Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations

2010 Acid catalyzed degradation and dehydration Basak Cinlar Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biological Engineering Commons, and the Chemical Engineering Commons

Recommended Citation Cinlar, Basak, "Acid catalyzed carbohydrate degradation and dehydration" (2010). Graduate Theses and Dissertations. 11573. https://lib.dr.iastate.edu/etd/11573

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Acidcatalyzedcarbohydratedegradationanddehydration by BasakCinlar Adissertationsubmittedtothegraduatefaculty inpartialfulfillmentoftherequirementsforthedegreeof DOCTOROFPHILOSOPHY Major:ChemicalEngineering ProgramofStudyCommittee: BrentH.Shanks,MajorProfessor AndrewC.Hillier Jay-linJane PeterJ.Reilly PatriciaThiel IowaStateUniversity Ames,Iowa 2010 Copyright©BasakCinlar,2010.Allrightsreserved. ii

Tomygrandparents,MucellaandAliBayram… iii TABLEOFCONTENTS

ACKNOWLEDGMENTS...... v

ABSTRACT...... vi

CHAPTER1.INTRODUCTIONANDLITERATUREREVIEW...... 1 DissertationOrganization...... 2 OverviewofMesoporousSilicaasCatalysts...... 4 OverviewofDehydrationReactionStudies...... 11 References...... 16 CHAPTER2.CHARACTERIZATIONOFCATALYTICSITESINORGANICACID FUNCTIONALIZEDMESOPOROUSSILICAINAQUEOUSMEDIA...... 19 Abstract...... 19 Introduction...... 19 Experimental...... 23 ResultsandDiscussions...... 26 Conclusions...... 43 References...... 44

CHAPTER3.QUANTUMCHEMICALMODELINGOFSOLVATIONOF ORGANICACIDFUNCTIONALIZEDGROUPINMESOPOROUSSILICA...... 47 Abstract...... 47 Introduction...... 48 ComputationalMethods...... 51 ResultsandDiscussions...... 52 Conclusions...... 61 References...... 61

CHAPTER4.KINETICSOFMONOSACCHARIDECONVERSIONINTHE PRESENCEOFHOMOGENEOUSACIDS...... 63 Abstract...... 63 Introduction...... 64 Experimental...... 69 ResultsandDiscussions...... 71 Conclusions...... 86 References...... 87 iv CHAPTER5.HIGHLYEFFICIENTHYDROXYMETHYLFURFURAL PRODUCTIONFROM...... 89 Abstract...... 89 Introduction...... 90 Experimental...... 93 ResultsandDiscussions...... 95 Conclusions...... 109 References...... 109

CHAPTER6.FUTURECONSIDERATIONSANDGENERALCONCLUSIONS..112 APPENDIX1.MONOSACCHARIDEDEHYDRATIONUSINGORGANIC- INORGANICHYBRIDMESOPOROUSSILICA...... 118 Abstract...... 118 Introduction...... 119 Experimental...... 121 ResultsandDiscussions...... 124 Conclusions...... 133 References...... 133

APPENDIX2.SULFATEDZIRCONIAMODIFIEDSBA-15CATALYSTSFOR CELLOBIOSE...... 136 Abstract...... 136 Introduction...... 137 Experimental...... 139 ResultsandDiscussions...... 142 Conclusions...... 155 References...... 155

APPENDIX3.STUDYONTHEHYDROTHERMALSTABILITYOFSULFATED ZIRCONIUMMODIFIEDSBA-15...... 158 Abstract...... 158 Introduction...... 159 Experimental...... 161 ResultsandDiscussions...... 164 Conclusions...... 176 References...... 176 v

ACKNOWLEDGMENTS

IamheartilythankfultomymajorprofessorBrentH.Shanks,whoseencouragement, supervisionandsupportmadethisthesispossible.Moreover,Iwouldliketothankhimfor hisguidancethatbroadenedmyvisionandhelpedmetodevelopmyownperspective.I alsowouldliketothanktoJamesA.DumesicandYomairaPagan-TorresfromUniversity ofWisconsin-Madison,EmielHensenandVolkanDegirmencifromTechnicalUniversity ofEindhoven,theNetherlands,andHaiyangZhufrommyresearchgroupfortheir invaluablecollaborations;andIwouldliketopresentmyappreciationtoMarkS.Gordon forhissupportandcontributionsateachlevelofmycomputationalstudies.Iowemy sinceregratitudetoDenizUner,whosewisdom,knowledgeandcommitmentinspiredme throughoutmyentirestudies.

Allmygroupmembers,especiallySikanderHakimandSarahL.Hruby,deservemany thanksfortheirhelpfuldiscussionandcomments,whichaddedsignificantvaluetomy work.Iwouldliketothankalsototheundergraduatestudentsthathelpedmeinthiswork,

BrandonPeters,ElliotCombs,MiriamGarcia-FierroandCodyJensen.

Writingthisthesishasbeenoneofthemostsignificantchallengesinmylife.Icannot expressmythankfulnessenoughtomyfriendsandfamilymemberswhohaveenduredme throughthisperiod.IwouldliketoespeciallythanktoCanOzer,andArzuAlici.Most importantly,Iowemygreatestappreciationtomyfamily;Seda,IsikandOrhanCinlar,for theircontinuoussupport.

vi

ABSTRACT

Facilecommercialproductionofversatilepolyfunctionalcompoundsfrombiomass constitutesagreatchallengeinestablishingasustainablechemicalindustry.Onesuch exampleistheproductionoffurfuralandhydroxymethylfurfural(HMF)via dehydrationofpentosesandhexoses,respectively.Thesechemicalsareofgreatinterest asprimarybuildingblocksinthepolymerindustry.However,theirlargescale productionishinderedduetoseveralproblems,suchasfeedstockavailability,low productyieldsduetoexcessivesidereactionsandlackofanindustriallyfeasible heterogeneouscatalyst.

Organicacidfunctionalgroupsincorporatedontomesoporoussilicaofferwell definedcatalyticsitesinadditiontotheuniquetexturalpropertiesandthusgivethe materialthepotentialtobeapromisingcatalyst.However,arationalapproachforfine tuningofthecatalystpropertiestomeetthereactionsystemrequirementsentails detailedunderstandingofthenatureofthecatalyticsitesincondensedphaseunderthe conditionsthatmimicthereactionenvironment.Towardsthataim,thecurrentwork presentsamethodologyforthecharacterizationincondensedphase,using potentiometrictitrations.Proceduresforaccuratelydeterminingtheacidicstrengthand totalacidcapacityoftheorganicacidfunctionalizedmaterialsarepresented.Theresults revealedthatorganicacidmoietiesofdifferentstrengthdisplaytheircharacteristic aciditywithoutbeingleveledinwater.Thestrongestacidwasthearenesulfonicgroup followedbypropylsulfonic,ethylphosphonicandbutylcarboxylic.

Theresultsobtainedforpropylsulfonicandarenesulfonicgroupswerenotin completeagreementwithliterature.Thediscrepancycouldbeattributedtothefactthat mostofthesepreviousstudieshadexaminedtheinteractionoftheacidicgroupwitha vii gasphaseprobemolecule,whiletheeffectofsolvationwasneglected.Inthepresent work,theeffectofsolvationontheacidicstrengthofthesemoietieswasinvestigated viaquantumchemicalsimulations.Achangeintheacidicstrengthtrendwasobserved withtheincreasingnumberofwatermolecules,indicatingthatone-to-oneinteractionin thegasphasedoesnotnecessarilyrepresenttheinteractionofthemoietywiththe solventmolecules.

