-dependent datum. The NGS is modernizing the National Spatial Reference System (NSRS) with new reference frames and a geopotential datum in 2022. The modernized geopotential datum will be known as the North American- Pacific Geopotential Datum of 2022 (NAPGD2022). This datum will incorporate static and dynamic components to define—as accurately as possible—the nation’s elevations and other geopotential related quantities, such as the geoid undulation, acceleration of gravity, geopotential number, and deflection of the vertical. NGS is pioneering this type of science as it relates to regional reference frames and datums in alignment with NOAA’s Mission of Science, Service, and Stewardship. The time-dependent nature of NAPGD2022 is specified in the NGS Strategic Plan 2019-2023 (NGS, 2019a) under Objective 2-2: “Replace NAVD 88”, Define and provide access to a geocentric, time- dependent, geopotential datum by year 2022. This document describes the current state of knowledge and outlines next steps required to define a time-dependent geopotential datum for the Nation. This long-term goal has collectively been incorporated into an NGS project called “The Geoid Monitoring Service” or simply GeMS. Here, we present a foundational introduction to the various types of geophysical phenomena that are causing both size and shape change to the geoid, geodetic observing techniques that are presently available to monitor geoid change, an objective evaluation of NGS’s current ability to incorporate these techniques into a long term monitoring service like GeMS, known barriers to accomplishing such a project, and potential observing techniques that might become available in the next 10-20 years, but are not currently mature enough for operational use. The manner in which GeMS relates to existing and future NSRS components is also explained for additional context. Ultimately, this document presents a roadmap of options for how NGS could realize a time-dependent geopotential datum, and how NGS can support the dynamic datum into the future with independent validation surveys and datasets. Three different options are presented for constructing a GeMS model with the NGS Executive Steering Committee (ESC) recommending Option 2: GRACE/GRACE-FO Model + (Present day) Ice-Mass Model. Additionally, four separate and independent validation options are presented to determine the accuracy and quality of any GeMS model over many years. The ESC supports Validation Schemes 1, 2, and 3 pending resource availability in the future. The primary intent of this document is to assist NGS with initial development and support of GeMS, so feedback from external readers is encouraged in email form to [email protected]. Additionally, this document is not meant to be a comprehensive plan for building and supporting GeMS, but serves as a launch pad and overarching guide to what is possible now and into the future, as such, content within this document subject to change. 2 Table of Contents Acknowledgements:...................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 2 1 Background ........................................................................................................................................... 6 1.1 Introduction .................................................................................................................................. 6 1.2 Goals of the Geoid Monitoring Service (GeMS) ............................................................................ 6 1.3 The importance of a static geoid model ....................................................................................... 8 1.4 GeMS and the National Spatial Reference System ....................................................................... 9 1.5 Spatial and Temporal Changes to the Geoid in North America and the U.S. Territories ........... 10 1.6 Methodology and Geodetic Constraints ..................................................................................... 13 1.7 Geoid Monitoring around the world ........................................................................................... 20 2 Available Geoid Monitoring Techniques ............................................................................................. 21 2.1 NGS’ Gravity Program ................................................................................................................. 22 2.1.1 Terrestrial Gravity ............................................................................................................... 22 2.1.2 U.S. Gravity Networks and Available Repeat Measurements ............................................. 28 2.1.3 Airborne Gravity .................................................................................................................. 35 2.2 The NOAA CORS Network (NCN) ................................................................................................. 40 2.2.1 NOAA CORS Network Background and Current Status ....................................................... 40 2.2.2 GGOS, IHRS, and IHRF ......................................................................................................... 44 2.3 NGS’s GPS and Leveling Campaign Capabilities .......................................................................... 44 2.3.1 International Great Lakes Datum (IGLD) ............................................................................. 44 2.3.2 Geoid Slope Validation Surveys (GSVS) ............................................................................... 45 3 Geoid Monitoring Techniques External to NGS .................................................................................. 46 3.1 Temporal Geopotential Models from Satellite Gravimetry ........................................................ 