2 Equations of Motion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 5: Saturn, Neptune, … A. P. Ingersoll [email protected] 1
Lecture 5: Saturn, Neptune, … A. P. Ingersoll [email protected] 1. A lot a new material from the Cassini spacecraft, which has been in orbit around Saturn for four years. This talk will have a lot of pictures, not so much models. 2. Uranus on the left, Neptune on the right. Uranus spins on its side. The obliquity is 98 degrees, which means the poles receive more sunlight than the equator. It also means the sun is almost overhead at the pole during summer solstice. Despite these extreme changes in the distribution of sunlight, Uranus is a banded planet. The rotation dominates the winds and cloud structure. 3. Saturn is covered by a layer of clouds and haze, so it is hard to see the features. Storms are less frequent on Saturn than on Jupiter; it is not just that clouds and haze makes the storms less visible. Saturn is a less active planet. Nevertheless the winds are stronger than the winds of Jupiter. 4. The thickness of the atmosphere is inversely proportional to gravity. The zero of altitude is where the pressure is 100 mbar. Uranus and Neptune are so cold that CH forms clouds. The clouds of NH3 , NH4SH, and H2O form at much deeper levels and have not been detected. 5. Surprising fact: The winds increase as you move outward in the solar system. Why? My theory is that power/area is smaller, small‐scale turbulence is weaker, dissipation is less, and the winds are stronger. Jupiter looks more turbulent, and it has the smallest winds. -
Chapter 5 Constitutive Modelling
Chapter 5 Constitutive Modelling 5.1 Introduction Lecture 14 Thus far we have established four conservation (or balance) equations, an entropy inequality and a number of kinematic relationships. The overall set of governing equations are collected in Table 5.1. The Eulerian form has a one more independent equation because the density must be determined, 1 whereas in the Lagrangian form it is directly related to the prescribed initial densityρ 0. Physical Law Eulerian FormN Lagrangian Formn DR ∂r Kinematics: Dt =V , 3, ∂t =v, 3; Dρ ∇ · Mass: Dt +ρ R V=0, 1,ρ 0 =ρJ, 0; DV ∇ · ∂v ∇ · Linear momentum:ρ Dt = R T+ρF , 3,ρ 0 ∂t = r p+ρ 0f, 3; Angular momentum:T=T T , 3,s=s T , 3; DΦ ∂φ Energy:ρ =T:D+ρB ∇ ·Q, 1,ρ =s: e˙+ρ b ∇ r ·q, 1; Dt − R 0 ∂t 0 − Dη ∂η0 Entropy inequality:ρ ∇ ·(Q/Θ)+ρB/Θ, 0,ρ ∇r (q/θ)+ρ b/θ, 0. Dt ≥ − R 0 ∂t ≥ − 0 Independent Equations: 11 10 Table 5.1: The governing equations for continuum mechanics in Eulerian and Lagrangian form. N is the number of independent equations in Eulerian form andn is the number of independent equations in Lagrangian form. Examining the equations reveals that they involve more unknown variables than equations, listed in Table 5.2. Once again the fact that the density in the Lagrangian formulation is prescribed means that there is one fewer unknown compared to the Eulerian formulation. Thus, in either formulation and additional eleven equations are required to close the system. -
Correct Expression of Material Derivative and Application to the Navier-Stokes Equation —– the Solution Existence Condition of Navier-Stokes Equation
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 June 2020 doi:10.20944/preprints202003.0030.v4 Correct Expression of Material Derivative and Application to the Navier-Stokes Equation |{ The solution existence condition of Navier-Stokes equation Bo-Hua Sun1 1 School of Civil Engineering & Institute of Mechanics and Technology Xi'an University of Architecture and Technology, Xi'an 710055, China http://imt.xauat.edu.cn email: [email protected] (Dated: June 15, 2020) The material derivative is important in continuum physics. This paper shows that the expression d @ dt = @t + (v · r), used in most literature and textbooks, is incorrect. This article presents correct d(:) @ expression of the material derivative, namely