Visions Towards Achieving the Sustainable Development Goals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Takuzo Aida Deputy Director, RIKEN Center for Emergent Matter Science Professor, School of Engineering, the University of Tokyo
19 Japan Academy Prize to: Takuzo Aida Deputy Director, RIKEN Center for Emergent Matter Science Professor, School of Engineering, The University of Tokyo for “Studies on Precision Hierarchical Design of Innovative Soft Materials” Outline of the work: Prof. Takuzo Aida is a world-leading scientist involved in the development of innovative soft materials. Prof. Aida has been intensely engaged in exploiting the interactions between materials sciences and other scientific disciplines such as physics and life science. While researchers’ focus in molecular science is now shifting from highly diluted and well-equilibrated molecular systems to more complex, non-equilibrated systems in highly condensed phases, Prof. Aida discovered extrusion polymerization of olefins in 1999 using catalyst-immobilized nanoscopic channels of mesoporous silica (ref. 32). When ethylene is allowed to polymerize, polymer chains that are produced in nanopores are not allowed to fold but extruded unidirectionally like spider silk. The chains then assemble together into extended-chain crystalline fibers having ultrahigh mechanical properties. In general, highly anisotropic hierarchical structural ordering can provide materials with extraordinary properties. However, this process is known to be interfered by kinetic traps that emerge in the transition from nano to mesoscopic size regimes. Based on the seminal discovery of extrusion polymerization, Prof. Aida noticed how multivalent interactions and physical perturbations are useful for avoiding kinetic traps that prevent hierarchical structural ordering in highly condensed systems and properly connect the missing link between nano and meso-scale phenomena. From then on, he has been promoting this immature research field and has accomplished numerous seminal achievements for creating innovative soft materials. -
Scientific Program (Oral Presentations)
Oral Presentations Monday, July 12, 2010 Opening of Program and Chirality Award Lecture (Hall A) 16:50 – 17:10 Opening and Chirality Medal Ceremony 17:10 – 18:10 [Chirality Medal Award Lecture] BIOACTIVE NATURAL PRODUCTS AND CHIRALITY Kenji Mori Emeritus Professor, The University of Tokyo, Japan Chirality Medal Reception (Main Hall A) 18:10 – 21:00 Chirality Medal Reception Tuesday, July 13, 2010 Plenary Session 1 (Hall A) Chairperson: Kazuhiko Saigo 08:40 – 09:30 [PL-1] PROTEIN SURFACE RECOGNITION: A SUPRAMOLECULAR APPROACH TO CONTROLLING BIOLOGICAL FUNCTION Andrew D. Hamilton Department of Chemistry, University of Oxford, UK 09:30 – 10:00 COFFEE BREAK (Hall C) Parallel Session A1 (Hall A) Chairperson: Jérôme Lacour 10:00 – 10:30 [IL-A1] INTELLIGENT NANOFIBERS WITH SUPRAMOLECULAR CHIRALITY Myongsoo Lee Center for Supramolecular Nano-Assembly and Department of Chemistry, Seoul National University, Korea 10:30 – 11:00 [IL-A2] CHIRALITY FOR MATERIALS SCIENCE Takuzo Aida School of Engineering, The University of Tokyo, Japan Parallel Session A2 (Hall A) Chairperson: Myongsoo Lee 11:00 – 11:20 [O-A1] SUPRAMOLECULAR MRI CONTRAST AGENTS Pol Besenius, Anja R.A. Palmans, E.W. Meijer Laboratory of Macromolecular and Organic Chemistry and Institute of Complex Molecular Systems, Eindhoven University of Technology, Netherlands 22nd International Symposium on Chirality (Chirality2010) Oral Presentations 11:20 – 11:40 [O-A2] PYRIDINOPHANE CATALYSIS FOR ASYMMETRIC CYCLOPROPANATION WITH COPPER CARBENOID COCATALYSIS Hiroko Tanaka, Nobuhiro Kanomata Department of Chemistry and Biochemistry, Waseda University, Japan 11:40 – 12:00 [O-A3] THE SHAPE MATTERS: A DRAMATIC DEPENDENCE OF CHIROPTICAL RESPONSE ON THE CONFORMATION OF CHIRAL OLIGOMERS José Lorenzo Alonso-Gómez1, Ana G. -
10Th ISMSC-2015 Strasbourg, France (June 28Th - July 2Nd, 2015)