48 3.1.1 Global Spherical Harmonic Models from GRACE ................................................................ 48 3.1.2 Global Mass Concentration (Mascon) Models from GRACE ............................................... 52 3.2 Satellite InSAR ............................................................................................................................. 63 3.3 Geophysical Models and their Combinations ............................................................................. 66 3.3.1 Glacial Isostatic Adjustment Models for North America and Greenland ........................... 66 3.3.2 Ice Mass Models for Alaska, Northwest Canada, and Greenland ....................................... 69 3.3.3 Earthquakes ........................................................................................................................ 71 3.3.4 Volcanic Events ................................................................................................................... 72 3.3.5 Uplift and Subsidence of the Pacific and Caribbean Islands ............................................... 73 3 3.3.6 Global Hydrology Models .................................................................................................... 73 3.4 Other Terrestrial Gravity Programs in North America ................................................................ 75 3.4.1 NRCan Gravity Program ...................................................................................................... 75 3.4.2 Other Gravity Programs ...................................................................................................... 76 3.5 Other GNSS Networks (Non-NOAA CORS Networks) .................................................................. 77 3.6 Deflection of the Vertical (DoV) Measurements ........................................................................ 79 3.7 Tiltmeters .................................................................................................................................... 80 3.8 Satellite and Airborne Altimetry ................................................................................................. 81 4 Anticipated Future Techniques for Geoid Monitoring ....................................................................... 83 4.1 Future Satellite Gravity Missions ...............................................................................................
Recommended publications
  • Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022
    Geodetic Surveying, Earth Modeling, and the New Geodetic Datum of 2022 PDH330 3 Hours PDH Academy PO Box 449 Pewaukee, WI 53072 (888) 564-9098 www.pdhacademy.com [email protected] Geodetic Surveying Final Exam 1. Who established the U.S. Coast and Geodetic Survey? A) Thomas Jefferson B) Benjamin Franklin C) George Washington D) Abraham Lincoln 2. Flattening is calculated from what? A) Equipotential surface B) Geoid C) Earth’s circumference D) The semi major and Semi minor axis 3. A Reference Frame is based off how many dimensions? A) two B) one C) four D) three 4. Who published “A Treatise on Fluxions”? A) Einstein B) MacLaurin C) Newton D) DaVinci 5. The interior angles of an equilateral planar triangle adds up to how many degrees? A) 360 B) 270 C) 180 D) 90 6. What group started xDeflec? A) NGS B) CGS C) DoD D) ITRF 7. When will NSRS adopt the new time-based system? A) 2022 B) 2020 C) Unknown due to delays D) 2021 8. Did the State Plane Coordinate System of 1927 have more zones than the State Plane Coordinate System of 1983? A) No B) Yes C) They had the same D) The State Plane Coordinate System of 1927 did not have zones 9. A new element to the State Plane Coordinate System of 2022 is: A) The addition of Low Distortion Projections B) Adjoining tectonic plates C) Airborne gravity collection D) None of the above 10. The model GRAV-D (Gravity for Redefinition of the American Vertical Datum) created will replace _____________ and constitute the new vertical height system of the United States A) Decimal degrees B) Minutes C) NAVD 88 D) All of the above Introduction to Geodetic Surveying The early curiosity of man has driven itself to learn more about the vastness of our planet and the universe.
    [Show full text]
  • Noaa 2022 Nsrs Adjustment Part 3
    NOAA Technical Report NOS NGS 67 Blueprint for 2022, Part 3: Working in the Modernized NSRS Initial draft released April 25, 2019 1 Versions Date Changes April 25, 2019 Original Draft Release 2 Notes On the use of “TBD”: This document is an initial draft of policies and procedures the National Geodetic Survey (NGS) is refining as we prepare to define the modernized National Spatial Reference System (NSRS) in year 2022. The intent of releasing this document so many years in advance is so we may provide the NSRS user community with insight and as many details as are currently available, as well as to give time for these details to be read and understood and for feedback to be provided back to NGS. The early release of this document, therefore, naturally comes with certain unresolved decisions. Rather than delay the entire document, the term TBD (To Be Determined) has been used herein to indicate where a decision is pending. On the use of the terms “datums” and “reference frames”: Entire chapters of books could be dedicated to the distinction, or lack thereof, between the terms datums and reference frames, however for this paper we will define these terms in this way: In 2022 the NSRS will consist of four terrestrial reference frames and one geopotential datum. From time to time and for the sake of brevity, the four terrestrial reference frames and the one geopotential datum may be clustered under the general term “new datums.” For example, NGS has put information concerning the NSRS modernization on a “New Datums” web page.
