Adapter Design Pattern Java Simple Example
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design Pattern Interview Questions
DDEESSIIGGNN PPAATTTTEERRNN -- IINNTTEERRVVIIEEWW QQUUEESSTTIIOONNSS http://www.tutorialspoint.com/design_pattern/design_pattern_interview_questions.htm Copyright © tutorialspoint.com Dear readers, these Design Pattern Interview Questions have been designed specially to get you acquainted with the nature of questions you may encounter during your interview for the subject of Design Pattern. As per my experience good interviewers hardly plan to ask any particular question during your interview, normally questions start with some basic concept of the subject and later they continue based on further discussion and what you answer: What are Design Patterns? Design patterns represent the best practices used by experienced object-oriented software developers. Design patterns are solutions to general problems that software developers faced during software development. These solutions were obtained by trial and error by numerous software developers over quite a substantial period of time. What is Gang of Four GOF? In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated the concept of Design Pattern in Software development. These authors are collectively known as Gang of Four GOF. Name types of Design Patterns? Design patterns can be classified in three categories: Creational, Structural and Behavioral patterns. Creational Patterns - These design patterns provide a way to create objects while hiding the creation logic, rather than instantiating objects directly using new opreator. This gives program more flexibility in deciding which objects need to be created for a given use case. Structural Patterns - These design patterns concern class and object composition. Concept of inheritance is used to compose interfaces and define ways to compose objects to obtain new functionalities. -
Design Patterns in PHP and Laravel — Kelt Dockins Design Patterns in PHP and Laravel
Design Patterns in PHP and Laravel — Kelt Dockins Design Patterns in PHP and Laravel Kelt Dockins [email protected] Design Patterns in PHP and Laravel Kelt Dockins Dolph, Arkansas USA ISBN-13 (pbk): 978-1-4842-2450-2 ISBN-13 (electronic): 978-1-4842-2451-9 DOI 10.1007/978-1-4842-2451-9 Library of Congress Control Number: 2016961807 Copyright © 2017 by Kelt Dockins This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. -
Enterprise Development with Flex
Enterprise Development with Flex Enterprise Development with Flex Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo Enterprise Development with Flex by Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky Copyright © 2010 Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky.. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Mary E. Treseler Indexer: Ellen Troutman Development Editor: Linda Laflamme Cover Designer: Karen Montgomery Production Editor: Adam Zaremba Interior Designer: David Futato Copyeditor: Nancy Kotary Illustrator: Robert Romano Proofreader: Sada Preisch Printing History: March 2010: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Enterprise Development with Flex, the image of red-crested wood-quails, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information con- tained herein. -
Learning Javascript Design Patterns
Learning JavaScript Design Patterns Addy Osmani Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo Learning JavaScript Design Patterns by Addy Osmani Copyright © 2012 Addy Osmani. All rights reserved. Revision History for the : 2012-05-01 Early release revision 1 See http://oreilly.com/catalog/errata.csp?isbn=9781449331818 for release details. ISBN: 978-1-449-33181-8 1335906805 Table of Contents Preface ..................................................................... ix 1. Introduction ........................................................... 1 2. What is a Pattern? ...................................................... 3 We already use patterns everyday 4 3. 'Pattern'-ity Testing, Proto-Patterns & The Rule Of Three ...................... 7 4. The Structure Of A Design Pattern ......................................... 9 5. Writing Design Patterns ................................................. 11 6. Anti-Patterns ......................................................... 13 7. Categories Of Design Pattern ............................................ 15 Creational Design Patterns 15 Structural Design Patterns 16 Behavioral Design Patterns 16 8. Design Pattern Categorization ........................................... 17 A brief note on classes 17 9. JavaScript Design Patterns .............................................. 21 The Creational Pattern 22 The Constructor Pattern 23 Basic Constructors 23 Constructors With Prototypes 24 The Singleton Pattern 24 The Module Pattern 27 iii Modules 27 Object Literals 27 The Module Pattern -
A Mathematical Approach to Object Oriented Design Patterns
06.2006 J.Natn.Sci.FoundationObject oriented design Sripatterns Lanka 2008 36 (3):219-227 219 RESEARCH ARTICLE A mathematical approach to object oriented design patterns Saluka R. Kodituwakku1*and Peter Bertok2 1 Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Peradeniya. 