10th ISMSC-2015 Strasbourg, France (June 28th - July 2nd, 2015) Code Presenting Author Title Authors Perspectives in Chemistry: From Supramolecular Chemistry towards PL-1 Jean-Marie Lehn Jean-Marie Lehn Adaptive Chemistry PL-2 E.W. (Bert) Meijer Folding of Macromolecules; Functional single-chain polymer nanoparticles E.W. (Bert) Meijer PL-3 Samuel Stupp Bio-Inspired Supramolecular Materials Samuel Stupp Functional Materials Constructed by Combining Traditional Polymers and PL-4 Feihe Huang Feihe Huang, Xiaofan Ji, Mingming Zhang, Xiaodong Chi Host-Guest Molecular Recognition Motifs Supramolecular Liquid-Crystalline Materials for Energy, Water, and PL-5 Takashi Kato Takashi Kato Environment PL-6 Tanja Weil Programmed Self-Assembly of Bioactive Architectures Tanja Weil, David Y. W. Ng PL-7 Paul D. Beer Interlocked Host Molecules for Anion Recognition and Sensing Paul D. Beer PL-8 Takuzo Aida Rational Strategy for Chain-Growth Supramolecular Polymerization Takuzo Aida IL-1 Pablo Ballester Mechanically Interlocked Molecules Containing Calix[4]pyrrole Scaffolds Pablo Ballester IL-2 Davide Bonifazi Supramolecular Colorlands Davide Bonifazi IL-3 Kentaro Tanaka Columnar Liquid Crystalline Macrocycles Kentaro Tanaka IL-4 Ian Manners Recent Advances in “Living” Crystallization-Driven Self-Assembly Ian Manners Light-driven catenation and intermolecular communication in solution and Nathan D. McClenaghan, A. Tron, R. Bofinger, J. IL-5 Nathan McClenaghan nanocapsules Thevenot, S. Lecommandoux, J.H.R. Tucker Supramolecular Chemistry and Photophysics of Light-Harvesting IL-6 Harry Anderson Harry Anderson Nanorings Jeroen J. L. M. IL-7 Supramolecular Protein Assemblies, from Cages to Tubes Jeroen J. L. M. Cornelissen Cornelissen Light-driven liquids, particles, and interfaces: from microfluidics to coffee IL-8 Damien Baigl Damien Baigl rings B.C. -
Seunghyun Sim Bas Van Genabeek Takuzo Aida Bert Meijer
In association with NASA Takuzo Aida December 10, 2019 Seunghyun Sim Bas van Genabeek Bert Meijer Tokyo University Caltech SyMO-Chem Eindhoven University . cmeacs.org In association with NASA ACS GLOBAL OUTSTANDING GRADUATE STUDENT & MENTOR AWARDS IN POLYMER SCIENCE AND ENGINEERING SPONSORED BY CME Seunghyun Sim Bas van Genabeek Postdoc Researcher Caltech SyMO-Chem Takuzo Aida Bert Meijer Prof. Tokyo University Distinguished Professor Riken Group Director Eindhoven University . December 10, 2019 cmeacs.org In association with NASA 2:00 pm – Awards Presentation and Talk on Engineering self-assembly of protein polymers for functional materials. Seunghyun Sim – Proteins are monodisperse polymers that fold into a specific nanoscale structure. These state-of-art nanoscale machineries exert highly precise mechanical motions and process environmental inputs by the combination of allosteric effects. My research focuses on finding interdisciplinary solutions for designing a library of functional protein materials, mainly from the principles in supramolecular chemistry, molecular biology, and polymer science. In this symposium, I will discuss the design of protein-based macromolecular architectures in multiple dimensions, understanding their property for the therapeutic application, and in situ synthesis of extracellular protein network by living organisms for generating engineered living materials. Profile – Seunghyun Sim graduated from Seoul National University with B.S. degrees in Chemistry and Biological Sciences in 2012. She conducted her doctoral research with professor Takuzo Aida at the University of Tokyo and received her M.Eng. and Ph.D. in 2017. Her thesis work focused on engineering protein-based supramolecular nanostructures and functions. She is currently a postdoctoral fellow at California Institute of Technology in the lab of professor David Tirrell. -
Elucidation of the Origin of Chiral Amplification in Discrete Molecular Polyhedra