    [Show full text]
  • National Spatial Reference System: "Positioning Changes for 2022"
    National Spatial Reference System “Positioning Changes for 2022” Civil GPS Service Interface Committee Meeting Miami, Florida September 24, 2018 Denis Riordan, PSM NOAA, National Geodetic Survey [email protected] U.S. Department of Commerce National Oceanic & Atmospheric Administration National Geodetic Survey Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs National Spatial Reference System * Latitude * Scale * Longitude * Gravity * Height * Orientation & their variations in time U. S. Geometric Datums in 2022 National Spatial Reference System (NSRS) Improvements in the Horizontal Datums TIME NETWORK METHOD NETWORK SPAN ACCURACY OF REFERENCE NAD 27 1927-1986 10 meter (1 part in 100,000) TRAVERSE & TRIANGULATION - GROUND MARKS USED FOR NAD83(86) 1986-1990 1 meter REFERENCING (1 part THE in 100,000) NSRS. NAD83(199x)* 1990-2007 0.1 meter GPS B- orderBECOMES (1 part THE in MEANS 1 million) OF POSITIONING – STILL GRND MARKS. HARN A-order (1 part in 10 million) NAD83(2007) 2007 - 2011 0.01 meter 0.01 meter GPS – CORS STATIONS ARE MEANS (CORS) OF REFERENCE FOR THE NSRS. NAD83(2011) 2011 - 2022 0.01 meter 0.01 meter (CORS) NSRS Reference Basis Old Method - Ground Current Method - GNSS Stations Marks (Terrestrial) (CORS) Why Replace NAD83? • Datum based on best known information about the earth’s size and shape from the early 1980’s (45 years old), and the terrestrial survey data of the time. • NAD83 is NON-geocentric & hence inconsistent w/GNSS . • Necessary for agreement with future ubiquitous positioning of GNSS capability. Future Geometric (3-D) Reference Frame Blueprint for 2022: Part 1 – Geometric Datum • Replace NAD83 with new geometric reference frame – by 2022.
    [Show full text]
  • The Global Positioning System the Global Positioning System
    The Global Positioning System The Global Positioning System 1. System Overview 2. Biases and Errors 3. Signal Structure and Observables 4. Absolute v. Relative Positioning 5. GPS Field Procedures 6. Ellipsoids, Datums and Coordinate Systems 7. Mission Planning I. System Overview ! GPS is a passive navigation and positioning system available worldwide 24 hours a day in all weather conditions developed and maintained by the Department of Defense ! The Global Positioning System consists of three segments: ! Space Segment ! Control Segment ! User Segment Space Segment Space Segment ! The current GPS constellation consists of 29 Block II/IIA/IIR/IIR-M satellites. The first Block II satellite was launched in February 1989. Control Segment User Segment How it Works II. Biases and Errors Biases GPS Error Sources • Satellite Dependent ? – Orbit representation ? Satellite Orbit Error Satellite Clock Error including 12 biases ? 9 3 Selective Availability 6 – Satellite clock model biases Ionospheric refraction • Station Dependent L2 L1 – Receiver clock biases – Station Coordinates Tropospheric Delay • Observation Multi- pathing Dependent – Ionospheric delay 12 9 3 – Tropospheric delay Receiver Clock Error 6 1000 – Carrier phase ambiguity Satellite Biases ! The satellite is not where the GPS broadcast message says it is. ! The satellite clocks are not perfectly synchronized with GPS time. Station Biases ! Receiver clock time differs from satellite clock time. ! Uncertainties in the coordinates of the station. ! Time transfer and orbital tracking. Observation Dependent Biases ! Those associated with signal propagation Errors ! Residual Biases ! Cycle Slips ! Multipath ! Antenna Phase Center Movement ! Random Observation Error Errors ! In addition to biases factors effecting position and/or time determined by GPS is dependant upon: ! The geometric strength of the satellite configuration being observed (DOP).