2 Department of Computer Science, RMIT University, Melbourne, Australia. Revised: 27 May 2008 ; Accepted: 18 July 2008 Abstract: Although design patterns are reusable design the distribution of responsibilities. For ease of learning elements, existing pattern descriptions focus on specific and reference, in1, design patterns are organized into a solutions that are not easily reusable in new designs. This paper catalogue. introduces a new pattern description method for object oriented design patterns. The description method aims at providing a The catalogue is formed by two criteria: purpose more general description of patterns so that patterns can be and scope. According to their purpose, design patterns readily reusable. This method also helps a programmer to are classified into creational, structural and behavioural, analyze, compare patterns, and detect patterns from existing software programmes. whereas the scope divides patterns into class patterns and object patterns. Class patterns capture relationships This method differs from the existing pattern description between classes and their subclasses; object patterns deal methods in that it captures both static and dynamic properties with relationships between objects. of patterns. It describes them in terms of mathematical entities rather than natural language narratives, incomplete graphical Software patterns provide reusable solutions to notations or programme fragments. It also helps users to recurring design problems. Even if we have reusable understand the patterns and relationships between them; and solutions they may not be effectively reused, because select appropriate patterns to the problem at hand. -
The Scalable Adapter Design Pattern: Enabling Interoperability Between Educational Software Tools
The Scalable Adapter Design Pattern: Enabling Interoperability Between Educational Software Tools Andreas Harrer, Catholic University Eichstatt-Ingolstadt,¨ Germany, Niels Pinkwart, Clausthal University of Technology, Germany, Bruce M. McLaren, Carnegie Mellon University, Pittsburgh PA, U.S.A., and DFKI, Saarbrucken,¨ Germany, and Oliver Scheuer, DFKI, Saarbrucken,¨ Germany Abstract For many practical learning scenarios, the integrated use of more than one learning tool is educationally beneficial. In these cases, interoperability between learning tools - getting the pieces to talk to one another in a coherent, well-founded manner - is a crucial requirement that is often hard to achieve. This paper describes a re-usable software design that aims at the integration of independent learning tools into one collaborative learning scenario. We motivate the usefulness and expressiveness of combining several learning tools into one integrated learning experience. Based on this we sketch software design principles that integrate several existing components into a joint technical framework. The feasibility of the approach, which we name the “Scalable Adapter” design pattern, is shown with several implementation examples from different educational technology domains, including Intelligent Tutoring Systems and collaborative learning environments. IEEE keywords: J.m Computer applications, H.5.3 Group and Organization interfaces, K.3.m Computers in Education A short version of this paper appeared in the Proceedings of the Conference on Intelligent Tutoring Systems 2008 1 The Scalable Adapter Design Pattern: Enabling Interoperability Between Educational Software Tools1 I. INTRODUCTION hypothesis and plans. In order to help the student or student In the field of educational technology, there have been groups during the different steps of this inquiry procedure, it numerous attempts in recent years to connect differently makes sense to enable them to have hypotheses, experimenta- targeted learning environments to one another. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project. -
Design Pattern Implementation in Java and Aspectj
Design Pattern Implementation in Java and AspectJ Jan Hannemann Gregor Kiczales University of British Columbia University of British Columbia 201-2366 Main Mall 201-2366 Main Mall Vancouver B.C. V6T 1Z4 Vancouver B.C. V6T 1Z4 jan [at] cs.ubc.ca gregor [at] cs.ubc.ca ABSTRACT successor in the chain. The event handling mechanism crosscuts the Handlers. AspectJ implementations of the GoF design patterns show modularity improvements in 17 of 23 cases. These improvements When the GoF patterns were first identified, the sample are manifested in terms of better code locality, reusability, implementations were geared to the current state of the art in composability, and (un)pluggability. object-oriented languages. Other work [19, 22] has shown that implementation language affects pattern implementation, so it seems The degree of improvement in implementation modularity varies, natural to explore the effect of aspect-oriented programming with the greatest improvement coming when the pattern solution techniques [11] on the implementation of the GoF patterns. structure involves crosscutting of some form, including one object As an initial experiment we chose to develop and compare Java playing multiple roles, many objects playing one role, or an object [27] and AspectJ [25] implementations of the 23 GoF patterns. playing roles in multiple pattern instances. AspectJ is a seamless aspect-oriented extension to Java, which means that programming in AspectJ is effectively programming in Categories and Subject Descriptors Java plus aspects. D.2.11 [Software Engineering]: Software Architectures – By focusing on the GoF patterns, we are keeping the purpose, patterns, information hiding, and languages; D.3.3 intent, and applicability of 23 well-known patterns, and only allowing [Programming Languages]: Language Constructs and Features – the solution structure and solution implementation to change. -
A Design Pattern Generation Tool