ARTICLE DOI: 10.1038/s41467-017-02605-x OPEN Elucidation of the origin of chiral amplification in discrete molecular polyhedra Yu Wang 1, Hongxun Fang1, Ionut Tranca2, Hang Qu1, Xinchang Wang1, Albert J. Markvoort 2, Zhongqun Tian1 & Xiaoyu Cao1 Chiral amplification in molecular self-assembly has profound impact on the recognition and separation of chiroptical materials, biomolecules, and pharmaceuticals. An understanding of 1234567890():,; how to control this phenomenon is nonetheless restricted by the structural complexity in multicomponent self-assembling systems. Here, we create chiral octahedra incorporating a combination of chiral and achiral vertices and show that their discrete nature makes these octahedra an ideal platform for in-depth investigation of chiral transfer. Through the con- struction of dynamic combinatorial libraries, the unique possibility to separate and char- acterise each individual assembly type, density functional theory calculations, and a theoretical equilibrium model, we elucidate that a single chiral unit suffices to control all other units in an octahedron and how this local amplification combined with the distribution of distinct assembly types culminates in the observed overall chiral amplification in the system. Our combined experimental and theoretical strategy can be applied generally to quantify discrete multi-component self-assembling systems. 1 State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM and Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China. 2 Institute for Complex Molecular Systems and Computational Biology Group, Eindhoven University of Technology, PO Box 5135600 MB Eindhoven, The Netherlands. Yu Wang and Hongxun Fang contributed equally to this work. -
Nanoscale Order Controlling
2018 6 International Center for Materials Nanoarchitectonics (WPI-MANA) Controlling nanoscale order Architectonics connecting nanomaterials with macro materials International Center for Materials Nanoarchitectonics (WPI-MANA) Controlling nanoscale order Architectonics connecting nanomaterials with macro materials NIMS NOW NIMS NOW 02 One-billionth-of-a-millimeter nanomaterials—atomic-scale in diameter and thickness 03 2018 No.6 2018 No.6 —come in a variety of forms, including nanoparticles, nanosheets and nanotubes. Only close examination can reveal the unique, nanoscale-specific behavior of these materials. The properties of nanomaterials have fascinated and inspired many scientists, leading to rapid advances in nanotechnology. The International Center for Materials Nanoarchitectonics (WPI-MANA) was established in 2007 to accelerate nanotechnological research and development. MANA has attained world-class status in the application of nanotechnology NANO to materials science as a result of implementing its 10-year plan. Having made many significant research achievements, MANA is now ready for even more advanced challenges. MANA operates under solid guiding principles. Its twofold mission is to create highly functional nanoarchitectures by actively assembling and cross-linking nanomaterial components and to build novel physics knowledge through basic research. ARCHITE Nanoscale order can be achieved in countless ways, e.g., by varying the combinations of or stacking methods for nanomaterial components and by identifying unique and stable -
Theatre Monday July 9Th
Theatre Monday July 9th Agilent session Chair: D.M. Haddleton 10.30-11.00 Professor Craig Hawker Materials Research Laboratory, UCSB PL1 Generating Complex Nanoscale Patterns through Bottom-up Self-Assembly 11.00-11.30 Professor Jean Frechet King Abdullah University of Science and Technology PL2 Functional macromolecules in energy conversion. 11.30-12.00 Professor Fraser Stoddart Northwestern University PL3 Positive Cooperativity in the Template-Directed Synthesis of Monodisperse Macromolecules 12.00-12.30 Professor Krzysztof Matyjaszewski Carnegie Mellon PL4 ATRP under biorelevant conditions 12.30-1.00 Professor Xi Zhang Tsinghua University PL5 Supramolecular Polymerization Driven by Host-Enhanced Noncovalent Interactions Aldrich Session Chair: J.C.M. Van Hest 2.00-2.30 Professor Eva Harth Vanderbilt University I1 Functionalized Polyester and Glycidol Polymers with Control in Branching: Synthesis of Monomers and Supramolecular Network Formation. 2.30-3.00 Professor Harm-Anton Klok Ecole Polytechnique Fédérale de Lausanne (EPFL) I2 Interactive and responsive polymer brushes prepared via surface-initiated polymerization Chair: E.M. Harth 3.30-4.00 Professor Thomas Davis Aus. Centre for NanoMedicine and CAMD, UNSW I11 New Synthesis of Biodegradable Nanoparticles based on Dextran 4.05-4.20 Dr Tim Smith Lubrizol Ltd C1 Leading polymer development for the lubricants industry 4.20-4.35 Dr Nico Bruns University of Basel, Department of Chemistry C2 ATRPases: Enzymes that catalyze atom transfer radical polymerization 4.35-4.50 Dr Lei Tao Tsinghua University C3 Self-healing hydrogels for bio-applications 9 4.55-5.10 Dr Simon Harrisson Université de Paris Sud XI C4 Copper-mediated preparation of alkoxyamines and the SET/ARGET debate 5.10-5.25 Professor Jose A. -