    [Show full text]
  • What Are Geodetic Survey Markers?
    Part I Introduction to Geodetic Survey Markers, and the NGS / USPS Recovery Program Stf/C Greg Shay, JN-ACN United States Power Squadrons / America’s Boating Club Sponsor: USPS Cooperative Charting Committee Revision 5 - 2020 Part I - Topics Outline 1. USPS Geodetic Marker Program 2. What are Geodetic Markers 3. Marker Recovery & Reporting Steps 4. Coast Survey, NGS, and NOAA 5. Geodetic Datums & Control Types 6. How did Markers get Placed 7. Surveying Methods Used 8. The National Spatial Reference System 9. CORS Modernization Program Do you enjoy - Finding lost treasure? - the excitement of the hunt? - performing a valuable public service? - participating in friendly competition? - or just doing a really fun off-water activity? If yes , then participation in the USPS Geodetic Marker Recovery Program may be just the thing for you! The USPS Triangle and Civic Service Activities USPS Cooperative Charting / Geodetic Programs The Cooperative Charting Program (Nautical) and the Geodetic Marker Recovery Program (Land Based) are administered by the USPS Cooperative Charting Committee. USPS Cooperative Charting / Geodetic Program An agreement first executed between USPS and NOAA in 1963 The USPS Geodetic Program is a separate program from Nautical and was/is not part of the former Cooperative Charting agreement with NOAA. What are Geodetic Survey Markers? Geodetic markers are highly accurate surveying reference points established on the surface of the earth by local, state, and national agencies – mainly by the National Geodetic Survey (NGS). NGS maintains a database of all markers meeting certain criteria. Common Synonyms Mark for “Survey Marker” Marker Marker Station Note: the words “Geodetic”, Benchmark* “Survey” or Station “Geodetic Survey” Station Mark may precede each synonym.
    [Show full text]
  • The Global Positioning System II Field Experiments
    The Global Positioning System II Field Experiments Geo327G/386G: GIS & GPS Applications in Earth Sciences Jackson School of Geosciences, University of Texas at Austin 10/8/2020 5-1 Mexico DGPS Field Campaign Cenotes in Tamaulipas, MX, near Aldama Geo327G/386G: GIS & GPS Applications in Earth Sciences 10/8/2020 Jackson School of Geosciences, University of Texas at Austin 5-2 Are Cenote Water Levels Related? Geo327G/386G: GIS & GPS Applications in Earth Sciences 10/8/2020 Jackson School of Geosciences, University of Texas at Austin 5-3 DGPS Static Survey of Cenote Water Levels Geo327G/386G: GIS & GPS Applications in Earth Sciences 10/8/2020 Jackson School of Geosciences, University of Texas at Austin 5-4 Determining Orthometric Heights ❑Ortho. Height = H.A.E. – Geoid Height Height above MSL (Orthometric height) H.A.E. Geoid height Earth Surface = H.A.E. Geoid Ellipsoid Geoid Height Geo327G/386G: GIS & GPS Applications in Earth Sciences 10/8/2020 Jackson School of Geosciences, University of Texas at Austin 5-5 Determining Orthometric Heights ❑Ortho. Height = (H.A.E. – Geoid Height) Need: 1) Ellipsoid model – GRS80 – NAVD88 ❑reference stations: HARN (+ 2 cm), CORS (+ ~2 cm) 2) Geoid model – GEOID99 ( + 5 cm for US) Procedure: Base receiver at reference station, rover at point of interest a) measure HAE, apply DGS corrections b) subtract local Geoid Height Geo327G/386G: GIS & GPS Applications in Earth Sciences 10/8/2020 Jackson School of Geosciences, University of Texas at Austin 5-6 Sources of Error ❑Geoid error – model less well constrained in areas of few gravity measurement ❑NAVD88 error – benchmark stability, measurement errors ❑GPS errors – need precise ephemeri, tropospheric delay model, equipment (antennae should be same for base and rover) Geo327G/386G: GIS & GPS Applications in Earth Sciences 10/8/2020 Jackson School of Geosciences, University of Texas at Austin 5-7 Static Carrier-phase solutions obtained by: ❑Commercial post-processing software ❑e.g.
