Complement Determinations in Human Disease M

Total Page:16

File Type:pdf, Size:1020Kb

Complement Determinations in Human Disease M CME review article This feature is supported by an unrestricted educational grant from AstraZeneca LP Complement determinations in human disease M. Michael Glovsky, MD*; Peter A. Ward, MD†; and Kent J. Johnson, MD† Objective: To define techniques used for complement measurements and examine the clinical relevance of alterations of complement determinations in disease. Data Sources: Data have been assembled from the authors’ research, original articles, and reviews, as well as chapters and complete books on complement. Study Selection: Studies were chosen for inclusion by the opinions of the authors, relevant complement reviews, publications, and books. Results: Complement has been shown to possess approximately 31 proteins, some of which are enzymes (C1r, C1s, C2, factor B, factor D), some cofactors, some inhibitors or inactivators, and others composed of membrane-integrated proteins. All of the complement proteins have been purified, and many of the respective genes have been identified. The complement cascade is a dual-edged sword, causing protection against bacterial and viral invasion by promoting phagocytosis and inflammation. Pathologically, complement can cause substantial damage to blood vessels (vasculitis), kidney basement membrane and attached endothelial and epithelial cells (nephritis), joint synovium (arthritis), and erythrocytes (hemolysis) if it is not adequately controlled. Conclusions: Definitive evidence is available that complement-mediated tissue destruction occurs after immune complex injury in the kidney and lung and may be important in lupus erythematosus and adult respiratory distress syndrome. Future studies on complement receptor structure and function may provide clues to treat effectively lupus, hemolytic anemias, and nephritis. In addition, gene therapy and antibody therapy need further refinement to treat immunodeficiency diseases. Ann Allergy Asthma Immunol. 2004;93:513–523. Off-label disclosure: Drs. Glovsky, Ward, and Johnson have indicated that this article does not include the discussion of unapproved/investigative use of a commercial product/device. Financial disclosure: Drs. Glovsky, Ward, and Johnson have indicated that in the last 12 months they have not had any financial relationship, affiliation, or arrangement with any corporate sponsors or commercial entities that provide financial support, eduction grants, honoraria, or research support or involvement as a consultant, speaker’s bureau member, or major stock shareholder whose products are prominently featured either in this article or with the groups who provide general financial support for this CME program. Instructions for CME credit 1. Read the CME review article in this issue carefully and complete the activity by answering the self-assessment examination questions on the form on page 524. 2. To receive CME credit, complete the entire form and submit it to the ACAAI office within 1 year after receipt of this issue of the Annals. INTRODUCTION cofactors, some inhibitors or inactivators, and others com- Since the discovery of complement by Jules Bordet more than posed of membrane-integrated proteins. All of the comple- 100 years ago, the importance of the complement system in ment proteins have been purified, and many of the respective producing lysis of bacteria and protecting humans and exper- genes have been identified.3 Other proteins of the comple- imental animals against infectious microorganisms has been ment system include the receptors for C1q, C3a/C4a, C5a, 1–9 appreciated. Within the past 30 years, complement has CR1, CR2, and CR3 (C3b, C3bi, and C3d receptors). In been shown to possess approximately 31 proteins, some of addition, membrane components (decay-accelerating factor, which are enzymes (C1r, C1s, C2, factor B, factor D), some CD55 and CD59, and membrane inhibitor of C8 and C9 insertion) are important regulating proteins. The complement cascade is a dual-edged sword, causing protection against * Huntington Medical Research Institute, Pasadena, California. bacterial and viral invasion by promoting phagocytosis and † Department of Pathology, University of Michigan Medical School, Ann inflammation. Pathologically, complement can cause sub- Arbor, Michigan. Received for publication March 1, 2004. stantial damage to blood vessels (vasculitis), kidney base- Accepted for publication in revised