Thedifferenceintheacidicstrengthfortheseorganicacidgroupsincorporatedonto mesoporoussilicawasnotobservedwhentheyweretestedfortheiractivityonhexose andpentosedehydrationduetopoorhydrothermalstabilityofthematerialsatelevated temperatures.Sulfatedzirconiadopedmesoporoussilicamaterials,whichdisplayed highactivityincellobiosehydrolysis,didnotprovidedesiredhydrothermalstability eitherfordehydrationreactions.Furtherresearchisfocusedondevelopinga hydrothermallystablecatalystforcondensedphasereactions.

Althoughalotofstudyhasfocusedonmonosaccharidedecomposition,the informationavailableinliteratureishighlyunorganizedanddoesnotprovidetheinsight aboutthecatalyticpropertiesorprocessconditionsrequiredforhighyields.Thecurrent workpresentsasystematicstudywithhomogeneousmineralandorganicacidsof varyingstrengthtobuildaplatformforcatalystcomparison.Thestudyrevealedthat dependingonthepHofthesolution,differentmechanismsunderlietheglucose decompositioninthepresenceofweakacids.Althoughloweracidconcentrationleads tohigherselectivitytowardHMF,thiscouldnotbeconsideredasanindustriallyviable solution.

Whileattemptingtodevelopanindustriallyfeasibleprocesstoobtainhighyieldof

HMFfromglucose,itwasdiscoveredthatadditionofalkalineearthmetalsand applicationofpressureinthepresenceofacidcatalystactivatestheglucosering viii resultinginhighHMFyields.Furtherenhancementwasobtainedbyadditionofan organicphaseforHMFextraction.Thisunprecedentedprocesscanbecombinedwith polysaccharideshydrolysisandonepotHMFproductionfrombiomass.Byfurther optimizationoftheparameters,anindustriallyfeasibleprocessforHMFproductioncan beachieved.

Thuscurrentworkisverysignificantandrelevantinprovidingperceptionsfor developinganindustriallyfeasibleprocesswithheterogeneousacidcatalyststoproduce furaniccompoundsfrombiomass.

1

Chapter1. INTRODUCTIONANDLITERATUREREVIEW

Theinterestforanon-petroleumbasedindustryhasbeenincreasinginthehopeof improvingtheenvironmentalquality;maintainingnationalsecurity,usingtheexcess agriculturalproductionandsupportingtheruraldevelopment[1].Foranon-petroleum basedeconomy,biomassderivedmaterialsneedtobeinvolvedintransportation,fuel, fibersandthechemicalindustry[1].Amongbio-basedchemicals,furaniccompounds playakeyroleintheproductionofhigheralkaneliquidfuelsfortransportation purposesandintheproductionofwide-rangeofotherimportantchemicalsinthe polymerindustry[2,3].Furaniccompoundsareproducedfrombiomassrichin .Themethodconsistsofhydrolysisofpolysaccharidesinto monosaccharidesfollowedbytheirdehydration[3].Whilefurfuralisobtainedfrom pentosessuchasxylose,arabinoseandribose,six-carbonsugarssuchasand glucoseleadto5-hydroxy-2-methylfurfural(HMF).

Fortheindustrialproductionoffurfural,concentratedsulfuricacidisemployed usingQuakerOatstechnology[2].However,itscorrosivityandtoxicityaddtotheother drawbackssuchashighseparationandrecyclingcostofhomogeneousacids.Forthe industrialproductionofHMF,fructoseisusedasfeedstockcurrently,butitslower abundanceincreasestheproductioncostandtherebyhindersproductioninmassive scales.Althoughglucoseisamorepreferredfeedstockduetoitshigherabundance, thereisnocost-effectiveprocessusingglucosedevelopedyetduetoitsstablestructure

[3-5].Asaresult,forindustrialproductionofbothfurfuralandHMF,developingan environment-friendlyheterogeneouscatalystwithhighyieldsisessential[3-6].This projectaimedtoprovideguidanceaboutthedesignofanindustriallyfeasibleprocess 2 withanenvironmentfriendlyheterogeneouscatalystforthedehydrationof monosaccharides.

DissertationOrganization

Organicacidfunctionalizedmesoporoussilicasofferinghighsurfaceareawith tunabletexturalandcatalyticpropertieswereconsideredaspromisingcatalystsforthe dehydrationofmonosaccharides.Thesematerialshaveattractedgreatinterestas catalystsinseveralreactionsfrommanyareasincludingthehydrolysisof oligosaccharidesintomonosaccharides.Infactthedehydrationproducts, hydroxymethylfurfuralandfurfural,werealreadyrecognizedamongtheproductsduring thehydrolysisofoligosaccharides.Withtheabilityoffurthertuningthecatalytic propertiesofthesecatalysts,organicacidfunctionalizedmesoporoussilicacatalysts promisedpotential.

Amethodologicalapproachintailoringthecatalyticpropertiesformonosaccharide dehydrationnecessitatedunderstandingthecatalyticfeaturesofthesematerialsin condensedphase.Mostofthepreviousstudieshavebeenfocusedoncharacterizationof theacidicfeaturesbasedontheirinteractionwithagasphaseprobemoleculeand excludedtheeffectsofsolvationonacidicfeatures.Forthedeterminationofacidic strengthandtotalacidcapacityoforganicacidfunctionalizedmesoporoussilicain condensedphase,adetailedcharacterizationmethodusingpotentiometrictitrationis developedinChapter2.Forfurtherinvestigationoftheroleofsolvationontheacidic strengthforthesematerials,thefunctionalgroupsattachedonmodelsilicasupports weresimulatedabinitiointhepresenceofwatermoleculesinChapter3.

Dehydrationofmonosaccharideshasbeenanattractiveissueforscientistsforalong time.SinceC-CandC-Obondbreakageshavesimilaractivationenergies,manyother 3 sidereactionsaccompanydehydrationwhichcomplicatesthereactionsystem,and preventstogaininsightandunderstandingthemechanisms.Onlyfewstudiesreported systematicdataaboutthecatalyticfeatures,whetheritisahomogenousora heterogeneous.InChapter4,mineralandorganichomogeneousacidsofvarying strengthwereevaluatedfortheiractivitytowardsmonosaccharidedecompositionin attempttobuildacommonframeworkforcatalystactivitycomparison.InChapter5,in collaborationwithUniversityofWisconsin-Madison,amethodisproposedforthe dehydrationofglucosewithhighyieldsthatallowsalsocombiningpolysaccharide hydrolysiswiththedehydration.Byfurtheroptimizationofthereactionparametersand substitutionofthehomogenouscatalystwithaheterogeneouscatalyst,theproposed methodispotentialluycommercializable.

Theactivityoforganicacidfunctionalizedmesoporoussilicamaterialswastested forthedehydrationofpentosesandhexosesinAppendix1.Theresultsindicatedthat hydrothermalstabilityproblemsaroseatthereactionconditionsfordehydration reaction.Becausesulfatedzirconiadopingonmesoporoussilicawasproposedto improvethehydrothermalstability,thesematerialswereinvestigatedfortheircatalytic propertiesandfortheiractivitytowardscellobiosehydrolysisinajointprojectwith

MiddleEastTechnicalUniversityandTechnicalUniversityofEindhovenandis presentedinAppendix2.Appendix3addressesthehydrothermalstabilityproblems thatalsoaroseforsulfatedzirconiadopedmesoporoussilica.

