The Role of MITF in Regulating Human Pigmentation

Total Page:16

File Type:pdf, Size:1020Kb

The Role of MITF in Regulating Human Pigmentation The role of MITF in regulating human pigmentation Christian Praetorius Thesis for the degree of Philosophiae Doctor August 2014 UNIVERSITY OF ICELAND SCHOOL OF HEALTH SCIENCES FACULTY OF MEDICINE Hlutverk MITF við stjórnun húðlitar í mönnum Christian Praetorius Ritgerð til doktorsgráðu Umsjónarkennari Eiríkur Steingrímsson Doktorsnefnd Ólafur S. Andrésson Zophonías O. Jónsson Magnús Karl Magnússon Hendrik G. Stunnenberg August 2014 UNIVERSITY OF ICELAND SCHOOL OF HEALTH SCIENCES FACULTY OF MEDICINE The role of MITF in regulating human pigmentation Christian Praetorius Thesis for the degree of Philosophiae Doctor Supervisor Eiríkur Steingrímsson Doctoral Comittee Ólafur S. Andrésson Zophonías O. Jónsson Magnús Karl Magnússon Hendrik G. Stunnenberg August 2014 UNIVERSITY OF ICELAND SCHOOL OF HEALTH SCIENCES FACULTY OF MEDICINE Thesis for a doctoral degree at the University of Iceland. All right reserved. No part of this publication may be reproduced in any form without the prior permission of the copyright holder. © Christian Praetorius 2014 Document typeset with LATEX. ISBN: 978-9935-9200-2-7 Printing by Háskolaprent Reykjavík, Iceland 2014 Ágrip Þroskun litfruma og myndun sortuæxla er háð umritunarþættinum microphthal- mia associated transcription factor (MITF) en hann tilheyrir basic-helix-loop-helix leucine zipper (bHLH-LZ) fjölskyldunni. MITF stjórnar tjáningu fjölda gena í litfrumum og sortuæxlum, þar með talið gena sem eru mikilvæg fyrir framleiðslu litarefnisins melanin, og gena sem stjórna frumuhringnum, frumufari og lifun. Þessi þekktu markgen skýra þó ekki að fullu hlutverk MITF í litfrumum og sortuæxlum. Við notuðum tvískipta tjáningarrannsókn til að finna markgen MITF í sor- tuæxlum. Í fyrsta lagi leituðum við að genum sem fylgja tjáningarmynstri MITF gensins sortuæxlissýnum. Í öðru lagi skoðuðum við hvaða gen eru tjáð þegar MITF er yfirtjáð í sortuæxlisfrumulínunni Skmel28. Af þeim genum sem voru á báðum listunum var fjöldi þekktra markgena MITF en einnig nokkur gen sem ekki hefur verið sýnt að stjórnist af MITF svo sem umritunarþættirnir IRF4 og TFAP2alpha. Hlutverk þeirra var skoðað frekar. Erfðamengisrannsóknir hafa sýnt að breytileiki í IRF4 geninu í mönnum tengist freknum, ljósri húð, brúnu hári og bláum augum. IRF4 genið gegnir mikilvægu hlutverki í ónæmiskerfinu og hefur verið kallað "lineage survival oncogene" í mergfrumuæxlum. Ekki hefur áður verið sýnt hvaða hlutverki það gegnir í litfrumum. Hér sýnum við að tjáning IRF4 gensins er háð MITF. Tjáning Irf4 gensins er næstum engin í Mitf stökkbreyttum músum eða þegar MITF genið er slegið út í sortuæxlisfrumum í rækt með notkun shRNA. MITF stjórnar tjáningu IRF4 gensins með því að bindast stjórnröðum í innröð 4 í IRF4, og er þessi örvun umritunar einnig háð umritunarþættinum TFAP2A. Breytileikinn sem tengist litareinkennum í mönnum (rs12203592-T) skarast við bindiset TFAP2A próteinsins og þegar upprunalega C-basanum er breytt í T getur TFAP2A ekki bundist lengur og tjáning IRF4 minnkar, bæði í in vitro tilraunum og í litfrumum úr einstaklingum sem eru arfhreinir fyrir T samsætuna. Tilraunir sýna að MITF og IRF4 vinna saman að því að virkja tjáningu litargensins TYR og að þegar IRF4 bindisetum í stjórnröð MITF er stökkbreytt getur þessi samvinna ekki átt sér stað lengur. Rannsókn þessi sýnir því bein tengsl milli breytileika í innröð IRF4 gensins og áhrifa á tjáningu ensíms sem ákvarðar litarhátt manna. Lykilorð: MITF, IRF4, genatjáning, litarháttur, freknur Abstract The development of melanocytes and melanoma depends on the presence of the microphthalmia-associated transcription factor (MITF), a member of the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family. MITF has been shown to regulate a broad range of genes, ranging from genes important for pigment production, to genes involved in cell cycle regulation, migration and survival. Nevertheless, the known MITF target genes do not explain all the roles of MITF in melanocyte development and melanoma progression. We have used a novel microarray approach to characterize MITF target genes in melanomas. First we identified genes which correlate with the expression of MITF in human melanoma samples. Second, we compared the genes expressed in a stably MITF-transfected line of SKmel28 cells with the genes expressed in SKmel28 cells without MITF. Third, we compared the two lists of genes to obtain a list of genes potentially regulated by MITF. A number of the genes thus identified are known MITF target genes, whereas the rest represent novel targets. Among the novel targets are two transcription factors, IRF4 and TFAP2a which were analyzed further. Genome-wide association studies have shown that a polymorphism in the human IRF4 gene is associated with fair skin and light/blue eye color, suggesting that the gene plays an important role in melanocytes. IRF4 has been shown to play a key role in lymphoid, myeloid and dendritic cell differentiation and to act as a lineage survival oncogene in multiple myeloma. However, its role in melanocytes has not been characterized. Here we show that expression of the IRF4 gene is dramatically reduced in Mitf mutant mice and upon MITF knockdown using shRNA. MITF activates IRF4 expression by binding regulatory sequences in intron 4 of the IRF4 gene and depends on another transcription factor, TFAP2a for this activation. The binding site for TFAP2a is located at the same position as the rs12203592 polymorphism and when changed from C to T (as in rs12203592), TFAP2a can not bind and IRF4 expression is reduced in both reporter assays and in melanocytes from individuals homozygous for the T allele. Importantly, IRF4 and MITF cooperatively activate the expression of the pigmentation gene TYR; mutating the IRF4 binding sites in TYR eliminates this cooperative effect. Thus, a direct link has been provided where a functional polymorphism in the IRF4 gene leads to reduced expression of a target gene encoding an enzyme essential for pigmentation. Keywords: MITF, IRF4, gene expression, pigmentation, freckles Acknowledgements The research for this thesis was carried out at the Department of Biochemistry and Molecular Biology at the Faculty of Medicine of the University of Iceland. Many people have supported me directly or indirectly and I would like to thank all of them for their kindness and support. First of all I would like to thank my supervisor Professor Eiríkur Steingrímsson for the possibility to work in his laboratory, his scientific guidance, critical and lively discussion and for the support throughout all these years, it was a great time. I also like to thank all colleagues from the Steingrímsson Lab for their help, support and also for the critical discussions of results in the lab meetings: Kristín Bergsteindóttir, Christine Grill, Benedikta S. Hafliðadóttir, Erna Magnúsdóttir, Margrét H. Ögmundsdóttir and Alexander Schepsky. I wish to acknowledge the help and support from the other colleagues from the 5th floor at Læknagarður: Jónína Jóhannsdóttir, Sif Jónsdóttir, Guðrun Valdimarsdóttir, Pétur Henry Petersen, Stefán Þ. Sigurðsson and Hans Guttormor Þormar. I would like to thank my PhD committee, Prof. Ólafur S. Andrésson, Prof. Zophonías O. Jónsson, Prof. Magnús Karl Magnússon and Prof. Hendrik G. Stunnenberg for their opinions on my thesis. I also thank the evaluating commit- tee Prof. Helga