In This Issue Thonored for Their Roles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Prometheus Bomb: the Manhattan Project and Government in the Dark / Neil J
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln University of Nebraska Press -- Sample Books and University of Nebraska Press Chapters 2016 The rP ometheus Bomb Neil J. Sullivan Follow this and additional works at: http://digitalcommons.unl.edu/unpresssamples Sullivan, Neil J., "The rP ometheus Bomb" (2016). University of Nebraska Press -- Sample Books and Chapters. 348. http://digitalcommons.unl.edu/unpresssamples/348 This Article is brought to you for free and open access by the University of Nebraska Press at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in University of Nebraska Press -- Sample Books and Chapters by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Buy the Book Buy the Book The Manhattan Project and Government in the Dark NEIL J. SULLIVAN Potomac Books AN IMPRINT OF THE UNIVERSITY OF NEBRASKA PRESS Buy the Book © 2016 by Neil J. Sullivan All illustrations are from Wikimedia Commons. All rights reserved. Potomac Books is an imprint of the University of Nebraska Press. Manufactured in the United States of America. Library of Congress Cataloging- in- Publication Data Names: Sullivan, Neil J., 1948– author. Title: The Prometheus bomb: the Manhattan Project and government in the dark / Neil J. Sullivan. Description: Lincoln: Potomac Books, An imprint of the University of Nebraska Press, 2016. Includes bibliographical references and index. Identifiers: lccn 2016020649 isbn 9781612348155 (cloth: alkaline paper) isbn 9781612348902 (epub) isbn 9781612348919 (mobi) isbn 9781612348926 (pdf) Subjects: lcsh: Manhattan Project (U.S.)— History. | Atomic bomb— United States— History. | Atomic bomb— Government policy— United States— History. | United States— Military policy. | Science and state— United States. -
James Chadwick: Ahead of His Time
July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised. -
Secrets Jeremy Bernstein
INFERENCE / Vol. 6, No. 1 Secrets Jeremy Bernstein Restricted Data: The History of Nuclear Secrecy in the decided to found a rival weapons laboratory. Even if Teller United States had offered me a job, I doubt that I would have accepted.3 by Alex Wellerstein After obtaining my degree, I was offered a job that University of Chicago Press, 528 pp., $35.00. would keep me in Cambridge for at least another year. One year became two and at the end of my second year I was uclear weapons have been shrouded in secrecy accepted at the Institute for Advanced Study in Princeton. from the very beginning. After plutonium was It was around this time that the chairman of the physics discovered at the University of California in department at Harvard, Kenneth Bainbridge, came to me NDecember 1940, researchers led by Glenn Seaborg submit- with an offer. Bainbridge had been an important figure at ted a pair of letters to the Physical Review. The details of Los Alamos during the war. Robert Oppenheimer had put their discovery were withheld from publication until after him in charge of the site in New Mexico where the Trinity the war.1 Once the project to make a nuclear weapon got test had taken place.4 Bainbridge told me that the labora- underway, secrecy became a very serious matter indeed. tory was offering summer jobs to young PhDs and asked The story of these efforts and how they evolved after the if I was interested. I was very interested. Los Alamos had war is the subject of Alex Wellerstein’s Restricted Data: an almost mystical significance for me due to its history The History of Nuclear Secrecy in the United States. -
Ernest Merritt Was a Rather Small Pixieish Man, Somewhat Hard of Hearing, Eyes Sparkling, Who Obviously Enjoyed What He Was Doing, Just a Delightful Person
NATIONAL ACADEMY OF SCIENCES E R N E S T G E O R G E M ERRITT 1865—1948 A Biographical Memoir by P A U L L . H A R T M A N Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Photo ca. 1926 ERNEST GEORGE MERRITT April 28, 1865–June 5, 1948 BY PAUL L. HARTMAN RNEST GEORGE MERRITT, emeritus professor of physics at ECornell University and long-time member of that de- partment and personification of American physics, died June 5, 1948, in Ithaca, New York, after a short illness. He was born April 28, 1865, (two weeks after Lincoln’s assassina- tion) in Indianapolis. As a youngster he already showed an inclination toward his adult vocations of editor and scien- tist. By the age of eight or so, in Indiana no less, he had founded and edited two journals, Sea Breeze, and its succes- sor, The Mountain Echo, which he also printed and bound; and he had obtained a modest telescope which he housed in his small observatory. The Indianapolis Journal reported on “the boy astronomer (whose) eager study of the stars may some day make him famous.” In high school Merritt showed a talent for mathematics, winning a small prize. After one year at Purdue he went to Cornell’s engineering school, graduating with a degree in mechanical engineering. When the mathematical and as- tronomical inclinations disappeared is not clear. -
Charles Hard Townes (1915–2015)