form May 19, 2004. ment membrane and attached endothelial and epithelial cells VOLUME 93, DECEMBER, 2004 513 (nephritis), joint synovium (arthritis), and erythrocytes (he- and C2a and C2b, respectively. C4b and C2a form C4b2a (C3 molysis) if it is not adequately controlled. This review defines convertase of the classical pathway), which splits C3 to C3a techniques used for complement measurements and examines and C3b. C3b combines with C4b2a to form C4b2a3b (C5 the clinical relevance of alterations of complement determi- convertase), which cleaves C5 to C5b and C5a. This leads to nations in disease. Data have been assembled from the au- formation of the C5b, C6, C7, C8, and C9 membrane attack thors’ research, original articles, and reviews, as well as complex (MAC). chapters and complete books on complement. Mannose-binding lectin, when bound to mannose residues on microbial surfaces, can interact with 2 serine proteases: COMPLEMENT ACTIVATION MECHANISMS MASP-2 and MASP-1. MASP-2 cleaves and inactivates C4 There are 3 currently known complement activation mecha- and C2 to form C4b2a. MASP-1 may cleave C3 directly, nisms (Fig 1): (1) the classical pathway, (2) a recently de- promoting the formation of C4b2a3b, the C5 convertase of scribed pathway (the mannose-binding lectin pathway), and the classical pathway. (3) the alternative pathway. The alternative pathway can be activated in the absence of Immune complexes, apoptotic cells, or C1q bound to its antibody by insoluble polysaccharides, yeast cell walls, and ligand can activate the classical pathway. On activation, C1r aggregated IgA and IgE at high concentrations. Factor D, a and C1s are converted from proenzymes to activated enzymes serine protease, cleaves factor B to Ba and Bb. The larger and cleave their natural substrates C4 and C2 to C4a and C4b fragment of factor B combines with the large fragment of C3, Figure 1. Complement activation pathways. 514 ANNALS OF ALLERGY, ASTHMA & IMMUNOLOGY C3b, to form the alternative pathway C3 convertase, C3bBb. CONTROL MECHANISMS OF THE COMPLEMENT Properdin stabilizes the C3 convertase by binding to the SYSTEM complex, PC3bBb. C3bBb then can further cleave C3 to form To control activation of the classical pathway, C1 inhibitor additional C3b molecules, some of which combine with binds to activated C1r and C1s and inactivates these enzymes. C3bBb to form C3bBbC3b, the C5 convertase of the alter- The binding is in a 1:1 ratio. The C4b2a complex (C3 native pathway, which cleaves C5 to C5a and C5b. Thus, the convertase) is controlled by C4 binding protein, which binds classical pathway and the mannose-binding lectin pathway, to the complex. C4b is then cleaved by factor I. Under as well as the alternative pathway, converge on C3 to initiate physiologic conditions, the classical pathway control stops the formation of C3b, the complement factor, when bound to the further breakdown of classical pathway components. The microorganisms, which initiates phagocytosis and destruction alternative pathway C3 convertase (C3bBb) is regulated by of the invading microbe. C3a, a proinflammatory anaphyla- factor H, which competes with Bb, the split product of factor toxin, is also generated. B, for the binding site on C3b, forming (C3bH).9 The C3b is The MAC complex (C5b-C9) and C5a (the most potent further degraded by factor I to smaller breakdown products. anaphylotoxin) are generated by enzymatic cleavage of C5 to Note the similar control mechanisms of the classical and C5b and C5a. Table 1 lists alterations in the complement alternative pathways.9 The classical and alternative pathway activation pathways and some of the diseases associated with convertases are broken up by C4b binding protein and factor activation mechanisms. H, respectively. C4b and C3b are then cleaved by factor I to Activation of the classical complement pathway such as inactive products. seen in immune complex disease associated with DNA–anti- DNA antibodies is often associated with low CH50, low C4, LABORATORY MEASUREMENT and low C3. Alternative pathway activation of factor B and Complement components can be measured either as proteins C3 is seen in endotoxin shock syndromes, as well as in sera or based on their functional activity.3,4,10–19 Because the pro- of patients with membranoproliferative glomerulonephritis. teins that comprise the classical and alternative complement Also, activation of the classical pathway occurs in the relative cascades have been isolated in chemically pure