    [Show full text]
  • Modernization of the National Spatial Reference System
    Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System William A. Stone & Dana J. Caccamise II NOAA’s National Geodetic Survey NOAA’s National Geodetic Survey Mission & Vision To define, maintain, and provide access to the National Spatial Reference System to Introduction meet our nation's economic, social, and environmental needs Presented here is an update, including recent naming convention and technical decisions, for … is the mission of the United States National Oceanic and Atmospheric Administration’s the ongoing National Geodetic Survey effort to modernize the National Spatial Reference (NOAA) National Geodetic Survey (NGS). The National Spatial Reference System (NSRS) is System, which will culminate in the 2022 (anticipated) replacement of all components of the the nation’s system of latitude, longitude, height/elevation, and related geophysical and current U.S. national geodetic datums and models, including the North American Datum of geodetic models, tools, and data, which together provide a consistent spatial framework for the 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88). This modernized broad spectrum of civilian geospatial data positioning requirements. NSRS facilitates and three-dimensional and time-dependent national spatial framework will optimally leverage the empowers the NGS organizational vision that … ever-increasing capabilities of modern technologies, data, and modeling – notably the Global Navigation Satellite System (GNSS), gravity data, and geopotential/tectonic modeling – while Everyone accurately knows where they are and where other things are better accommodating Earth’s dynamic nature. The future NSRS will feature unprecedented anytime, anyplace. accuracy and repeatability, and users will experience many efficiencies of access well beyond To continue to accomplish the mission and further the vision of today’s NGS, today’s capability.
    [Show full text]
  • Mind the Gap! a New Positioning Reference
    A new positioning reference Why is the United States adopting NATRF2022? What are we doing about this in Canada? We want to hear from you! • The Canadian Geodetic Survey and the United States • Improved compatibility with Global Navigation • The Canadian Geodetic Survey is working closely National Geodetic Survey have collaborated for Satellite Systems (GNSS), such as GPS, is driving this with the United States National Geodetic Survey in • Send us your comments, the challenges you over a century to provide the fundamental reference change. The geometric reference frames currently defining reference frames to ensure they will also foresee, and any concerns to help inform our path Mind the gap! systems for latitude, longitude and height for their used in Canada and the United States, although be suitable for Canada. forward to either of these organizations: respective countries. compatible with each other, are offset by 2.2 m from • Geodetic agencies from across Canada are A new positioning reference the Earth’s geocentre, whereas GNSS are geocentric. - Canadian Geodetic Survey: nrcan. • Together our reference systems have evolved collaborating on reference system improvements geodeticinformation-informationgeodesique. to meet today’s world of GPS and geographical • Real-time decimetre-level accuracies directly from through the Canadian Geodetic Reference System [email protected] NATRF2022 information systems, while supporting legacy datums GNSS satellites are expected to be available soon. Committee, a working committee of the Canadian
    [Show full text]
  • General Services, Office of Purchasing and Contracting on Behalf of The
    STATE OF VERMONT Contract # 40938 Page 1 of 32 STANDARD CONTRACT FOR SERVICES 1. Parties. This is a contract for services between the State of Vermont, Department of Building and General Services, Office of Purchasing and Contracting on behalf of the State of Vermont (hereinafter called “State”), and The Sanborn Map Company Inc., with a principal place of business in Colorado Springs, CO, (hereinafter called “Contractor”). Contractor’s form of business organization is a corporation. It is Contractor’s responsibility to contact the Vermont Department of Taxes to determine if, by law, Contractor is required to have a Vermont Department of Taxes Business Account Number. 2. Subject Matter. The subject matter of this contract is professional services related to the acquisition and delivery of new statewide, color, leaf-off, digital base orthoimagery and related optional “buy-up” products. Detailed services to be provided by Contractor are described in Attachment A. 3. Maximum Amount. In consideration of the services to be performed by the Contractor, the State agrees to pay the Contractor in accordance with the payment provisions specified in Attachment B, a sum not to exceed $950,000.00. 4. Funding Availability. Funding for this 5-year contract is contingent upon annual availability of state funds. There is no guarantee of annual state funding from year-to-year. As a result, one or all years may be skipped. Primary funding will be appropriated on a yearly basis by the VT Legislature through the State’s Capital Fund and/or other funding mechanisms. When adequate funding is not available, the State reserves the right to skip one or all years until-and-if adequate funding becomes available.