Astudyperformedbyanothergroupmembershowedthatchangingthecatalyst supportfromsilicatoactivatedcarbonincreasedhydrothermalstabilityproblemand makingsulfonatedactivatedcarboncatalystshydrothermallystableattheconditions usedfordehydrationreaction.Infactthecatalystshowedcomparableactivitytosulfuric acidforfructosedehydration.Byfurtherimprovementofthecatalyticandtextural 4 properties,thesulfonatedactivatedcarboncatalystisapromisingcatalystforthe processdevelopedinChapter5forglucosedehydration.

OverviewofFunctionalizedMesoporousSilicaasCatalysts

SincetheirdiscoverybyMobilCo.in1992[7],functionalizedmesoporoussilica catalystshavebeenusedforvariousreactionsystemsbecauseoftheirtunabletextural andcatalyticproperties.SomeofthesereactionsincludeMichaeladditions[8],

Knoevenagelreactions[9-11],esterification[12-14],andpolysaccharidehydrolysis[15,

16].Accordingtothereactionsystemunderinterest,mesoporoussilicastructuresare tailoredbychoosingthetypeofsilicasupport,functionalgroupandthemethodfor functionalization.

Mesoporoussilicasupportsaresynthesizedusingamicelle-template[7].Thesilica structureself-assemblesaroundthetemplatebyhydrolysisandcondensationofthe silicaprecursor,tetraethoxysilaneortetramethoxysilane.Aftertheformationofthe silicastructurethesurfactantisremovedeitherbysolventextractionorbycalcination.

InFigure1,theself-assemblyprocessofsilicasupportaroundthemicelletemplateis shown[17].Dependingonthesynthesismethodandthetypeofsurfactantusedfor micelleformation,mesoporoussilicastructurescanbehexagonal,cubic,orlamellar

[18].Moreover,therearedifferenttypesofsurfactantsusedforsynthesisofhexagonally orderedmesoporoussilicatotailortheporesizeandwallthickness. 5

Figure1.Formationofmicelletemplatedmesoporoussilica[17]

ThefirstsynthesizedmesoporousmaterialswereMCM-41usingaquartenary ammoniumsurfactantunderbasicconditions[7].Removalofthesurfactantrequires acidextractionorcalcination.Theextremeconditionsforthesurfactantremovaldoes notallowsimultaneousintroductionoffunctionalgroupsduringthesilicasupport synthesis.Functionalgroupsaregraftedafterthetemplateremoval.Functionalizationof

MCM-41structureusingthismethodwasfirstreportedbyBurkettetal.in1996[19].

HMSsilicas,firstreportedbyTanevandPinnavaiain1994[20],aretemplatedusing aneutralsurfactant,suchasdodecylamine.Theporesizecanbeadjustedbythechoice ofsurfactant;hencethelongerthealiphaticchainis,thelargertheporeswillbe.

SurfactantremovaliseasierthanforMCM-41,andcanbedonebyethanolextraction.

TheresultingHMSstructureisaspongelikestructurewithwormhole-likeporesandhas thickerwallsthanMCM-41[19,21].However,theMCM-41typedisplaysimproved long-rangeordercomparedtoHMS.

SBA-15,firstreportedbyZhaoetal.in1998[22],isassembledunderacidic conditionsusingatri-blockcopolymerconsistingofpolyethyleneoxide(PE)- polypropylene(PO)-polyethyleneoxide(PE).Micelleformationoccursduetothe highlyhydrophiliccharacterofEOblocksandthepartiallyhydrophiliccharacterofPO blocks.WhilethemicellecoreisformedbyPOblocks,theEOblocksremainatthe 6 interfaceinteractingwiththesolventandsilicaprecursorviahydrogen-bonding[17].

TheextensionPOblocksintothesilicanetworkcauseSBA-15haveamicropore networktoo.Thesizeofthemicroporesis5-15Å,whereasthesizeofmesoporescango upto300Å.Thelengthsofthepolymerblocksareresponsiblefortheporesize,butthe poresizecanalsobeadjustedbyvaryingthetemperatureduringsynthesisoraging.The increasingtemperatureleadstosmallerporesizesduetodecreasedsolubilityofEO blocks.Oncethesurfactantisremovedbyethanolextraction,theresultingSBA-15 structurehasawallthicknessof31-64ÅthatisthickerthanthoseforHMSandMCM-

41.ThelargerwallthicknessprovideshigherthermalstabilitytoSBA-15comparedto

MCM-41andHMS[18].Thewall-structureofthesehexagonallyorderedmesoporous silicastructurescanfurtherbemodifiedbyintroductionofpolymersorshortalkyl chainstoaddhydrophobicorhydrophiliccharactertothesupport[23].

Thesurfacepropertiescanbealsotunedbythermaltreatment.Thermaltreatment leadstocondensationofsurfacesilanolstoformsiloxanebondsmakingthesurfaceless hydrophilic[24,25].Densityandtypeofsurfacesilanolsandthespacingbetweenthem isdeterminedbytheporecurvature.Therearethreetypesofsilanolspresentin mesoporoussilicastructure:isolated,geminal,andhydrogen-bonded.Thedistribution ofthesedifferentsilanoltypesonthesurfacedefinestheacidicstrengthofthesupport.

SilanolscanactasBronstedacids,hydrogenbonddonorsorhydrogenbondacceptors

[26].The pK aforhydrogenbondedsilanolswasreportedtobeaslowas4.5,dueto shareofprotonbetweentwosilanolsleavingtheprotonfromonesilanolgroup relativelyfree[27].Recently,astudyonSBA-15surfacewithadsorptionof benzylamineproposedthatthe pK afortheacidicsilanolsisevenlowerthan4.5,thatis equalorlessthan2[28].The pK aforgeminalsilanolswasreportedtobe8.5or8.2[27,

28],significantlylessacidicthanhydrogen-bondedsilanols. 7 Catalyticactivityofthesematerialsisachievedbyincorporationoffunctional groupsthatinvolveanalkoxysilanewithfunctionalgroupmoietyreactingwithsurface silanolstoanchorthefunctionalgroupontothesurface.Theincorporationcanbe performedsimultaneouslyduringtheformationofthesilicasupportviaco-condensation oraftertheremovalofthesurfactantviagrafting.Multiplegroupscanbeintroducedat thesametimeorsequentiallybygraftingofonegroupfollowingco-condensationofthe other.Thechoiceofincorporationmethodaffectsthedistributionanddensityofthe functionalgroups,henceinfluencingthecatalyticactivityoftheresultingmaterial.

Grafting,thepostsynthesismethodaftertemplateremoval,isperformedmostlyina non-polarsolventinordertofacilitatetheanchoringofthefunctionalgroupprecursorto thesurfacesilanols.Still,masstransferissuestakeplace,andthefunctionalgroupstend toaccumulateattheporeopeningsorattheexteriorofthematerial,whichwasshown byLimandStein[29]whenstudyingdispersionofvinylgroupsonMCM-41structure.

Ontheotherhand,infraredstudiesonSBA-15withbutylcarboxylicgroups[30] demonstratedthatfunctionalgroupsincorporatedviaco-condensationduringthesilica supportformationmostlyresidewithintheporesmoreuniformlydistributedthan graftedgroups.AlsoMbarakaandShanks[14]confirmedtheresultswhenthey incorporatedhydrophobicalkylgroupsontoSBA-15surfaceviaco-condensationand grafting.Whengrafted,thealkylgroupsrenderedthematerialshydrophobicwhilethe hydrophilicitywasretainedwiththeco-condensedgroups.Distributionoffunctional groupsviagraftingandco-condensationisshowninFigure2. 8

a) b)

Figure2.Distributionofhydrophobicgroups()ontomesoporoussilicawithco- condensedfunctional()groups;a)viagrafting,b)viaco-condensation[14]

Theloadingdensityisalsoaffectedbytheincorporationmethod.Graftingallows highloadings,almostuptofullsurfacecoverage;whereasco-condensingmorethan40 mole%distractsthestructuralorder[31].Typicalloadingratioforco-condensation rangesbetween5-15%.Whengrafted,theactualloadingonthesilicasurfacedepends onthesurfacesilanoldensitythatcannotbecontrolled.Duringgrafting,depositionof thefunctionalgroupsattheporemouthnarrowstheporesizeandtherebypromotes accumulationattheporeentrancefurtherduetoincreasedmasstransferlimitations.