form, anti- absence of the C1 inhibitor as seen in hereditary angioedema bodies have been produced to these proteins in several animal (HAE). Fluid-phase activation of the alternative pathway species. These antibodies may be used to quantitate comple- occurs with factor I deficiency, when C3 convertase activity ment components through one of several immunochemical is not controlled. With chronic inflammation that occurs in procedures.3 Reiter syndrome, acute-phase reactants, such as C4, factor B, In radial immunodiffusion, antibody to a single comple- and haptoglobin, may be increased. Young children with low ment component is incorporated into an agar gel. Test serum mannan-binding lectin levels
Recommended publications
  • C3b Catalog Number: A114 Sizes Available
    Name: C3b Catalog Number: A114 Sizes Available: 250 µg/vial Concentration: 1.0 mg/mL (see Certificate of Analysis for actual concentration) Form: Liquid Purity: >90% by SDS-PAGE Buffer: 10 mM sodium phosphate, 145 mM NaCl, pH 7.3 Extinction Coeff. A280 nm = 1.03 at 1.0 mg/mL Molecular Weight: 176,000 Da (2 chains) Preservative: None, 0.22 µm filtered Storage: -70oC or below. Avoid freeze/thaw. Source: Normal human serum (shown by certified tests to be negative for HBsAg and for antibodies to HCV, HIV-1 and HIV-II). Precautions: Use normal precautions for handling human blood products. Origin: Manufactured in the USA. General Description C3b is derived from native C3 upon cleavage and release of C3a. It is prepared by cleavage with the alternative pathway C3 convertase. This is important because only a single bond in C3 is cleaved by the native convertase, while cleavage by other proteases, such as trypsin, results in multiple cleavages at many other sites in the protein. Native human C3b is a glycosylated (~2.8%) polypeptide containing two disulfide-linked chains. C3b is central to the function of all three pathways of complement (Law, S.K.A. and Reid, K.B.M. (1995)). Initiation of each pathway generates proteolytic enzyme complexes (C3 convertases) which are bound to the target surface. These enzymes cleave a peptide bond in C3 releasing the anaphylatoxin C3a and activating C3b. For a brief time (~60 µs) this nascent C3b is capable of reacting with and covalently coupling to hydroxyl groups on the target surface.
    [Show full text]
  • The Membrane Complement Regulatory Protein CD59 and Its Association with Rheumatoid Arthritis and Systemic Lupus Erythematosus
    Current Medicine Research and Practice 9 (2019) 182e188 Contents lists available at ScienceDirect Current Medicine Research and Practice journal homepage: www.elsevier.com/locate/cmrp Review Article The membrane complement regulatory protein CD59 and its association with rheumatoid arthritis and systemic lupus erythematosus * Nibhriti Das a, Devyani Anand a, Bintili Biswas b, Deepa Kumari c, Monika Gandhi c, a Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India b Department of Zoology, Ramjas College, University of Delhi, India c University School of Biotechnology, Guru Gobind Singh Indraprastha University, India article info abstract Article history: The complement cascade consisting of about 50 soluble and cell surface proteins is activated in auto- Received 8 May 2019 immune inflammatory disorders. This contributes to the pathological manifestations in these diseases. In Accepted 30 July 2019 normal health, the soluble and membrane complement regulatory proteins protect the host against Available online 5 August 2019 complement-mediated self-tissue injury by controlling the extent of complement activation within the desired limits for the host's benefit. CD59 is a membrane complement regulatory protein that inhibits the Keywords: formation of the terminal complement complex or membrane attack complex (C5b6789n) which is CD59 generated on complement activation by any of the three pathways, namely, the classical, alternative, and RA SLE the mannose-binding lectin pathway. Animal experiments and human studies have suggested impor- Pathophysiology tance of membrane complement proteins including CD59 in the pathophysiology of rheumatoid arthritis Disease marker (RA) and systemic lupus erythematosus (SLE). Here is a brief review on CD59 and its distribution, structure, functions, and association with RA and SLE starting with a brief introduction on the com- plement system, its activation, the biological functions, and relations of membrane complement regu- latory proteins, especially CD59, with RA and SLE.