Oral Programme
Frontiers in Polymer Science| Oral Programme Oral Programme Oral Programme Tuesday 21 May 2013 11:00 Registration |Hall Auditorium 14:00-14:20 Opening Remarks by Chairs and Rumen Duhlev, Elsevier, Oxford, UK 14:20-15:10 [K01] Frontiers in precision polymer synthesis by precision radical polymerization Mitsuo Sawamoto, Kyoto University, Japan 15:10-16:00 [K02] Crystallization-driven self-assembly of elongated block copolymer micelles Mitchell A. Winnik, University of Toronto, Canada 16:00-17:30 Coffee break and Poster Session 1 17:30-18:20 [K03] New paradigms at the proto-life/synthetic biology interface Stephen Mann, University of Bristol, UK 18:20-19:10 [K04] Polymer Nano-Assemblies for Targeted Bioresponsive Cancer Delivery Paula T. Hammond, Massachusetts Institute of Technology, Cambridge, USA 19:10-21:00 Welcome reception and continuation of Poster Session 1 |Hall Auditorium 21:00 End of day 1 Wednesday 22 May 2013 09:00-09:50 [K05] Structural control from molecular up to macroscopic size regimes for developing functional soft materials Takuzo Aida, The University of Tokyo, Japan 09:50-10:40 [K06] Using polymers to direct the growth and assembly of gold nanoparticles Luis M. Liz-Marzán, CIC biomaGUNE, San Sebastián, Spain 10:40-12:10 Coffee break and Poster Session 2 |Hall Auditorium 12:10-13:00 [K07] Molecular engineering of folded nano-architectures Ivan Huc, Université de Bordeaux, France 13:00-14:30 Lunch |Tamuntana 14:30-15:20 [K08] Bio-inspired polymer chemistry Roeland J.M. Nolte, Radbout University, Nijmegen, The Netherlands 15:20-16:10 [K09] Supramolecular polymerization driven by host-enhanced noncovalent interactions Xi Zhang, Tsinghua University, Beijing, China 16:10-16:30 Coffee break |Hall Auditorium 16:30-17:20 [K10] Self-assemblies of giant molecular shape amphiphiles as a new platform for engineering structures at different feature sizes Stephen Z.D. -
Molecularly Engineered “Janus Groel”: Application to Supramolecular Copolymerization with a Higher Level of Sequence Control Daiki Kashiwagi, Hao K
Subscriber access provided by Caltech Library Communication Molecularly Engineered “Janus GroEL”: Application to Supramolecular Copolymerization with a Higher Level of Sequence Control Daiki Kashiwagi, Hao K. Shen, Seunghyun Sim, Koki Sano, Yasuhiro Ishida, Ayumi Kimura, Tatsuya Niwa, Hideki Taguchi, and Takuzo Aida J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.0c05937 • Publication Date (Web): 21 Jul 2020 Downloaded from pubs.acs.org on July 21, 2020 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. -
The Porphyrin Handbook
ThePorphyrinHandbook Editors KarlM.Kadish DepartmentofChemistry UniversityofHouston Houston,Texas KevinM.Smith DepartmentofChemistry UniversityofCalifornia,Davis Davis,California RogerGuilard FaculteÂdesSciencesGabriel UniversiteÂdeBourgogne Dijon,France SANDIEGOSANFRANCISCO NEWYORKBOSTON LONDONSYDNEY TORONTO Preface The broadly de®ned porphyrin research area is one of the this is a data-intensive ®eld, and we believe that compilation most exciting, stimulating and rewarding for scientists in the of relevant data should be useful to investigators. We have ®elds of chemistry, physics, biology and medicine. The attempted to ensure that every chapter was written by the beautifully constructed porphyrinoid ligand, perfected over currently acknowledged expert in the ®eld, and very early on the course of evolution, provides the chromophore for a we had in our hands no less than sixty-nine signed contracts multitude of iron, magnesium, cobalt and nickel complexes for chapters. With the fullness of time, and as deadlines for which are primary metabolites and without which life itself Handbook chapter submission and other essential activities could not be maintained. (e.g., research proposal renewals) converged, some of our Falk's book, Porphyrins and Metalloporphyrins, pub- authors had to withdraw. On occasion we were able to lished in 1962, was a fairly thin volume which represented recruit new authors who, with only a month or less of lead the ®rst attempt to apply the principles of modern chemistry time, were able to ®ll these gaps and come -