Anotherdrawbackofgraftingappearsifthesurfactantisremovedbycalcination.

Calcinationcausesdehydroxylationofthesurfacelocally,andthoseareastendtohost clustersoffunctionalgroupsduringgrafting.Furthermore;whengrafted,thefunctional groupsmaynotcondensewithhydroxylgroupscompletely,whichreducesthestability ofthefunctionalgroups[17,18,23].Asaresult,co-condensationallowsforless loadingoffunctionalgroupsbutprovidesabettercontrolonthemascomparedto grafting.

Neithergraftingnorco-condensationprovidescontrolonspacingbetweenthe functionalgroups.Controlledspacingofthefunctionalgroupscanbeachievedvia imprinting.ThemethodisfirstdevelopedbyKatzetal.[32]forthesilicagel.Inthis 9 method,anorganicscaffoldcontainingthefunctionalgroupsisincorporatedintothe silicasupportduringsol-gelsynthesis.Aftertheremovalofthescaffold,functional groupsremainatthespaceswithcontrolleddistances.However,thismethodhasnot beenappliedtomesoporoussilicamaterialsleavinggraftingandco-condensationasthe mostwidelyusedtechniques.

Usinggraftingorco-condensation,awidevarietyoffunctionalgroups,acidsand basesaswellashydrophobicandhydrophilicgroups,hasbeenincorporatedonto mesoporoussilicasupport.Acidgroupsmaynotbeaddeddirectlytothemedia,asthey wouldinterferewiththeself-assemblyprocessofsilicaaroundmicelle-template.A prehydrolysisperiodforformationofsilicasupportmustbeallowedbeforeadditionof theorganicacidprecursorsintothesynthesismedia[18].Amongtheorganicacids,the mostcommonlyco-condensedgroupsarepropylsulfonicandarenesulfonicgroups[33,

34].Fortheincorporationofpropylsulfonicgroups,analkoxysilaneprecursorwiththiol groupsisused,wherethiolgroupsareoxidizedtosulfonicacidgroupsusinghydrogen peroxide.Thesulfonicacidgroupsareformedintheacidicmediaduringthesynthesis ofthesilicasupportanddonotrequirefurthermodification.Alsoweakerorganicacids, suchasethylphosphonicacid[35]andbutylcarboxylicacid[36]areco-condensed.As butylcarboxylicgroupprecursor,cyanoethylorcyanopropylgroupsareused,whichare hydrolyzedintheacidicmediaduringthesynthesis.Thealkoxysilaneprecursor structuresforthesefunctionalgroupsareshowninFigure3. 10

Figure3.Acidicfunctionalgroupstetheredontomesoporoussilicasurface and correspondingprecursors .

Amongorganicbases, the propylaminegroupisthemostcommonlyco -condensed functionalgroup[10,11,37,38] .Aminopropyltriethoxysilaneisusedasprecursorand nofurthermodificationisrequired.Aminegroupsareprotonatedautomaticallyunder theacidicconditionsforSBA -15formation.Besidepropylamine,diamines [39], imidazole[40] ,dihydroimidazole [41],andpyridinederivatives[42]arealso incorporatedontothe SBA -15surface.Theeffectofthebasegroupscanbeshieldedby theirinteractionwiththesurfacesilanols.Topreventthis,surfacesilanolsarecapped withhexamethyldisilazane [43]oratrityliminepatterningagent[44]isused.

Thehydrophiliccharacterofthesurfacecanbeadjustedbyincorporationof hydrophobicorneutralgroupssuchasethyl ,methylorphenylgroups [14].Thisis mostlyusedtoshiftthereactionselectivitytowardsnon -polarreactants.Thereisalso somewor kaboutincorporatingchiralgroupsforenantioselectivereactions [45,46]and ionicliquidimmobilizationtoreducetheseparationcostfromreactionmedia [47].1- 11 methyl-3-propylimidazoliumand1-propylpyridinumionicliquidsareamongthose incorporatedionicliquidsontoSBA-15.

OverviewofDehydrationReactionStudies

Furaniccompoundsareproducedfrombiomassbymonosaccharidedehydration followingpolysaccharidehydrolysisandtheyserveasessentialintermediatesinthe productionofliquidalkanes[3].Previouslyaprocessconvertingsugaralcoholsinto lightalkane(C1-C6)productshasbeendeveloped[3].Howeverduetotheirhigh volatility,lightalkanescannotbeusedforfuelapplications.Ontheotherhand,liquid alkanesthatcanbeproducedfrombiomass-derivedcarbohydratesprovidearenewable sourcefortransportationfuel.Conversionofbiomass-derivedcarbohydratesintoliquid alkanesinvolvesseveralsequentialreactions,wheredehydrationreactionsplayakey role[3].Theoverallschemetoproduceliquidalkanesfromfuraniccompoundsis showninScheme1.

Scheme1.Reactionpathwaysforconversionofsaccharidesintoliquidalkanes[3]. 12 Duringthedehydrationreactionofbothpentosesandhexoses,thereaction intermediatesan dtheproductscandegradefurthertovariousby -productsvia fragmentation,condensation,rehydration,reversionand/oradditionaldehydration reactions[48] .Scheme2summarizesthesidereactionstakingplaceduringdehydration andthecommonsideproducts.

Scheme2: Monosaccharidedegradationpathways [49-51].

Mechanisticstudiestoexplaintheformationoffurfuralandotherby -productshave beenconductedonthepathwayofxylosetofurfuralaswellasfructoseto HMF dehydration.AccordingtoDunlop andRoot[52],thexylosed isappearanceisfirstorder andproportionaltotheinitialacidconcentration.Furthermore,apriorinterm ediateof unknownidentitywas responsibleforfurfuralformation.Antalin1991 [50]identified thisasthe2,5anhydrideintermediate,anditisthemainchannelthatforms2 - furaldehydesfromaldoses.Anothermechanisticstudy [51]ind icatedthepresenceof intramolecularetherificationreactions.However,Defaye [53]concludedthe etherificat ionreactionsplayonlyaminorroleandthedehydrationtakesplacemainly via2,5-anhydrosugars.In1991,Antaletal .[50]showedthatat250 ˚Cinthepresence of0.001-0. 02Msulfuricacidtheopenchainisomerisinitiallypresentandquickly 13 reactstoformglyceraldehyde,pyruvaldehyde,lacticacid,glycolaldehyde,formicacid, lyxoseandarabinose.Thefuranoseringformispresentinsmallamountsandis relativelystable,whereasthepyranoseringformleadstofurfuralvia2,5anhydrides.

Indeedwithoutanycatalyst,furfuralformationrateacceleratedforshortresidencetimes duetotheautocatalyticmechanism.Theproposedmechanismforxylosedehydrationis showninFigure4.

Figure4.Dehydrationmechanismofxylose[2].