    [Show full text]
  • Complement Recognition Pathways in Renal Transplantation
    BRIEF REVIEW www.jasn.org Complement Recognition Pathways in Renal Transplantation Christopher L. Nauser, Conrad A. Farrar, and Steven H. Sacks Medical Research Council Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King’s College London, National Health Service Guy’s and St. Thomas’ Trust, London, United Kingdom ABSTRACT The complement system, consisting of soluble and cell membrane–bound compo- weigh its effect on organ injury and nents of the innate immune system, has defined roles in the pathophysiology of renal rejection with dampening the antimi- allograft rejection. Notably, the unavoidable ischemia-reperfusion injury inherent to crobial functions of the complement sys- transplantation is mediated through the terminal complement activation products tem, such as opsonisation, cell lysis, and C5a and C5b-9. Furthermore, biologically active fragments C3a and C5a, produced recruitment of neutrophils and other in- during complement activation, can modulate both antigen presentation and T cell flammatory cells.7 It is our belief that priming, ultimately leading to allograft rejection. Earlier work identified renal tubule therapeutic strategies can be designed cell synthesis of C3, rather than hepatic synthesis of C3, as the primary source of C3 to specificallytargetthekeyinitiators driving these effects. Recent efforts have focused on identifying the local triggers of of complement activation at the relevant complement activation. Collectin-11, a soluble C-type lectin expressed in renal tis- location, such as complement-binding sue, has been implicated as an important trigger of complement activation in renal anti-HLA antibodies in the vascular tissue. In particular, collectin-11 has been shown to engage L-fucose at sites of compartment or the initiator(s) of local ischemic stress, activating the lectin complement pathway and directing the innate complement activation in the extravas- immune response to the distressed renal tubule.
    [Show full text]
  • More Than a Pore: Nonlytic Antimicrobial Functions of Downloaded from Complement and Bacterial Strategies for Evasion
    REVIEW More than a Pore: Nonlytic Antimicrobial Functions of Downloaded from Complement and Bacterial Strategies for Evasion Elisabet Bjanes,a Victor Nizeta,b aDivision of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA bSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA http://mmbr.asm.org/ SUMMARY ........................................................................1 INTRODUCTION ...................................................................2 BY THE BOOK: CANONICAL COMPLEMENT CASCADES ...............................2 Off to the Races—Pathway Activation . 2 More and More—Amplification . 3 End of the Line—Termination . 3 Pump the Brakes—Inhibition . 5 Surviving MAC Attack—Evasion of Complement Lysis by Gram-Negative Bacteria . 6 NONLYTIC COMPLEMENT FUNCTIONS AND BACTERIAL EVASION MECHANISMS ......8 Special Considerations in Gram-Positive Bacteria . 8 on January 27, 2021 at UNIV OF CALIF SAN DIEGO Preparing the Meal—Complement Aids Opsonization and Phagocytosis . 8 Food for Thought—Complement Traffics to Autophagy . 10 Fueling the Fire—Complement Modulates Inflammatory Responses . 11 Casting a Wider NET—Complement and Neutrophil Synergy . 12 Inside Scoop—Novel Roles of Intracellular Complement . 13 Tying the Clot—Complement and Coagulation Cross Talk . 15 Bridging the Gap—Complement Instructs Adaptive Immunity . 17 REFRAMING SCIENTIFIC PARADIGMS AND THERAPEUTIC APPROACHES TO ENCOMPASS COMPLEMENT ..................................................18
    [Show full text]
  • Activation Regulates Alternative Pathway Complement Necrotic
    Properdin Binds to Late Apoptotic and Necrotic Cells Independently of C3b and Regulates Alternative Pathway Complement Activation This information is current as of September 27, 2021. Wei Xu, Stefan P. Berger, Leendert A. Trouw, Hetty C. de Boer, Nicole Schlagwein, Chantal Mutsaers, Mohamed R. Daha and Cees van Kooten J Immunol 2008; 180:7613-7621; ; doi: 10.4049/jimmunol.180.11.7613 Downloaded from http://www.jimmunol.org/content/180/11/7613 References This article cites 56 articles, 27 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/180/11/7613.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Properdin Binds to Late Apoptotic and Necrotic Cells Independently of C3b and Regulates Alternative Pathway Complement Activation1,2 Wei Xu,* Stefan P. Berger,* Leendert A.