Ögmundsdóttir, Prof. Zophonías O. Jónsson and Prof. Robert Kelsh for their work. Finally I would like to thank my family, Maren, Sophie and Lisa for their patience and support, without them it would have never been possible to finish this thesis. This work was supported by grants from the Icelandic Research Fund, the University of Iceland Research Fund and the Eimskip University Fund for doctoral studies. Contents Ágrip .................................. VII Abstract ................................IX Acknowledgements ..........................XI Contents ................................ XIII List of Abbreviations ......................... XVI List of Figures ............................. XIX List of Tables ..............................XX List of Original Publications ..................... XXI Declaration of contribution ...................... XXII 1. Introduction ............................1 1.1. Pigmentation ..........................1 1.1.1. Melanocytes ......................1 1.1.2. Melanosome biology ..................2 1.1.3. Melanocytes in the hair follicle .............4 1.1.4. Synthesis of pigment ..................5 1.2. The microphthalmia associated transcription factor ......6 1.3. Mutations in the MITF gene ..................6 1.4. Mitf protein structure ......................7 1.5. MITF gene structure and splice variants ............9 1.6. Regulation of MITF expression .................9 1.6.1. Sry-related HMG box 10 (SOX10) ...........9 1.6.2. Paired box 3 transcription factor (PAX3) ....... 10 1.6.3. Signal transducer and activator of transcription 3 (STAT3) ........................ 11 1.6.4. Protein inhibitor of activated STAT3 (PIAS3) ..... 11 1.6.5. cAMP response element binding protein (CREB) ... 11 1.6.6. Lymphoid-enhancing factor-1 (LEF-1) ......... 11 1.6.7. BRN2 .......................... 11 XIV Contents 1.6.8. Forkhead-box transcription factor D3 (FOXD3) .... 12 1.6.9. Tyro3 .......................... 12 1.6.10. micro RNA ....................... 12 1.7. Post-translational modifications of MITF ........... 13 1.7.1. Phosphorylation of MITF ................ 13 1.7.2. Acetylation of MITF .................. 14 1.7.3. Ubiquitination of MITF ................
Recommended publications
  • BLOC-1 and BLOC-3 Regulate VAMP7 Cycling to and From
    BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers Megan K. Dennis1,2, Cédric Delevoye3,4, Amanda Acosta-Ruiz1,2, Ilse Hurbain3,4, Maryse Romao3,4, Geoffrey G. Hesketh5, Philip S. Goff6, Elena V. Sviderskaya6, Dorothy C. Bennett6, J. Paul Luzio5, Thierry Galli7, David J. Owen5, Graça Raposo3,4 and Michael S. Marks1,2,8 1Dept. of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, and 2Dept. of Pathology and Laboratory Medicine and Dept of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 3Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, F-75005, Paris, France; 4 Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France; 5Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; 6Cell Biology & Genetics Research Centre, St. George’s , University of London, London, UK; 7Sorbonne Paris-Cité, Univ. Paris-Diderot, Institut Jacques Monod, CNRS UMR7592, INSERM ERL U950, Membrane Traffic in Health & Disease, Paris, France. 8To whom correspondence should be addressed: Michael S. Marks, Ph.D. Dept. of Pathology & Laboratory Medicine Children's Hospital of Philadelphia Research Institute 816G Abramson Research Center 3615 Civic Center Blvd. Philadelphia, PA 19104 Tel: 215-590-3664 Email: [email protected] Running title: VAMP7 into and out of melanosomes Keywords: SNARE, lysosome-related organelle, melanogenesis, Hermansky-Pudlak syndrome, recycling, endosome, 2 ABSTRACT Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin.