Asusinghomogeneousmineralacidsarenotenvironmentallyfriendlyandaddto thecostbyseparationandrecyclingissues,severalattemptshavebeenmadetoemploy heterogeneouscatalystsforthedehydrationreaction.Heterogeneouscatalystssuchas strongacidcationexchangeresins[5],H-formzeolites[54-56]aswellasniobium, titanium,zirconium,andvanadylphosphates[48,57-59]havebeenproposed tocatalyze dehydrationofmonosaccharides.H-formzeoliteshaverecentlyshownpromising 14 results.Moreauetal.[55]reportedthattheonlyonelargechannelbidimensional structuredH-mordenitesismoreselectiveandbutalsolessactivethanthree- dimensionalH-Yfaujasiteswith13Åcavitiesinsideat170˚Conthedehydration reactionofxylose.Thehighestselectivityachievedwasabout96-90%in30-50minfor xyloseconversionof27-37%inwater/toluenemixtureat170˚ConH-mordenites.

Similarselectivity(90%)butbetterconversionrates(54-76%)wereobtainedforthe dehydrationoffructoseto5-hydroxymethylfurfuralat165˚Cinwater/ methylisobutylketonemixtureonH-formmordenites[56].

Niobium,zirconiumandtitaniumcatalystsattenuatedlevulinicandformicacid formationthatconstitutesaproblemwhenaqueousmediaisused [48,58,59].Moreover theimprovedselectivitywhenniobiumphosphatesareusedhasbeenattributedto higherstrengthofLewisandBronstedacidsites[48].Also,studiesonheterogeneous vanadylphosphatederivativescharacterizedbyastrongerLewisaciditywithrespectto vanadylphosphateitselfshowedanimprovedcatalyticactivityondehydrationof fructose[59].TheselectivityenhancementeffectofLewisacidsiteshasalsobeen provenonheterogeneoustitaniumandzirconiumbasedcatalysts [58].Also,differently supportedcatalystsshowingcomparableactivityshoweddifferentselectivityindicating theimportanceofthenatureofthesupport.

Althoughthetraditionalheterogeneouscatalystshaveshownpromisingresults,their lowsurfacearealimitstheirusage.Theiralternativesarethetraditionalheterogeneous catalystsareorganic-inorganichybridsilicaswhichinvolvesincorporationoforganic groupsonmesoporoussilicasupports.Duetotheirhighsurfaceareasandtheirflexible poresizetheyfoundawideapplicationarea.Dehydrationofxyloseintofurfuralhas beenstudiedoverMCM-41typecatalystsfunctionalizedwithsulfonicacid[60].The bestselectivityachievedwas82%foraconversionof91%forsulfonicacidcoated 15 MCM-41at140˚C.Inthisstudy,contrarytoothers,theselectivityincreasedwith increasingconversion.Still,ithasbeenconcludedthattheselectivitycanbefurther improvedbyfine-tuningofthemedianporesize.Inordertopreventfurfuraldegrading further,abiphasicsystemofisobutylmethylketone(IBMK)/waterwasusedwhere furfuralwascontinuouslyextractedintoIBMKphase.Also,someotherworks [5,48] haveshownthatthebiphasicsystems,designedtoextractfurfuraleitherbyIBMKor toluene,leadtoimprovedselectivities.Abiphasicsystemconsistingofaqueousreactor phasemodifiedwithDMSOand/orpoly(1-vinyl-2-pyrrolidinone)andextracting organicphasewithIBMKand2-butanolresultedin85%selectivityfor89%fructose conversionusinghydrochloricacidascatalyst [61].Thereasonofaddingphase- modifierswasexplainedbysuppressingsidereactionsandenhancingtheextractive properties.

Anotherstudywithmesoporoussilicasupported12-tungstophosphoricacidfor dehydrationofxylose[62]followedtheworkwithsulfonicacidfunctionalizedMCM-

41,butthesearetheonlystudieswithmesoporoussilicacatalysts.Theactivityof organicacidfunctionalizedSBA-15fordehydrationreactionhasnotbeeninvestigated.

Howeverthesematerialswereactiveforcellobiosehydrolysis[16],areactionsystem withsimilarkineticstothedehydrationreaction.Thestudiesoncellobiosehydrolysis revealedthattheprotonconcentrationwastheonlyfactoraffectingthekinetics,butthe acidicstrengthofthefunctionalgrouphadnoeffect.Iforganicacidfunctionalized

SBA-15aretobetestedfordehydrationreaction,firstthisphenomenonhastobe explainedwithadeeperunderstandingaboutthenatureofthecatalyticsites.Thesecond problemisthelackofsystematicdatainliteraturetocomparecatalyticactivities.This platformmustbebuiltviasystematicstudywithhomogeneousacidstocomparethe relativeactivitiesandoutlinetheimportantparametersaboutthereaction. 16 References