    [Show full text]
  • Blood Cell Changes in Complement Activation- Related Pseudoallergy
    Eur. J. Nanomed. 2015; 7(3): 233–244 Mini Review Zsófia Patkó* and János Szebeni Blood cell changes in complement activation- related pseudoallergy DOI 10.1515/ejnm-2015-0021 Introduction Received April 13, 2015; accepted May 19, 2015 Complement activation-related pseudoallergy (CARPA), as the name implies, is a non-Ig-E-mediated (pseudo- Abstract: The characteristic physiological changes allergic) hypersensitivity reaction (HSR) that is triggered in complement (C) activation-related pseudoallergy by C activation, or C activation plays a major contributing (CARPA) include thrombocytopenia, leukocytosis and role. CARPA is best known in the context of nanotoxicity, leukopenia with or without compensatory leukocytosis. since nanomedicines, i.e. particulate drugs and agents in In the background of these phenomena it is known that the nano (10−9–10 −6 m) size range often cause such reac- anaphylatoxins, the triggers of CARPA, can activate white tions. As reviewed earlier (1–8), and also discussed in blood cells (WBCs) and platelets, and that this activation other papers of this issue, the phenomenon represents can lead to the binding of these cells to each other and an immune barrier to the clinical use of many promising also to capillary endothelial cells, entailing microthrom- nanomedicines. In essence, CARPA may be perceived as bus formation and circulatory blockage mainly in the pul- a biological stress on blood that arises as a consequence monary and coronary microcirculation. These changes of the similarity of nanomedicines to viruses, between are key contributors to the hemodynamic alterations in which the immune system cannot make difference (8). CARPA, and can lead to anaphylactic shock.
    [Show full text]
  • An Anticomplement Agent That Homes to the Damaged Brain and Promotes Recovery After Traumatic Brain Injury in Mice
    An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice Marieta M. Rusevaa,1,2, Valeria Ramagliab,1, B. Paul Morgana, and Claire L. Harrisa,3 aInstitute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; and bDepartment of Genome Analysis, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands Edited by Douglas T. Fearon, Cornell University, Cambridge, United Kingdom, and approved September 29, 2015 (received for review July 15, 2015) Activation of complement is a key determinant of neuropathology to rapidly and specifically inhibit MAC at sites of complement and disability after traumatic brain injury (TBI), and inhibition is activation, and test its therapeutic potential in experimental TBI. neuroprotective. However, systemic complement is essential to The construct, termed CD59-2a-CRIg, comprises CD59a linked fight infections, a critical complication of TBI. We describe a to CRIg via the murine IgG2a hinge. CD59a prevents assembly targeted complement inhibitor, comprising complement receptor of MAC in cell membranes (16), whereas CRIg binds C3b/iC3b of the Ig superfamily (CRIg) fused with complement regulator CD59a, deposited at sites of complement activation (17). The IgG2a designed to inhibit membrane attack complex (MAC) assembly at hinge promotes dimerization to increase ligand avidity. CD59- sites of C3b/iC3b deposition. CRIg and CD59a were linked via the 2a-CRIg protected in the TBI model, demonstrating that site- IgG2a hinge, yielding CD59-2a-CRIg dimer with increased iC3b/C3b targeted anti-MAC therapeutics may be effective in prevention binding avidity and MAC inhibitory activity. CD59-2a-CRIg inhibited of secondary neuropathology and improve neurologic recovery MAC formation and prevented complement-mediated lysis in vitro.
    [Show full text]
  • Are Complement Deficiencies Really Rare?
    G Model MIMM-4432; No. of Pages 8 ARTICLE IN PRESS Molecular Immunology xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Are complement deficiencies really rare? Overview on prevalence, ଝ clinical importance and modern diagnostic approach a,∗ b Anete Sevciovic Grumach , Michael Kirschfink a Faculty of Medicine ABC, Santo Andre, SP, Brazil b Institute of Immunology, University of Heidelberg, Heidelberg, Germany a r a t b i c s t l e i n f o r a c t Article history: Complement deficiencies comprise between 1 and 10% of all primary immunodeficiencies (PIDs) accord- Received 29 May 2014 ing to national and supranational registries. They are still considered rare and even of less clinical Received in revised form 18 June 2014 importance. This not only reflects (as in all PIDs) a great lack of awareness among clinicians and gen- Accepted 23 June 2014 eral practitioners but is also due to the fact that only few centers worldwide provide a comprehensive Available online xxx laboratory complement analysis. To enable early identification, our aim is to present warning signs for complement deficiencies and recommendations for diagnostic approach. The genetic deficiency of any Keywords: early component of the classical pathway (C1q, C1r/s, C2, C4) is often associated with autoimmune dis- Complement deficiencies eases whereas individuals, deficient of properdin or of the terminal pathway components (C5 to C9), are Warning signs Prevalence highly susceptible to meningococcal disease. Deficiency of C1 Inhibitor (hereditary angioedema, HAE) Meningitis results in episodic angioedema, which in a considerable number of patients with identical symptoms Infections also occurs in factor XII mutations.