    [Show full text]
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • Diagnosing Platelet Secretion Disorders: Examples Cases
    Diagnosing platelet secretion disorders: examples cases Martina Daly Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Disclosures for Martina Daly In compliance with COI policy, ISTH requires the following disclosures to the session audience: Research Support/P.I. No relevant conflicts of interest to declare Employee No relevant conflicts of interest to declare Consultant No relevant conflicts of interest to declare Major Stockholder No relevant conflicts of interest to declare Speakers Bureau No relevant conflicts of interest to declare Honoraria No relevant conflicts of interest to declare Scientific Advisory No relevant conflicts of interest to declare Board Platelet granule release Agonists (FIIa, Collagen, ADP) Signals Activation Shape change Membrane fusion Release of granule contents Platelet storage organelles lysosomes a granules Enzymes including cathepsins Adhesive proteins acid hydrolases Clotting factors and their inhibitors Fibrinolytic factors and their inhibitors Proteases and antiproteases Growth and mitogenic factors Chemokines, cytokines Anti-microbial proteins Membrane glycoproteins dense (d) granules ADP/ATP Serotonin histamine inorganic polyphosphate Platelet a-granule contents Type Prominent components Membrane glycoproteins GPIb, aIIbb3, GPVI Clotting factors VWF, FV, FXI, FII, Fibrinogen, HMWK, FXIII? Clotting inhibitors TFPI, protein S, protease nexin-2 Fibrinolysis components PAI-1, TAFI, a2-antiplasmin, plasminogen, uPA Other protease inhibitors a1-antitrypsin, a2-macroglobulin
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • The Role of Chromosome X in Intraocular Pressure Variation and Sex-Specific Effects
    Genetics The Role of Chromosome X in Intraocular Pressure Variation and Sex-Specific Effects Mark J. Simcoe,1–3 Anthony P. Khawaja,4,5 Omar A. Mahroo,3 Christopher J. Hammond,1,2 and Pirro G. Hysi1,2; for the UK Biobank Eye and Vision Consortium 1Department of Ophthalmology, Kings College London, London, United Kingdom 2KCL Department of Twin Research and Genetic Epidemiology, London, United Kingdom 3Institute of Ophthalmology, University College London, London, United Kingdom 4NIHR Biomedical Research Centre, Moorfield’s Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom 5Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom Correspondence: Pirro G. Hysi, PURPOSE. The purpose of this study was to identify genetic variants on chromosome Department of Ophthalmology, X associated with intraocular pressure (IOP) and determine if they possess any sex- Kings College London, St. Thomas specific effects. Hospital, Westminster Bridge Road, London, SE1 7EH UK; METHODS. Association analyses were performed across chromosome X using 102,407 [email protected]. participants from the UK Biobank. Replication and validation analyses were conducted in an additional 6599 participants from the EPIC-Norfolk cohort, and an independent Members of the UK Biobank Eye and Vision Consortium are listed in 331,682 participants from the UK Biobank. the Supplementary Material. RESULTS. We identified three loci associated with IOP at genomewide significance (P < 5 × 10−8), located within or near the following genes: MXRA5 (rs2107482, Received: June 19, 2020 − − Accepted: August 19, 2020 P = 7.1 × 10 11), GPM6B (rs66819623, P = 6.9 × 10 10), NDP,andEFHC2 (rs12558081, − Published: September 14, 2020 P = 4.9 × 10 11).
    [Show full text]
  • Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density
    healthcare Concept Paper Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density 1, 2, 3, Antonio Sanchez-Fernandez y, Raúl Roncero-Martin y, Jose M. Moran * , Jesus Lavado-García 2 , Luis Manuel Puerto-Parejo 2 , Fidel Lopez-Espuela 2, Ignacio Aliaga 3 and María Pedrera-Canal 2 1 Servicio de Tocoginecología, Complejo Hospitalario de Cáceres, 10004 Cáceres, Spain; [email protected] 2 Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; [email protected] (R.R.-M.); [email protected] (J.L.-G.); [email protected] (L.M.P.-P.); fi[email protected] (F.L.-E.); [email protected] (M.P.-C.) 3 Departamento de Estomatología II, Universidad Complutense de Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-927-257450 Both authors contributed equally to this work. y Received: 25 April 2020; Accepted: 11 June 2020; Published: 15 June 2020 Abstract: Nursing research is expected to provide options for the primary prevention of disease and health promotion, regardless of pathology or disease. Nurses have the skills to develop and lead research that addresses the relationship between genetic factors and health. Increasing genetic knowledge and research capacity through interdisciplinary cooperation as well as the development of research resources, will accelerate the rate at which nurses contribute to the knowledge about genetics and health. There are currently different fields in which knowledge can be expanded by research developed from the nursing field. Here, we present an emerging field of research in which it is hypothesized that genetics may affect bone metabolism.