[1] R.C.Brown,BiorenewableResources,IowaStatePress,Ames,Iowa,2003. [2] K.J.Zeitsch, Thechemistryandtechnologyoffurfuralanditsmanyby-products Elsevier,Amsterdam2000. [3] J.N.Chheda,J.A.Dumesic,CatalToday123(2007)59-70. [4] J.N.Chheda,G.W.Huber,J.A.Dumesic,AngewChemIntEdit46(2007)7164- 7183. [5] J.N.Chheda,Y.Roman-Leshkov,J.A.Dumesic,GreenChem9(2007)342-350. [6] G.W.Huber,J.N.Chheda,C.J.Barrett,J.A.Dumesic,Science308(2005)1446- 1450. [7] C.T.Kresge,M.E.Leonowicz,W.J.Roth,J.C.Vartuli,J.S.Beck,Nature359 (1992)710-712. [8] Q.Wei,Z.R.Nie,Y.L.Hao,Z.X.Chen,J.X.Zou,W.Wang,MaterLett59 (2005)3611-3615. [9] B.M.Choudary,M.L.Kantam,P.Sreekanth,T.Bandopadhyay,F.Figueras,A. Tuel,JMolCatalA-Chem142(1999)361-365. [10] D.J.Macquarrie,GreenChem1(1999)195-198. [11] D.J.Macquarrie,D.B.Jackson,ChemCommun(1997)1781-1782. [12] I.K.Mbaraka,K.J.McGuire,B.H.Shanks,IndEngChemRes45(2006)3022- 3028. [13] I.K.Mbaraka,D.R.Radu,V.S.Y.Lin,B.H.Shanks,JCatal219(2003)329-336. [14] I.K.Mbaraka,B.H.Shanks,JCatal229(2005)365-373. [15] J.A.Bootsma,RecoveryofMonosaccharidesviaCatalyticHydrolysis,Chemical Engineering,IowaStateUniversity,Ames,Iowa2006. [16] J.A.Bootsma,B.H.Shanks,ApplCatalA-Gen327(2007)44-51. [17] F.Hoffmann,M.Cornelius,J.Morell,M.Froba,AngewChemIntEdit45 (2006)3216-3251. [18] A.Stein,B.J.Melde,R.C.Schroden,AdvMater12(2000)1403-1419. [19] S.L.Burkett,S.D.Sims,S.Mann,ChemCommun(1996)1367-1368. [20] P.T.Tanev,T.J.Pinnavaia,Science267(1995)865-867. [21] J.S.Beck,J.C.Vartuli,G.J.Kennedy,C.T.Kresge,W.J.Roth,S.E.Schramm, ChemMater6(1994)1816-1821. 17 [22] D.Y.Zhao,J.L.Feng,Q.S.Huo,N.Melosh,G.H.Fredrickson,B.F.Chmelka, G.D.Stucky,Science279(1998)548-552. [23] J.A.Melero,R.vanGrieken,G.Morales,ChemRev106(2006)3790-3812. [24] S.K.Parida,S.Dash,S.Patel,B.K.Mishra,AdvColloidInterfac121(2006)77- 110. [25] M.Mesa,A.Ramirez,J.L.Guth,L.Sierra,RecentAdvancesintheScienceand TechnologyofZeolitesandRelatedMaterials,PtsA-C154(2004)562-567. [26] L.R.Snyder,J.W.Ward,JPhysChem-US70(1966)3941-&. [27] S.W.Ong,X.L.Zhao,K.B.Eisenthal,ChemPhysLett191(1992)327-335. [28] J.M.Rosenholm,T.Czuryszkiewicz,F.Kleitz,J.B.Rosenholm,M.Linden, Langmuir23(2007)4315-4323. [29] M.H.Lim,A.Stein,ChemMater11(1999)3285-3295. [30] S.Fiorilli,B.Onida,B.Bonelli,E.Garrone,JPhysChemB109(2005)16725- 16729. [31] Y.Mori,T.J.Pinnavaia,ChemMater13(2001)2173-2178. [32] A.Katz,M.E.Davis,Nature403(2000)286-289. [33] D.Margolese,J.A.Melero,S.C.Christiansen,B.F.Chmelka,G.D.Stucky, ChemMater12(2000)2448-2459. [34] J.A.Melero,G.D.Stucky,R.vanGrieken,G.Morales,JMaterChem12(2002) 1664-1670. [35] R.J.P.Corriu,L.Datas,Y.Guari,A.Mehdi,C.Reye,C.Thieuleux,Chem Commun(2001)763-764. [36] C.M.Yang,Y.Q.Wang,B.Zibrowius,F.Schuth,PhysChemChemPhys6 (2004)2461-2467. [37] D.J.Macquarrie,ChemCommun(1996)1961-1962. [38] D.J.Macquarrie,S.E.Fairfield,JMaterChem7(1997)2201-2204. [39] X.G.Wang,J.C.C.Chan,Y.H.Tseng,S.F.Cheng,MicroporMesoporMat95 (2006)57-65. [40] C.E.Fowler,S.L.Burkett,S.Mann,ChemCommun(1997)1769-1770. [41] M.C.Burleigh,M.A.Markowitz,M.S.Spector,B.P.Gaber,JPhysChemB105 (2001)9935-9942. [42] T.Kang,Y.Park,K.Choi,J.S.Lee,J.Yi,JMaterChem14(2004)1043-1049. [43] J.C.Hicks,C.W.Jones,Langmuir22(2006)2676-2681. 18 [44] M.W.McKittrick,C.W.Jones,ChemMater15(2003)1132-1139. [45] A.Corma,S.Iborra,I.Rodriguez,M.Iglesias,F.Sanchez,CatalLett82(2002) 237-242. [46] D.Brunel,A.Cauvel,F.DiRenzo,F.Fajula,B.Fubini,B.Onida,E.Garrone, NewJChem24(2000)807-813. [47] C.Paun,J.Barklie,P.Goodrich,H.Q.N.Gunaratne,A.McKeown,V.I. Parvulescu,C.Hardacre,JMolCatalA-Chem269(2007)64-71. [48] C.Carlini,M.Giuttari,A.M.R.Galletti,G.Sbrana,T.Armaroli,G.Busca,Appl CatalA-Gen183(1999)295-302. [49] A.S.Dias,S.Lima,M.Pillinger,A.A.Valente,CarbohydRes341(2006)2946- 2953. [50] M.J.Antal,T.Leesomboon,W.S.Mok,G.N.Richards,CarbohydRes217 (1991)71-85. [51] M.J.Antal,W.S.L.Mok,G.N.Richards,CarbohydRes199(1990)91-109. [52] A.P.Dunlop,P.R.Stout,S.Swadesh,IndEngChem38(1946)705-708. [53] J.Defaye,D.Horton,CarbohydRes14(1970)128-&. [54] C.Moreau,R.Durand,J.Duhamet,P.Rivalier,JCarbohydChem16(1997) 709-714. [55] C.Moreau,R.Durand,D.Peyron,J.Duhamet,P.Rivalier,IndCropProd7 (1998)95-99. [56] C.Moreau,R.Durand,S.Razigade,J.Duhamet,P.Faugeras,P.Rivalier,P. Ros,G.Avignon,ApplCatalA-Gen145(1996)211-224. [57] T.Armaroli,G.Busca,C.Carlini,M.Giuttari,A.M.R.Galletti,G.Sbrana,JMol CatalA-Chem151(2000)233-243. [58] F.Benvenuti,C.Carlini,P.Patrono,A.M.R.Galletti,G.Sbrana,M.A.Massucci, P.Galli,ApplCatalA-Gen193(2000)147-153. [59] C.Carlini,P.Patrono,A.M.R.Galletti,G.Sbrana,ApplCatala-Gen275(2004) 111-118. [60] A.S.Dias,M.Pillinger,A.A.Valente,JCatal229(2005)414-423. [61] Y.Roman-Leshkov,J.N.Chheda,J.A.Dumesic,Science312(2006)1933-1937. [62] A.S.Dias,M.Pillinger,A.A.Valente,MicroporMesoporMat94(2006)214- 225. 19

CHAPTER2.CHARACTERIZATIONOFCATALYTICSITESIN

ORGANICACIDFUNCTIONALIZEDMESOPOROUSSILICAINAQUEOUS

MEDIA

ApapersubmittedtoJournalofCatalysis

BasakCinlarandBrentH.Shanks

Abstract

Exploringthecatalyticpotentialoforganicacidfunctionalizedmesoporoussilicain condensedphasenecessitatescharacterizationoftheiracidicpropertiesinasimilar environment.Inthisstudy,potentiometrictitrationisusedasadirectmeasurement techniquetodeterminetheacidicstrengthandtotalacidcapacityofpropylsulfonic, arenesulfonic,ethylphosphonic,andbutylcarboxylicfunctionalizedmesoporoussilica catalystsinwater.Whilethemethodcanprovidedirectinsightintotheacidicproperties ofthematerials,thecharacterizationconditionsmustbecarefullychosentoyield reliableresults.Theadditionofsaltsarerequiredforenhancingtheion-exchangeinthe titrationprocedure,buttheirover-additionresultsindeviationoftheactivitycoefficients leadingtoincorrectresults.Titrations,performedunderreliablecharacterization conditions,demonstratethatnetworkinteractionscanexistbetweentheorganicacid functionalgroups.Whilethestrongestacidityisobservedforthearenesulfonicacid functionalizedmaterial,noneoftheacidicmaterialsareleveledinanaqueoussolvent.

Introduction

Duetotheirwell-definedcatalyticsitescombinedwithtunabletexturalproperties, organicacidfunctionalizedmesoporoussilicamaterialshavebeenevaluatedascatalysts fornumerouscondensedphasereactions[1,2].Aqueousphasereactionssuchas

20 cellobiosehydrolysis[3]andmonosaccharidedehydration[4]havealsobeenreported.

Improvedyieldsfortheseaqueousphasereactions,bothofwhicharepotentially importantforabio-basedindustry[5],relyonbetterunderstandingoftheacidicsitesin thecondensedphasereactionenvironment.Previouscharacterizationstudies[6-13] providelimitedinformation,becauseacidicstrengthwasprimarilydeterminedbasedon adsorptioncharacteristicsofonlyaprobemoleculetherebydisregardingsolvation effects.Inthefewstudiesinwhichorganicacidfunctionalizedmesoporoussilicawere characterizedinsolution[3,14-21],asystematicapproachwasnotutilizedtoevaluate acidgroupsofvaryingstrengthandtheeffectofthecharacterizationconditionsonthe resultswasnotsufficientlycontrolled.Inthecurrentstudy,thepropertiesoforganic acidsofvaryingstrengthtetheredontomesoporoussilicawereinvestigatedvia potentiometrictitration,whichallowsfordirectmeasurementofacidicpropertiesin solution.Additionally,theeffectofthecharacterizationconditionswasaddressedby estimatingsolutionactivitycoefficients.