A Place in the "X-Ray" Sun – on the Cutting Edge
AA PlacePlace inin thethe "X-ray""X-ray" SunSun On the Cutting Edge complexes that could never be studied before. From Since the inception of the SPring-8 utilization in 1986-1988, he worked on the acetylcholine receptor 1997, more than 100,000 users have visited SPring-8 and a motility assay for motor proteins as a Postdoctoral and carried out experiments to uncover mysteries in Fellow with Drs. Nigel Unwin and James Spudich science. Described here are a lineup of the nine at Stanford University, in the USA. He then moved pioneers in Life Science, Materials Science, Chemical to the MRC Laboratory of Molecular Biology in Science, Earth & Planetary Science, and Light Source Cambridge in the UK to continue his work with Dr. Technology from SPring-8. Unwin on the electron crystallography of 2D and tubular crystals of membrane proteins. During this 1. A Scenario Writer of Interplay between Protein and Ion in Membrane Transport Chikashi TOYOSHIMA Noted for his distinguished achievements for the calcium ion pump (Sarco- (Endo-) plasmic reticulum Calcium ATPase 1, SERCA1) in structural biology, Chikashi Toyoshima has been one of the top international biophysicists in the highly competitive world of life science. He is a professor of Molecular and Cellular Biosciences at the University of Tokyo. He started his scientific career as an electron microscopist and worked on muscle filaments and ion channels. Drawing on all of his expertise in the fields of mathematics, physics and biology, he has Chikashi Toyoshima uncovered the atomic structures of biomolecular Leading his research team even at midnight at SPring-8 10 period, he initiated collaboration on SERCA1a with constant for TG. -
Annual Report
Zilkha Neurogenetic Institute 2013-2014 annual report Table of Contents 2 Director’s Letter 3 History and Mission 4 ZNI Faculty 8 Faculty Research Programs 12 Scientific Advancements 23 Collaborations 37 Faculty News 41 Faculty Activities 43 Grants and Contracts 50 Special Lectures 51 4th Annual Zach Hall Lecture 52 1st Annual Zilkha Symposium on Alzheimer’s Disease & Related Disorders 54 Academic Activities 56 Neurodegeneration Journal Club/NRSA Grant Training 57 Los Angeles Brain Bee 58 Music to Remember - LA Opera/Alzheimer’s Association 59 ZNI Graduate Students 62 ZNI Postdoctoral Trainees 64 FY14 Faculty Publications 81 ZNI Administration 83 ZNI Development 1 Dear Friends, The World Health Organization estimates that devastating brain disorders and diseases affect more than one billion people worldwide. Last year, President Obama launched the BRAIN Initiative as a large-scale effort to equip researchers with fundamental insights necessary for treating a wide variety of brain disorders like Alzheimer’s, schizophrenia, autism, epilepsy, and traumatic brain injury. Research on the brain is surging. The United States and the European Union have launched new programs to better understand the brain. Scientists are mapping parts of mouse, fly and human brains at different levels of magnification. Technology for recording and imaging brain activity has been improving at a revolutionary pace. Yet the growing body of data—maps, atlases and so-called connectomes that show linkages between cells and regions of the brain— represents a paradox of progress, with the advances also highlighting great gaps in understanding. Specifically, interpreting these brain-wiring maps, and ultimately establishing the approach that physicians and scientists will use to treat neurological diseases, requires a clear understanding of brain circuitry, information that can only be obtained through basic research like the fine work being performed at ZNI.