    [Show full text]
  • Taf7l Cooperates with Trf2 to Regulate Spermiogenesis
    Taf7l cooperates with Trf2 to regulate spermiogenesis Haiying Zhoua,b, Ivan Grubisicb,c, Ke Zhengd,e, Ying Heb, P. Jeremy Wangd, Tommy Kaplanf, and Robert Tjiana,b,1 aHoward Hughes Medical Institute and bDepartment of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720; cUniversity of California Berkeley–University of California San Francisco Graduate Program in Bioengineering, University of California, Berkeley, CA 94720; dDepartment of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104; eState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; and fSchool of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel Contributed by Robert Tjian, September 11, 2013 (sent for review August 20, 2013) TATA-binding protein (TBP)-associated factor 7l (Taf7l; a paralogue (Taf4b; a homolog of Taf4) (9), TBP-related factor 2 (Trf2) (10, of Taf7) and TBP-related factor 2 (Trf2) are components of the core 11), and Taf7l (12, 13). For example, mice bearing mutant or promoter complex required for gene/tissue-specific transcription deficient CREM showed decreased postmeiotic gene expression of protein-coding genes by RNA polymerase II. Previous studies and defective spermiogenesis (14). Mice deficient in Taf4b, reported that Taf7l knockout (KO) mice exhibit structurally abnor- a testis-specific homolog of Taf4, are initially normal but undergo mal sperm, reduced sperm count, weakened motility, and compro- progressive germ-cell loss and become infertile by 3 mo of age −/Y mised fertility.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • DYSREGULATION of LONG-CHAIN ACYL-Coa SYNTHETASES in CANCER and THEIR TARGETING STRATEGIES in ANTICANCER THERAPY Md Amir Hossain1, Jun Ma2, Yong Yang1 1
    Hossain et al RJLBPCS 2020 www.rjlbpcs.com Life Science Informatics Publications Original Review Article DOI: 10.26479/2020.0603.06 DYSREGULATION OF LONG-CHAIN ACYL-CoA SYNTHETASES IN CANCER AND THEIR TARGETING STRATEGIES IN ANTICANCER THERAPY Md Amir Hossain1, Jun Ma2, Yong Yang1 1. Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China. 2. Ningxia Baoshihua Hospital, Ningxia, China. ABSTRACT: Cancer is a leading cause of death worldwide, and the number of cases globally continues to increase. Cancer is caused by certain changes in genes that are involved in controlling cell functions and cell division. Notably, metabolic dysregulation is one the hallmarks of cancer, and increases in fatty acid metabolism have been demonstrated to promote the growth and survival of a variety of cancers. In human, fatty acids either can be breakdown into acetyl-CoA through catabolic metabolism and aid in ATP generation or in the anabolic metabolism they can incorporate into triacylglycerol and phospholipid. Importantly, both of these pathways need activation of fatty acids, and the key players in this activation of fatty acids are the long-chain acyl-CoA synthetases (ACSLs) that are commonly dysregulated in cancer and associated with oncogenesis and survival. Therefore, it provides a rationale to target ACSLs in cancer. This review summarizes the current understanding of long-chain acyl-CoA synthetases in cancer and their targeting opportunities. KEYWORDS: Acyl-CoA synthetases, cancer, fatty acid, lipid metabolism. Article History: Received: April 15, 2020; Revised: May 10, 2020; Accepted: May 30, 2020. Corresponding Author: Prof. Yong Yang* Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.
    [Show full text]
  • Is Glyceraldehyde-3-Phosphate Dehydrogenase a Central Redox Mediator?
    1 Is glyceraldehyde-3-phosphate dehydrogenase a central redox mediator? 2 Grace Russell, David Veal, John T. Hancock* 3 Department of Applied Sciences, University of the West of England, Bristol, 4 UK. 5 *Correspondence: 6 Prof. John T. Hancock 7 Faculty of Health and Applied Sciences, 8 University of the West of England, Bristol, BS16 1QY, UK. 9 [email protected] 10 11 SHORT TITLE | Redox and GAPDH 12 13 ABSTRACT 14 D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an immensely important 15 enzyme carrying out a vital step in glycolysis and is found in all living organisms. 16 Although there are several isoforms identified in many species, it is now recognized 17 that cytosolic GAPDH has numerous moonlighting roles and is found in a variety of 18 intracellular locations, but also is associated with external membranes and the 19 extracellular environment. The switch of GAPDH function, from what would be 20 considered as its main metabolic role, to its alternate activities, is often under the 21 influence of redox active compounds. Reactive oxygen species (ROS), such as 22 hydrogen peroxide, along with reactive nitrogen species (RNS), such as nitric oxide, 23 are produced by a variety of mechanisms in cells, including from metabolic 24 processes, with their accumulation in cells being dramatically increased under stress 25 conditions. Overall, such reactive compounds contribute to the redox signaling of the 26 cell. Commonly redox signaling leads to post-translational modification of proteins, 27 often on the thiol groups of cysteine residues. In GAPDH the active site cysteine can 28 be modified in a variety of ways, but of pertinence, can be altered by both ROS and 29 RNS, as well as hydrogen sulfide and glutathione.
    [Show full text]