Project Number: GFP 0801 A DESIGN PATTERN GEN ERATION TOOL A MAJOR QUALIFYING P ROJECT REPORT SUBMITTED TO THE FAC ULTY OF WORCESTER POLYTECHNIC INSTITUTE IN PARTIAL FULFILLME NT OF THE REQUIREMEN TS FOR THE DEGREE OF BACHELOR O F SCIENCE BY CAITLIN VANDYKE APRIL 23, 2009 APPROVED: PROFESSOR GARY POLLICE, ADVISOR 1 ABSTRACT This project determines the feasibility of a tool that, given code, can convert it into equivalent code (e.g. code that performs the same task) in the form of a specified design pattern. The goal is to produce an Eclipse plugin that performs this task with minimal input, such as special tags.. The final edition of this plugin will be released to the Eclipse community. ACKNOWLEGEMENTS This project was completed by Caitlin Vandyke with gratitude to Gary Pollice for his advice and assistance, as well as reference materials and troubleshooting. 2 TABLE OF CONTENTS Abstract ....................................................................................................................................................................................... 2 Acknowlegements ................................................................................................................................................................... 2 Table of Contents ..................................................................................................................................................................... 3 Table of Illustrations ............................................................................................................................................................. -
Additional Design Pattern Examples Design Patterns--Factory Method
Additional Design Pattern Examples • Creational – Factory method – Abstract factory • Structural – Decorator – Adapter • Behavioral – Observer Design Patterns--Factory Method • Intent--Permit a class to be reuseable with arbitrary data types. Specifically, allow the class to be independent of the classes it instantiates – Define an interface for object creation. – Let subclasses decide which class to instantiate. • Motivation – Useful for development of frameworks 1 Factory Method--Continued • Consider a document-processing framework – High-level support for creating, opening, saving documents – Consistent method calls for these commands, regardless of document type (word-processor, spreadsheet, etc.) – Logic to implement these commands delegated to specific types of document objects. – May be some operations common to all document types. Factory Method--Continued Document Processing Example-General Framework: Document Application getTitle( ) * Edits 1 newDocument( ) newDocument( ) openDocument( ) openDocument( ) ... ... MyDocument Problem: How can an Application object newDocument( ) create instances of specific document classes openDocument( ) without being application-specific itself. ... 2 Factory Method--Continued Use of a document creation “factory”: Document Application getTitle( ) * Edits 1 newDocument( ) newDocument( ) openDocument( ) openDocument( ) ... ... 1 requestor * Requests-creation creator 1 <<interface>> MyDocument DocumentFactoryIF newDocument( ) createDocument(type:String):Document openDocument( ) ... DocumentFactory -
Design Patterns Adapter Pattern
DDEESSIIGGNN PPAATTTTEERRNNSS -- AADDAAPPTTEERR PPAATTTTEERRNN http://www.tutorialspoint.com/design_pattern/adapter_pattern.htm Copyright © tutorialspoint.com Adapter pattern works as a bridge between two incompatible interfaces. This type of design pattern comes under structural pattern as this pattern combines the capability of two independent interfaces. This pattern involves a single class which is responsible to join functionalities of independent or incompatible interfaces. A real life example could be a case of card reader which acts as an adapter between memory card and a laptop. You plugin the memory card into card reader and card reader into the laptop so that memory card can be read via laptop. We are demonstrating use of Adapter pattern via following example in which an audio player device can play mp3 files only and wants to use an advanced audio player capable of playing vlc and mp4 files. Implementation We have a MediaPlayer interface and a concrete class AudioPlayer implementing the MediaPlayer interface. AudioPlayer can play mp3 format audio files by default. We are having another interface AdvancedMediaPlayer and concrete classes implementing the AdvancedMediaPlayer interface. These classes can play vlc and mp4 format files. We want to make AudioPlayer to play other formats as well. To attain this, we have created an adapter class MediaAdapter which implements the MediaPlayer interface and uses AdvancedMediaPlayer objects to play the required format. AudioPlayer uses the adapter class MediaAdapter passing it the desired audio type without knowing the actual class which can play the desired format. AdapterPatternDemo, our demo class will use AudioPlayer class to play various formats. Step 1 Create interfaces for Media Player and Advanced Media Player. -
Java Design Patterns I
Java Design Patterns i Java Design Patterns Java Design Patterns ii Contents 1 Introduction to Design Patterns 1 1.1 Introduction......................................................1 1.2 What are Design Patterns...............................................1 1.3 Why use them.....................................................2 1.4 How to select and use one...............................................2 1.5 Categorization of patterns...............................................3 1.5.1 Creational patterns..............................................3 1.5.2 Structural patterns..............................................3 1.5.3 Behavior patterns...............................................3 2 Adapter Design Pattern 5 2.1 Adapter Pattern....................................................5 2.2 An Adapter to rescue.................................................6 2.3 Solution to the problem................................................7 2.4 Class Adapter..................................................... 11 2.5 When to use Adapter Pattern............................................. 12 2.6 Download the Source Code.............................................. 12 3 Facade Design Pattern 13 3.1 Introduction...................................................... 13 3.2 What is the Facade Pattern.............................................. 13 3.3 Solution to the problem................................................ 14 3.4 Use of the Facade Pattern............................................... 16 3.5 Download the Source Code.............................................