Thestrengthofanorganicacidtetheredontoasubstrateisdictatednotonlybythe chemicalcompositionoftheacidicmoiety,butalsobyitsconcentrationonthesupport anditsinteractionwiththesurface[15,18,20,22,23].Forexample,inpreviousstudies theacidicstrengthofsulfonicacidgroups,attachedontoSBA-15surface,thatwerein closeproximityfromuseofadisulfideprecursorwerefoundtobehigherthanformore isolatedsulfonicacidgroups[15,23].Itwasshownthatthecontrolledspacingbetween thefunctionalgroupsalteredtheiracidicstrength.Additionally,theinteractionofthe silicabackbonewiththefunctionalgroupsmayaffecttheacidicstrengthofthetethered groups.Theporecurvaturevariesforsilicasupportshavingdifferentporediameters andhencethedensity,typeofsurfacesilanolsandthespacingbetweenthemvary, whichmayaffectthestrengthofinteractionwiththefunctionalgroups[24,25]. There

21 arethreetypesofsilanolspresentinthemesoporoussilicastructure:isolated,geminal, andhydrogen-bonded,whichcanactasBrönstedacids,hydrogenbonddonorsor hydrogenbondacceptorsdependingontheirdensityandspacing.ThereportedpK a valuesfordifferentsilanolsvaryfrom4.5(forhydrogenbonded)to8.5(forgeminal)

[26].Silanolswithdifferentacidstrengthswillinteractdifferentlywithfunctional groupsandasaresultmightchangetheoverallmeasuredacidstrengthofamaterial.

Aplethoraoftechniquesincludingtemperatureprogrammeddesorption(TPD),in situFT-IRand2-Dsolid-stateNMRhavebeenusedwithprobemoleculessuchas carbonmonoxide,,triethylphosphineoxide(TEPO)andpyridineto characterizepropylsulfonic(-PrSO 3H),ethylphosphoric(-EtPO 3H),butylcarboxylic(-

BuCOOH)andarenasulfonic(-ArSO 3H)functionalgroupstetheredonsilicasurfaces

[6-10,13].AccordingtoTPDstudieswithpyridine,theacidicstrengthsof-PrSO 3H and-ArSO 3Hwerefoundtobeclosetoeachother,with-PrSO 3Hbeingreportedas slightlymoreacidic[27].However,the 31 P-MASNMRstudieswithTEPOsuggested

-ArSO 3Htobethestrongeracidicgroup[10].Thisdiscrepancycanfurtherbeextended tootherstudies,wherethetrendsamongthefunctionalgroupsshoweddifferences accordingtothemethodand/ortheprobemoleculeused.Moreover,thesetechniques estimatetheacidicstrengthofafunctionalgroupbasedontheinteractionwithprobe moleculesinthegasphaseanddonotaccountforsolventeffects.Alternatively,the reactionofphenolandbisphenolAwasusedtocomparetheactivitiesofdifferent functionalgroupswithaninferredrelationshipbetweenactivityandacidstrength[23].

However,theconcernwithusingcatalyticactivitytoinferacidicstrengthisthe potentialtoconvolutemasstransfereffectswithkinetics.Eveniftheeffectsare successfullydeconvoluted,theresultsarepotentiallysolventspecificasthenatureofthe solventcanaffecttheacidicstrengthofthecatalyticsites.Forexample,inastudy

22 comparingtheacidstrengthofsulfonatedpolystyreneresinandsulfonatedmesoporous silicainaqueousandnon-aqueousmedia[28],themolarenthalpiesofneutralization suggestedthatthepolystyrenesupportedcatalystsweremoreacidicthanthe mesoporouscatalystsinwater,butthetrendwasreversedinthenon-aqueoussystems.

Overall,theacidicstrengthsdeterminedbycalorimetricdesorptionstudies, spectroscopicmethodsorkineticstudiesmustbecarefullyrelatedtotheirstrengthsin thecondensedphaseasthesolventemployedcanaffecttheacidicproperties significantly.

Potentiometrictitrationallowsfordirectdeterminationofacidicstrengthandtotal acidcapacityinsolutions,butithasitsownlimitationsrequiringtheexperimental conditionstobecarefullyselected.Intitratinghomogeneousacids,theenthalpyof neutralizationdependsonprotonlossfromtheacid,protongainbythecorresponding base,andchangesinthesolvationduetoformationofconjugatepairs[28]. Inthecase ofheterogeneousacidtitrations,masstransferissuescanalsobecomeimportant[29] .

Thus,thetitrationconditionsmustbecarefullycontrolledtoassureequilibriumbetween eachinjectionofthetitratingspeciesinthecharacterizationoforganicacid functionalizedmesoporoussilica.Additionally,astheionconcentrationisincreasedthe measuredprotonactivitymaydifferfromtheactualprotonconcentrationasthesolution activitycoefficientdeviatesfromunity.Thiseffectisimportantassaltsaretypically addedtothetitrationmediainordertofacilitatetheion-exchangeandacceleratethe electroderesponse[30].Eitherhighconcentrationsofthesaltorthesolutecancause theactivitycoefficienttodeviatesignificantlyfromideality.

Inadditiontotheselimitations,therearesomeimportantpropertiesofwaterthat mustbeconsideredwheninvestigatingacidicpropertiesinanaqueousmedia.

Potentiometrictitrationof–ArSO 3Hand–PrSO 3Hfunctionalizedmesoporoussilicahas

23 beenexaminedinmethanolandmethanol-watermixtures[15]anditwasfoundthatthe distinctpK avaluesforthesecatalystsinmethanolcoalescedwhensmallamountsof waterwereaddedintomethanolduetotheinferiordifferentiatingpropertyofwater relativetomethanol.Thislackofcleardifferentiationyieldedsimilaractivitiesfor differentacidfunctionalizedmesoporoussilicamaterialsincellobiosehydrolysisasthe acidstrengthapproachesthevaluesthatwouldbeleveledinwater[3].Theleveling effectoccurssincethestrongestcationandanionthatcanexistinaparticularsolvent areitsconjugatedformsandanythingstrongerwillbeleveledtotheirstrength[31].

Therefore,itisimportanttodetermineifthelevelingeffectappliestothecatalystand solventsystemsbeingcharacterizedasthiseffectwouldeliminatedifferencesbetween catalysts.Duetotheabovementionedlimitationsofpotentiometrictitration, informationonlevelingcannotbeachievedunlesstheconditionsthatholdfortheideal solutionassumption,whileproducingreliabledifferentiatingdata,areachieved.

Systematicallyevaluatingthetitrationparametersfortheireffectontheacidic propertymeasurementwillenableestablishingappropriatecharacterizationconditions.

AverageactivitycoefficientscanbecalculatedbycomparingmeasuredpHvaluesto theirpredictedvaluesasacontrolparameterasitisnotpossibletodetermineindividual activitycoefficientsexperimentally[32].Inthisworkthefactorsaffectingtheacidic strengthandthetotalacidcapacityoforganicacidfunctionalizedmesoporoussilica wereexaminedtobettercharacterizetheirintrinsicacidicpropertiesthereby deconvolutingthesepropertiesfromtheirassessmentinreactionstudies.