    [Show full text]
  • Gravity, Geoid and Earth Observation IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23-27 June 2008
    S.P. Mertikas (Ed.) Gravity, Geoid and Earth Observation IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23-27 June 2008 Series: International Association of Geodesy Symposia, Vol. 135 ▶ State of the art scientific achievements of gravity field research prospects These Proceedings include the written version of papers presented at the IAG International Symposium on "Gravity, Geoid and Earth Observation 2008". The Symposium was held in Chania, Crete, Greece, 23-27 June 2008 and organized by the Laboratory of Geodesy and Geomatics Engineering, Technical University of Crete, Greece. The meeting was arranged by the International Association of Geodesy and in particular by the IAG Commission 2: Gravity Field. The symposium aimed at bringing together geodesists and geophysicists working in the 2010, XXXIV, 702 p. 340 illus. general areas of gravity, geoid, geodynamics and Earth observation. Besides covering the traditional research areas, special attention was paid to the use of geodetic methods for: Earth observation, environmental monitoring, Global Geodetic Observing System (GGOS), Printed book Earth Gravity Models (e.g., EGM08), geodynamics studies, dedicated gravity satellite Hardcover missions (i.e., GOCE), airborne gravity surveys, Geodesy and geodynamics in polar regions, and the integration of geodetic and geophysical information. ▶ 299,99 € | £249.99 | $379.99 ▶ *320,99 € (D) | 329,99 € (A) | CHF 354.00 eBook Available from your bookstore or ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected]. ▶ For outside the Americas call +49 (0) 6221-345-4301 ▶ or email us at: [email protected].
    [Show full text]
  • NSRS Modernization New Datums Are Coming in 2022 What’S Being Replaced?
    geodesy.noaa.gov NSRS Modernization New Datums are Coming in 2022 What’s Being Replaced? Horizontal Vertical – NAD 83(2011) – NAVD 88 – NAD 83(PA11) – PRVD 02 – NAD 83(MA11) – VIVD09 Heights – ASVD02 Latitude – NMVD03 Longitude – GUVD04 Ellipsoid Height State Plane Coordinates – IGLD 85 2 New Reference Frame Names NAD 83 becomes: • North American Terrestrial Reference Frame (NATRF2022) • Caribbean Terrestrial Reference Frame (CATRF2022) • Mariana Terrestrial Reference Frame (MATRF2022) • Pacific Terrestrial Reference Frame (PATRF2022) NAVD88 becomes: • North American-Pacific Geopotential Datum of 2022 (NAPGD2022) (Realized by GEOID2022) 3 Replace NAD 83 Simplified concept of NAD 83 vs. “2022” Earth’s Surface h”2022” hNAD83 fNAD83 – f”2022” lNAD83 – l”2022” hNAD83 – h”2022” “2022” origin all vary smoothly by latitude and longitude NAD 83 origin 4 Tectonic Plate Velocities Horizontal Vertical IGS08 Velocities Salisbury NCSA N = + 0.0026 m/yr E = - 0.0139 m/yr U = - 0.0000 m/yr 5 New geometric datum minus NAD 83 (horizontal) April 5, 2017 Northern Chapter PLSC New geometric datum minus NAD 83 (ellipsoid height) April 5, 2017 Northern Chapter PLSC New Vertical Datum (Outcome) April 5, 2017 Northern Chapter PLSC SPCS2022 in North Carolina • New State Plane Coordinate System in 2022 – Will replace SPCS 83 – Referenced to new terrestrial reference frames • Two conflicting desires for SPCS2022 coordinates: – Change coordinates as little as possible • Preserve systems based on SPCS 83 coordinates (sft) • E.g., parcel numbering system, FEMA flood
    [Show full text]
  • The History of Geodesy Told Through Maps
    The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe.
    [Show full text]