    [Show full text]
  • Regulation of Decay Accelerating Factor Primes Human Germinal Center B Cells for Phagocytosis
    ORIGINAL RESEARCH published: 05 January 2021 doi: 10.3389/fimmu.2020.599647 Regulation of Decay Accelerating Factor Primes Human Germinal Center B Cells for Phagocytosis Andy Dernstedt 1, Jana Leidig 1, Anna Holm 2, Priscilla F. Kerkman 1, Jenny Mjösberg 3, Clas Ahlm 1, Johan Henriksson 4, Magnus Hultdin 5 and Mattias N. E. Forsell 1* 1 Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden, 2 Department of Clinical Sciences, Division of Otorhinolaryngology, Umeå University, Umeå, Sweden, 3 Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden, 4 Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden, 5 Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden Germinal centers (GC) are sites for extensive B cell proliferation and homeostasis is maintained by programmed cell death. The complement regulatory protein Decay Edited by: Accelerating Factor (DAF) blocks complement deposition on host cells and therefore Judith Fraussen, also phagocytosis of cells. Here, we show that B cells downregulate DAF upon BCR University of Hasselt, Belgium lo Reviewed by: engagement and that T cell-dependent stimuli preferentially led to activation of DAF B lo Paolo Casali, cells. Consistent with this, a majority of light and dark zone GC B cells were DAF and University of Texas Health Science susceptible to complement-dependent phagocytosis, as compared with DAFhi GC B Center at San Antonio, United States hi Shengli Xu, cells. We could also show that the DAF GC B cell subset had increased expression of the Bioprocessing Technology Institute plasma cell marker Blimp-1.
    [Show full text]
  • LP Review Published.Pdf
    Molecular Immunology 56 (2013) 413–422 Contents lists available at SciVerse ScienceDirect Molecular Immunology jo urnal homepage: www.elsevier.com/locate/molimm Review Toward a structure-based comprehension of the lectin pathway of complement a a b,∗ Troels R. Kjaer , Steffen Thiel , Gregers R. Andersen a Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus, Denmark b Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark a r t a b i c l e i n f o s t r a c t Article history: To initiate the lectin pathway of complement pattern recognition molecules bind to surface-linked car- Received 2 May 2013 bohydrates or acetyl groups on pathogens or damaged self-tissue. This leads to activation of the serine Accepted 14 May 2013 proteases MASP-1 and MASP-2 resulting in deposition of C4 on the activator and assembly of the C3 convertase. In addition MASP-3 and the non-catalytic MAp19 and MAp44 presumably play regulatory Keywords: functions, but the exact function of the MASP-3 protease remains to be established. Recent functional Complement system studies have significantly advanced our understanding of the molecular events occurring as activation Pattern recognition progresses from pattern recognition to convertase assembly. Furthermore, atomic structures derived MBL MASP by crystallography or solution scattering of most proteins acting in the lectin pathway and two key complexes have become available. Here we integrate the current functional and structural knowledge Protease activation C4 concerning the lectin pathway proteins and derive overall models for their glycan bound complexes.
    [Show full text]
  • The Complement System: a Powerful Modulator and Effector of Astrocyte Function in the Healthy and Diseased Central Nervous System
    cells Review The Complement System: A Powerful Modulator and Effector of Astrocyte Function in the Healthy and Diseased Central Nervous System Marcela Pekna 1,3,4,* and Milos Pekny 2,3,4 1 Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden 2 Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; [email protected] 3 Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia 4 School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia * Correspondence: [email protected]; Tel.: +46-31-786-3581 Abstract: The complement system, an effector arm of the innate immune system that plays a critical role in tissue inflammation, the elimination of pathogens and the clearance of dead cells and cell debris, has emerged as a regulator of many processes in the central nervous system, including neural cell genesis and migration, control of synapse number and function, and modulation of glial cell responses. Complement dysfunction has also been put forward as a major contributor to neurological disease. Astrocytes are neuroectoderm-derived glial cells that maintain water and ionic homeostasis, and control cerebral blood flow and multiple aspects of neuronal functioning. By virtue of their Citation: Pekna, M.; Pekny, M. The Complement System: A Powerful expression of soluble as well as membrane-bound complement proteins and receptors, astrocytes are Modulator and Effector of Astrocyte able to both send and receive complement-related signals.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]