ARTICLE-IN-A-BOX Charles Hard Townes (1915–2015) C H Townes shared the Nobel Prize in 1964 for the concept of the laser and the earlier realization of the concept at microwave frequencies, called the maser. He passed away in January of this year, six months short of his hundredth birthday. A cursory look at the archives shows a paper as late as 2011 – ‘The Dust Distribution Immediately Surrounding V Hydrae’, a contribution to infrared astronomy. To get a feel for the range in time and field, his 1936 masters thesis was based on repairing a non-functional van de Graaf accelerator at Duke University in 1936! For his PhD at the California Institute of Technology, he measured the spin of the nucleus of carbon-13 using isotope separation and high resolution spectroscopy. Smythe, his thesis supervisor was writing a comprehensive text on electromagnetism, and Townes solved every problem in it – it must have stood him in good stead in what followed. In 1939, even a star student like him did not get an academic job. The industrial job he took set him on his lifetime course. This was at the legendary Bell Telephone Laboratories, the research wing of AT&T, the company which set up and ran the first – and then the best – telephone system in the world. He was initially given a lot of freedom to work with different research groups. During the Second World War, he worked in a group developing a radar based system for guiding bombs. But his goal was always physics research. After the War, Bell Labs, somewhat reluctantly, let him pursue microwave spectroscopy, on the basis of a technical report he wrote suggesting that molecules might serve as circuit elements at high frequencies which were important for communication. -
Simulating Physics with Computers
International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION On the program it says this is a keynote speech--and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything. -
Vorwort (PDF, 289
JOST LEMMERICH AUFRECHT IM STURM DER ZEIT DER PHYSIKER JAMES FRANCK 1882 – 1964 DIEPHOlz · STUTTGART · BERLIN 2007 VERlaG FÜR GESCHICHTE DER NaTURWISSENSCHAFTEN UND DER TECHNIK www.gntverlag.de ISBN 9783928186834 Printed in Germany. Alle Rechte vorbehalten. Vorwort und Danksagung Die Biographien über Physiker weisen nicht übersehbare Häufungen bei einigen Na men auf. Die Anzahl der Einsteinbiographien übersteigt sicher die Zahl 100. Auch über das Leben von Galilei und Newton sind zahlreiche Bücher geschrieben worden. In den letzten Jahren sind mehrere Biographien über Lise Meitner und neuerdings über Heisenberg erschienen. Sieht man von kürzeren Nachrufen ab, so liegen für sehr viele bedeutende Physiker des 20. Jahrhunderts bisher keine ausführlichen Biographien vor, wie zum Beispiel Patrick M. S. Blackett, Walther Bothe, Gustav Hertz, Viktor F. Hess, Max von Laue, Walther Nernst, Johannes Stark, Otto Stern, Fritz Zernike, um nur ei nige der Nobelpreisträger der Physik zu nennen. Ebenso sind die in den Zwanziger Jahren bedeutenden Göttinger Physiker James Franck und Robert W. Pohl nicht mit Biographien gewürdigt worden. Von Max Born liegt eine Autobiographie vor und 2005 erschien eine Biographie von Nancy Th. Greenspan. In den Fünfziger Jahren entschloss sich Johannes Jaenicke, ein enger Mitarbeiter Fritz Habers, Vorarbeiten zu einer HaberBiographie aufzunehmen und fragte die Freunde Habers, wie James Franck, und Mitarbeiter Habers nach Erinnerungen und Beiträgen. Als Franck 1958 in Deutschland zu Besuch war, interviewte Jaenicke ihn. Die dabei gemachten Äußerungen können vielleicht als die Vorstellungen Francks zu seiner Bio graphie verstanden werden:1 »Es gibt verschiedene Möglichkeiten, diese Biographie zu schreiben. Wenn Sie [Jaenicke] über die wissenschaftlichen Arbeiten nicht selbst schreiben, sondern Beiträge von verschiedenen Leuten bringen wollen, gibt es so eine Art Sammelheft, wie man sie Lebenden zu Geburtstagen zu widmen pflegt. -
Annual Report 2013.Pdf
ATOMIC HERITAGE FOUNDATION Preserving & Interpreting Manhattan Project History & Legacy preserving history ANNUAL REPORT 2013 WHY WE SHOULD PRESERVE THE MANHATTAN PROJECT “The factories and bombs that Manhattan Project scientists, engineers, and workers built were physical objects that depended for their operation on physics, chemistry, metallurgy, and other nat- ural sciences, but their social reality - their meaning, if you will - was human, social, political....We preserve what we value of the physical past because it specifically embodies our social past....When we lose parts of our physical past, we lose parts of our common social past as well.” “The new knowledge of nuclear energy has undoubtedly limited national sovereignty and scaled down the destructiveness of war. If that’s not a good enough reason to work for and contribute to the Manhattan Project’s historic preservation, what would be? It’s certainly good enough for me.” ~Richard Rhodes, “Why We Should Preserve the Manhattan Project,” Bulletin of the Atomic Scientists, May/June 2006 Photographs clockwise from top: J. Robert Oppenheimer, General Leslie R. Groves pinning an award on Enrico Fermi, Leona Woods Marshall, the Alpha Racetrack at the Y-12 Plant, and the Bethe House on Bathtub Row. Front cover: A Bruggeman Ranch property. Back cover: Bronze statues by Susanne Vertel of J. Robert Oppenheimer and General Leslie Groves at Los Alamos. Table of Contents BOARD MEMBERS & ADVISORY COMMITTEE........3 Cindy Kelly, Dorothy and Clay Per- Letter from the President..........................................4 -
Physics Connections