dt = @t (:) + v · [r(:)]. As an application, the form- solution of the Navier-Stokes equation is proposed. The form-solution reveals that the solution existence condition of the Navier-Stokes equation is that "The Navier-Stokes equation has a solution if and only if the determinant of flow velocity gradient is not zero, namely det(rv) 6= 0." Keywords: material derivative, velocity gradient, tensor calculus, tensor determinant, Navier-Stokes equa- tions, solution existence condition In continuum physics, there are two ways of describ- derivative as in Ref. 1. Therefore, to revive the great ing continuous media or flows, the Lagrangian descrip- influence of Landau in physics and fluid mechanics, we at- tion and the Eulerian description. In the Eulerian de- tempt to address this issue in this dedicated paper, where scription, the material derivative with respect to time we revisit the material derivative to show why the oper- d @ dv @v must be defined. -
ATMOSPHERIC and OCEANIC FLUID DYNAMICS Fundamentals and Large-Scale Circulation
ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-Scale Circulation Geoffrey K. Vallis Contents Preface xi Part I FUNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS 1 1 Equations of Motion 3 1.1 Time Derivatives for Fluids 3 1.2 The Mass Continuity Equation 7 1.3 The Momentum Equation 11 1.4 The Equation of State 14 1.5 The Thermodynamic Equation 16 1.6 Sound Waves 29 1.7 Compressible and Incompressible Flow 31 1.8 * More Thermodynamics of Liquids 33 1.9 The Energy Budget 39 1.10 An Introduction to Non-Dimensionalization and Scaling 43 2 Effects of Rotation and Stratification 51 2.1 Equations in a Rotating Frame 51 2.2 Equations of Motion in Spherical Coordinates 55 2.3 Cartesian Approximations: The Tangent Plane 66 2.4 The Boussinesq Approximation 68 2.5 The Anelastic Approximation 74 2.6 Changing Vertical Coordinate 78 2.7 Hydrostatic Balance 80 2.8 Geostrophic and Thermal Wind Balance 85 2.9 Static Instability and the Parcel Method 92 2.10 Gravity Waves 98 v vi Contents 2.11 * Acoustic-Gravity Waves in an Ideal Gas 100 2.12 The Ekman Layer 104 3 Shallow Water Systems and Isentropic Coordinates 123 3.1 Dynamics of a Single, Shallow Layer 123 3.2 Reduced Gravity Equations 129 3.3 Multi-Layer Shallow Water Equations 131 3.4 Geostrophic Balance and Thermal wind 134 3.5 Form Drag 135 3.6 Conservation Properties of Shallow Water Systems 136 3.7 Shallow Water Waves 140 3.8 Geostrophic Adjustment 144 3.9 Isentropic Coordinates 152 3.10 Available Potential Energy 155 4 Vorticity and Potential Vorticity 165 4.1 Vorticity and Circulation 165 -
Continuum Fluid Mechanics
CONTINUUM FLUID MECHANICS Motion A body is a collection of material particles. The point X is a material point and it is the position of the material particles at time zero. x3 Definition: A one-to-one one-parameter mapping X3 x(X, t ) x = x(X, t) X x X 2 x 2 is called motion. The inverse t =0 x1 X1 X = X(x, t) Figure 1. Schematic of motion. is the inverse motion. X k are referred to as the material coordinates of particle x , and x is the spatial point occupied by X at time t. Theorem: The inverse motion exists if the Jacobian, J of the transformation is nonzero. That is ∂x ∂x J = det = det k ≠ 0 . ∂X ∂X K This is the statement of the fundamental theorem of calculus. Definition: Streamlines are the family of curves tangent to the velocity vector field at time t . Given a velocity vector field v, streamlines are governed by the following equations: dx1 dx 2 dx 3 = = for a given t. v1 v 2 v3 Definition: The streak line of point x 0 at time t is a line, which is made up of material points, which have passed through point x 0 at different times τ ≤ t . Given a motion x i = x i (X, t) and its inverse X K = X K (x, t), it follows that the 0 0 material particle X k will pass through the spatial point x at time τ . i.e., ME639 1 G. Ahmadi 0 0 0 X k = X k (x ,τ). -
Chapter 7 Balanced Flow
Chapter 7 Balanced flow In Chapter 6 we derived the equations that govern the evolution of the at- mosphere and ocean, setting our discussion on a sound theoretical footing. However, these equations describe myriad phenomena, many of which are not central to our discussion of the large-scale circulation of the atmosphere and ocean. In this chapter, therefore, we focus on a subset of possible motions known as ‘balanced flows’ which are relevant to the general circulation. We have already seen that large-scale flow in the atmosphere and ocean is hydrostatically balanced in the vertical in the sense that gravitational and pressure gradient forces balance one another, rather than inducing accelera- tions. It turns out that the atmosphere and ocean are also close to balance in the horizontal, in the sense that Coriolis forces are balanced by horizon- tal pressure gradients in what is known as ‘geostrophic motion’ – from the Greek: ‘geo’ for ‘earth’, ‘strophe’ for ‘turning’. In this Chapter we describe how the rather peculiar and counter-intuitive properties of the geostrophic motion of a homogeneous fluid are encapsulated in the ‘Taylor-Proudman theorem’ which expresses in mathematical form the ‘stiffness’ imparted to a fluid by rotation. This stiffness property will be repeatedly applied in later chapters to come to some understanding of the large-scale circulation of the atmosphere and ocean. We go on to discuss how the Taylor-Proudman theo- rem is modified in a fluid in which the density is not homogeneous but varies from place to place, deriving the ‘thermal wind equation’. Finally we dis- cuss so-called ‘ageostrophic flow’ motion, which is not in geostrophic balance but is modified by friction in regions where the atmosphere and ocean rubs against solid boundaries or at the atmosphere-ocean interface. -
Ch.1. Description of Motion
CH.1. DESCRIPTION OF MOTION Multimedia Course on Continuum Mechanics Overview 1.1. Definition of the Continuous Medium 1.1.1. Concept of Continuum Lecture 1 1.1.2. Continuous Medium or Continuum 1.2. Equations of Motion 1.2.1 Configurations of the Continuous Medium 1.2.2. Material and Spatial Coordinates Lecture 2 1.2.3. Equation of Motion and Inverse Equation of Motion 1.2.4. Mathematical Restrictions 1.2.5. Example Lecture 3 1.3. Descriptions of Motion 1.3.1. Material or Lagrangian Description Lecture 4 1.3.2. Spatial or Eulerian Description 1.3.3. Example Lecture 5 2 Overview (cont’d) 1.4. Time Derivatives Lecture 6 1.4.1. Material and Local Derivatives 1.4.2. Convective Rate of Change Lecture 7 1.4.3. Example Lecture 8 1.5. Velocity and Acceleration 1.5.1. Velocity Lecture 9 1.5.2. Acceleration 1.5.3. Example 1.6. Stationarity and Uniformity 1.6.1. Stationary Properties Lecture 10 1.6.2. Uniform Properties 3 Overview (cont’d) 1.7. Trajectory or Pathline 1.7.1. Equation of the Trajectories 1.7.2. Example 1.8. Streamlines Lecture 11 1.8.1. Equation of the Streamlines 1.8.2. Trajectories and Streamlines 1.8.3. Example 1.8.4. Streamtubes 1.9. Control and Material Surfaces 1.9.1. Control Surface 1.9.2. Material Surface Lecture 12 1.9.3. Control Volume 1.9.4. Material Volume 4 1.1 Definition of the Continuous Medium Ch.1. Description of Motion 5 The Concept of Continuum Microscopic scale: Matter is made of atoms which may be grouped in molecules. -
Dynamics of Jupiter's Atmosphere