Charles Tracy L P S / y a a w s n e v a R n a v v e l t e D Physics connections Last year we celebrated the International Year of Physics — time and light. In particular, it described how space also known as Einstein Year. In the century since Einstein’s becomes distorted near a massive object such as a star, so that light follows a curved path rather than annus mirabilis (see CATALYST Vol. 16, No. 1) there has travelling in a straight line (Figure 1). been a revolution in the study of physics. This article explores Its publication in wartime and the fact that it was the links between some of the architects of this revolution. written in German meant that few people read it. However, one person who did read it was the British astronomer Arthur Eddington. The story goes that it was Eddington who brought Einstein to the world’s attention — though Einstein might have disagreed. instein did not become instantly famous in Eddington was a conscientious objector. As such, GCSE key words 1905; it took several years before he became a he should have spent the war in jail. Instead, he got Gravity Eglobal icon. In 1915, while Europe was caught official permission to prepare for a trip to observe a Alpha particle scattering up in the First World War, Einstein broadened his total eclipse of the Sun — a rare event. His intention Nuclear fission special theory of relativity. His general theory of was to verify Einstein’s general theory of relativity. -
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering. -
2018 March Meeting Program Guide
MARCHMEETING2018 LOS ANGELES MARCH 5-9 PROGRAM GUIDE #apsmarch aps.org/meetingapp aps.org/meetings/march Senior Editor: Arup Chakraborty Robert T. Haslam Professor of Chemical Engineering; Professor of Chemistry, Physics, and Institute for Medical Engineering and Science, MIT Now welcoming submissions in the Physics of Living Systems Submit your best work at elifesci.org/physics-living-systems Image: D. Bonazzi (CC BY 2.0) Led by Senior Editor Arup Chakraborty, this dedicated new section of the open-access journal eLife welcomes studies in which experimental, theoretical, and computational approaches rooted in the physical sciences are developed and/or applied to provide deep insights into the collective properties and function of multicomponent biological systems and processes. eLife publishes groundbreaking research in the life and biomedical sciences. All decisions are made by working scientists. WELCOME t is a pleasure to welcome you to Los Angeles and to the APS March I Meeting 2018. As has become a tradition, the March Meeting is a spectacular gathering of an enthusiastic group of scientists from diverse organizations and backgrounds who have broad interests in physics. This meeting provides us an opportunity to present exciting new work as well as to learn from others, and to meet up with colleagues and make new friends. While you are here, I encourage you to take every opportunity to experience the amazing science that envelops us at the meeting, and to enjoy the many additional professional and social gatherings offered. Additionally, this is a year for Strategic Planning for APS, when the membership will consider the evolving mission of APS and where we want to go as a society. -
Cold War Requisitions, Scientific Manpower, and the Production of American Physicists After World War II
DAVID KAISER* Cold War requisitions, scientific manpower, and the production of American physicists after World War II 1. RAYMOND BIRGE’S “MAIN OBJECTIVE” “THE MAIN OBJECTIVE of this department of physics,” Raymond Birge wrote in late May 1955, “is to train Ph.D.’s in physics.” Birge— iconic, somber, a displaced Yankee who traced his New England ancestry nine generations back—had been chair of Berkeley’s physics department for twenty-two years; by the mid-1950s, it was the nation’s largest. At the time he explained his department’s “main objec- tive,” Birge was the retiring president of the American Physical Society (APS). Birge and his colleagues in Berkeley’s physics department had emphasized the importance of its graduate program many times before in annual budget requests to the university administration and in funding reports to private industries; it would be easy to read such remarks as thinly-veiled requests for more funding, since training physics Ph.D.s became expensive after World War II. This time, however, Birge articulated his department’s mission in a letter to a local citizen, far outside of the university bureaucracy, who had no funds to offer and who had requested no such pronouncement. 1 *Program in Science, Technology, and Society, and Department of Physics, Building E51- 185, MIT, Cambridge, MA 02139; [email protected]. My thanks to Shane Hamilton for his research assistance, and to Alexis De Greiff, Kenji Ito, John Krige, Elizabeth Paris, and John Rudolph for their helpful comments on an earlier draft. The following abbreviations are used: AIP-EMD, American Institute of Physics, Edu- cation and Manpower Division Records, Niels Bohr Library, American Institute of Physics, College Park, MD; BAS, Bulletin of the atomic scientists; BDP , University of California, Berkeley, Department of Physics Records, Bancroft Library, Berkeley, CA; HDP, Harvard University Department of Physics Records, Pusey Library, Cambridge, MA; PDP, Princeton University Department of Physics Records, Seeley G.