6 Dynamics of Jupiter's Atmosphere Andrew P. Ingersoll California Institute of Technology Timothy E. Dowling University of Louisville P eter J. Gierasch Cornell University GlennS. Orton J et P ropulsion Laboratory, California Institute of Technology Peter L. Read Oxford. University Agustin Sanchez-Lavega Universidad del P ais Vasco, Spain Adam P. Showman University of A rizona Amy A. Simon-Miller NASA Goddard. Space Flight Center Ashwin R . V asavada J et Propulsion Laboratory, California Institute of Technology 6.1 INTRODUCTION occurs on both planets. On Earth, electrical charge separa tion is associated with falling ice and rain. On Jupiter, t he Giant planet atmospheres provided many of the surprises separation mechanism is still to be determined. and remarkable discoveries of planetary exploration during The winds of Jupiter are only 1/ 3 as strong as t hose t he past few decades. Studying Jupiter's atmosphere and of aturn and Neptune, and yet the other giant planets comparing it with Earth's gives us critical insight and a have less sunlight and less internal heat than Jupiter. Earth broad understanding of how atmospheres work that could probably has the weakest winds of any planet, although its not be obtained by studying Earth alone. absorbed solar power per unit area is largest. All the gi ant planets are banded. Even Uranus, whose rotation axis Jupiter has half a dozen eastward jet streams in each is tipped 98° relative to its orbit axis. exhibits banded hemisphere. On average, Earth has only one in each hemi cloud patterns and east- west (zonal) jets. -
ATM 500: Atmospheric Dynamics End-Of-Semester Review, December 6 2017 Here, in Bullet Points, Are the Key Concepts from the Second Half of the Course
ATM 500: Atmospheric Dynamics End-of-semester review, December 6 2017 Here, in bullet points, are the key concepts from the second half of the course. They are not meant to be self-contained notes! Refer back to your course notes for notation, derivations, and deeper discussion. Static stability The vertical variation of density in the environment determines whether a parcel, disturbed upward from an initial hydrostatic rest state, will accelerate away from its initial position, or oscillate about that position. For an incompressible or Boussinesq fluid, the buoyancy frequency is g dρ~ N 2 = − ρ~dz For a compressible ideal gas, the buoyancy frequency is g dθ~ N 2 = θ~dz (the expressions are different because density is not conserved in a small upward displacement of a compressible fluid, but potential temperature is conserved) Fluid is statically stable if N 2 > 0; otherwise it is statically unstable. Typical value for troposphere: N = 0:01 s−1, with corresponding oscillation period of 10 minutes. Dry adiabatic lapse rate g −1 Γd = = 9:8 K km cp The rate at which temperature decreases during adiabatic ascent (for which Dθ Dt = 0) \Dry" here means that there is no latent heating from condensation of water vapor. Static stability criteria for a dry atmosphere Environment is stable to dry con- vection if dθ~ dT~ > 0 or − < Γ dz dz d and otherwise unstable. 1 Buoyancy equation for Boussinesq fluid with background stratification Db0 + N 2w = 0 Dt where we have separated the full buoyancy into a mean vertical part ^b(z) and 0 2 d^b 2 everything else (b ), and N = dz . -
1. Transport and Mixing 1.1 the Material Derivative Let Be The
1. Transport and mixing 1.1 The material derivative LetV() x, t be the velocity of a fluid at the pointx = ()x,, y z and timet . Consider also some scalar fieldχ()x, t such as the temperature or density. We are interested not only in the partial derivative ofχ with respect to time,∂χ ∂⁄ t , but also in the time derivative following the motion of the fluid,dχ ⁄ dt . The latter is the so-called material derivative: dχ ⁄dt = lim [] χ(x+ V() x, t δt, t+ δ t )– χ()x, t δ⁄ t δt → 0 . (1.1) = (∂⁄ ∂t + V ⋅ ∇ )χ (),, ∇() ∂ ,,∂ ∂ In Cartesian coordinates,V = u v w ,= x y z and dχ ⁄dt = ∂ χ ∂⁄ t + u∂χ ∂⁄ x +v∂χ ∂⁄ y + w∂χ ∂⁄ z . (1.2) We will also be using spherical coordinates. The notation()u,, v w is conventional for the (eastward, northward, radially outward) components of the velocity field. In addition to the radial distance from the origin,r , we use the symbolθ for latitude (–π ⁄ 2 at the south pole,π ⁄ 2 at the north pole) andλ for longitude (ranging for zero to2π ). The gradient operator in these coordi- nates is ∇= λˆ ()r cosθ –1(∂⁄ ∂λ )+ θˆ r–1()∂⁄ ∂θ + rˆ()∂⁄ ∂r , (1.3) so that d⁄ dt = ∂⁄ ∂t +()r cosθ –1u()∂⁄ ∂λ +r–1v()∂⁄ ∂θ + w()∂⁄ ∂r . (1.4) The material derivative of a vector, such as the velocityV itself, is defined just as in 1.1. But care is required when considering the material derivative of a component of a vector if the unit vectors of one’s coordinate system are position dependent, as they are in spherical coordi- nates. -
General Navier-Stokes-Like Momentum and Mass-Energy Equations
General Navier-Stokes-like Momentum and Mass-Energy Equations Jorge Monreal Department of Physics, University of South Florida, Tampa, Florida, USA Abstract A new system of general Navier-Stokes-like equations is proposed to model electromagnetic flow utilizing analogues of hydrodynamic conservation equa- tions. Such equations are intended to provide a different perspective and, potentially, a better understanding of electromagnetic mass, energy and mo- mentum behavior. Under such a new framework additional insights into electromagnetism could be gained. To that end, we propose a system of momentum and mass-energy conservation equations coupled through both momentum density and velocity vectors. Keywords: Navier-Stokes; Electromagnetism; Euler equations; hydrodynamics PACS: 42.25.Dd, 47.10.ab, 47.10.ad 1. Introduction 1.1. System of Navier-Stokes Equations Several groups have applied the Navier-Stokes (NS) equations to Electro- magnetic (EM) fields through analogies of EM field flows to hydrodynamic fluid flow. Most recently, Boriskina and Reinhard made a hydrodynamic analogy utilizing Euler’s approximation to the Navier-Stokes equation in arXiv:1410.6794v2 [physics.class-ph] 29 Aug 2016 order to describe their concept of Vortex Nanogear Transmissions (VNT), which arise from complex electromagnetic interactions in plasmonic nanos- tructures [1]. In 1998, H. Marmanis published a paper that described hydro- dynamic turbulence and made direct analogies between components of the Email address: [email protected] (Jorge Monreal) Preprint submitted to Annals of Physics August 30, 2016 NS equation and Maxwell’s equations of electromagnetism[2]. Kambe for- mulated equations of compressible fluids using analogous Maxwell’s relation and the Euler approximation to the NS equation[3]. -
A Diagnostic Model for Initial Winds in Primitive
1 1 A DIAGNOSTIC MODEL FOR INITIAL WINDS IN PRIMITIVE EQUATIONS FORECASTS by Richard Asselin Department of Meteorology, Ph. D. ABSTRACT The set of primitive meteorologicai equations reduces to a single second order partial differential cquation when the accel- eration is replaced by the derivative of the geostrophic wind in the equation.of motion. From this equation a diagnostic three-dimensional wind field can be computed when the pressure distribution is known. Calculations for a barotropic atmosphere are performed fir st; the rotational part of the wind is found to be similar to that from the classical balance equation and the divergent part agrees well with synoptic experience. A forecast thus initialized contaills Lese; gravi- tational activity than one initialized with the non-divergent wind of the balance equation. With a five-level baroclinic atmosphere. the effects of mountains, surface drag, and release of latent heat are studi~d separately; the results arc consistent wlth classical concepts and other interesting features are revealed. T!;e diagnostic surfa:::e pres sure tendency is fo~nd to be in very good agreement with the observed pressure changes. A DIAGNOSTIC MODEL FOR INITIAL WINDS IN PRIMITIVE EQUATiONS FORECASTS by RI CHARD ASSE LIN . A the sis submitted to the Faculty of Graduate Studies and Re search in partial fulfillrnent of the requirernents for the degree of Doctor of Philosophy. Departrnent of Meteorology McGill Univer sity Montreal, Canada July. 1970 1971 A DL~GNOSTIC MODEL FOR INITIAL WINDS IN PRIMITIVE EQUATIONS FORECASTS by RI CHARD ASSE LIN . A thesis submitted ta the Faculty of Graduate Studies and Research in partial fulfillment of the requirements.