Experimental

Forthesynthesisofpropylsulfonic(-PrSO 3H),arenesulfonic(-ArSO 3H),butyl carboxylic(-BuCOOH)andethylphosphonic(-EtPO 3H)functionalizedSBA-15type

24 mesoporoussilica,thefunctionalgroupprecursors,(3-mercaptopropyl)trimethoxysilane

(MPTMS)(85%,Gelest),2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane(CSPTMS)

(50%indichloromethane,Gelest),3-cyanopropyltriethoxysilane(CPTES)(98%,

Gelest),anddiethylphosphatoethyltriethoxysilane(DEPTES)(95%,Gelest)wereused aspurchased,respectively.Thesilicaprecursor,tetraethylorthosilicate(TEOS)(98%,

Aldrich)wasusedwithoutfurthermodificationinallsyntheses.Controlexperiments wereperformedwithAmberlyst-15-wet(Acros),propanesulfonicacid(98%,Acros) andhydrochloricacid(HCl)(16N,Fisher),whichwereusedaspurchased.

SynthesisoforganicacidfunctionalizedSBA-15

Theco-condensationproceduredescribedinliteraturewasfollowedforthesynthesis oftheSBA-15materialswithonlyslightmodification[22,33-35]. Asatemplatefor thesilica,4gofPluronic123(BASFCo.),atri-blockco-polymerconsistingof poly(oxide)/poly(propyleneoxide)/poly(ethyleneoxide),(EO) 20 (PO) 70 (EO) 20 , wasdissolvedin125mlofa1.9MaqueousHClsolution.TEOS(8.2ml)was introducedintothesolutionwhenthetemperaturereached40ºC.Afterapre-hydrolysis periodof45min,thefunctionalgroupprecursorwasaddedinamolarratioof0.15 relativetotheTEOS.ForoxidationofthethiolgroupsinSBA-15-PrSO 3Hsynthesis,3 partshydrogenperoxide(30wt%aqueous,Fisher)withrespecttoTEOSwasaddedto themixture.Theresultingmixturewasstirredfor20handagedfor24hunderstatic conditionsbeforefiltration.Thesurfactanttemplatewasremovedbytotalrefluxin ethanolwith0.1MHClfor24h.WhensynthesizingSBA-15-BuCOOH,thefunctional groupswereacidifiedfurtherbyrefluxingfor24hina50wt%aqueousH 2SO 4solution.

Thecatalystswererecoveredbyfiltration,washedmultipletimeswithDIwater/ethanol andoven-driedat80°C.LowerfunctionalgrouploadedsamplesofSBA-15-BuCOOH

25 andSBA-15-PrSO 3Hwerepreparedbychangingtheprecursorratioto7.5and2.5%

[34].TheSBA-15-EtPO 3HandSBA-15-ArSO 3Hweresynthesizedasreported previously[3].

SynthesisofHMS-PrSO 3H

The-PrSO 3HgroupswerealsotetheredonHMS-typemesoporoussilicasurfaceat twodifferentloadings,e.g.precursorratiosof7.5and15%,asdescribedinliterature

[36]anddenotedasHMS-PrSO 3H.HMStypemesoporoussilicawastemplatedusing dodecylamine(98%,AcrosOrganics)dissolvedinanethanol-watermixture.Thesilica precursor,TEOS,andthefunctionalgroupprecursor,MPTMS,wereintroducedtothe mixturesimultaneously.Themolarcompositionoftheresultingmixturewas0.08

TEOS:0.0275dodecylamine:0.89EtOH:2.94H 2O.ThemolarratioofMPTMSwas

0.006and0.012forthe7.5and15%loadings,respectively.Themixturewasstirredat roomtemperaturefor24h,filteredandwashed.Thetemplatewasremovedbytotal ethanolrefluxfor24h.Thefilteredandair-driedproductwasoxidizedbyhydrogen peroxide(2.04g/gdrymaterial)inthreepartsofa1MHClinethanol mixturefor24h at40°C.Forfurtheracidification,thematerialwastreatedwith1MH 2SO 4 for4h.

Thefinalproductwasrecoveredbyfiltration,washedthoroughlywithwaterand ethanol,andoven-dried.

Catalystcharacterization

Texturalpropertiesofthecatalystsweredeterminedfromnitrogen adsorption/desorptionisothermsmeasuredat-196°CusingaMicromeriticsASAP2020 analyzer.Priortomeasurement,thesamplesweredegassedfor5hat100°C.The surfaceareawasobtainedusingtheBETmethod.Theporevolumeandporesize distributionswerecalculatedfromthedesorptionbranchoftheisothermsaccordingto

26 theBJHmethodasdiscussedintheliterature[37,38].Incorporationofthefunctional groupsandremovalofthesurfactantwereconfirmedbythermogravimetricanalysisin thetemperaturerange50°Cto650°Cwithatemperaturerampof5°C/minunderair flowusingaPerkin-ElmerTGA7.CHNSvaluesweredeterminedbyelementalanalysis usingaPerkin-ElmerSeriesII2400analyzer.Forthepotentiometrictitrations,a

Metrohm798MPTTitrinoautomatictitratorequippedwithaMetrohmcombinedglass electrode(6.0233.100)wasused.TheelectrodewascalibratedwithbuffersofpH4.00,

7.00and10.00(Fisher)beforeeachmeasurementanddataweretakenafterthepotential signalstabilized.Eachtitrationwasperformedundervigorousstirringtoavoidexternal masstransferlimitations.Addingasmallamountofbasesolutioninitiallyandlettingit equilibratefor30minhelpedtoreducethenoiseinthetitrationcurve.Resultswere analyzedfortheacidicstrengthandtotalacidcapacityusingtheGranPlotanalysisand thedynamicendpointdeterminationmethod(availablethroughtheMetrohmTiamo software).Forthemeasurementsaboveambienttemperatures,thesolutionvesselwas immersedinanoilbathequippedwithtemperaturecontrolandwasattachedtoatotal refluxcolumntopreventsolventevaporation.Acidicstrengthandtotalacidcapacity valueswerecalculatedforthesynthesizedcatalystsatvaryingsaltconcentrations(no salt,0.01M,1M)andcatalystconcentrationsvaryingfrom0.02to0.5wt%atthree temperatures(25,50,70°C).

ResultsandDiscussions

Comparisonoforganicacidfunctionalizedmesoporoussilicawithfunctionalgroups ofvaryingstrength,asshowninScheme1,wereincorporatedontoSBA-15andHMS typesupportsviaco-condensationmaximumat15%loading.Onlyco-condensed materialswerecomparedratherthangraftedsoastomaintainamoreuniform

27 distributionalongthechannels.Previousworkhasshownthatthefunctionalgroups tendtopreferentiallylocateattheporemouthwhenincorporatedviapost-synthesis grafting[39].Amaximumloadingof15mol%ofthefunctionalgroupswasusedinthe currentworkaspreviousstudiesshowedthathighloadingsoffunctionalgroupscan disrupttheregularmesoporousstructure[15].

Scheme1. Functionalgroupsincorporatedontomesoporoussilica.Propylsulfonicacid (a);arenesulfonicacid(b);ethylphosphonicacid(c);butylcarboxylicacid(d).

TheN 2adsorption-desorptionisothermsforthepreparedmaterials(Figure1) displayedTypeIVisotherms,whicharecharacteristicofmesoporousmaterials[39].

Moreover,H1typehysteresisloopssuggestedthatthefunctionalgrouploadings maintainedtheregularityoftheinorganicmesostructure.Thetexturalpropertiesforthe synthesizedmaterialsaregiveninTable1.Narrowporesizedistributionswere measuredforallofthesynthesizedmaterialswithintheexpectedrangeformesoporous materials[22,33-35].Medianporediameterswereinthereportedrangeaswell,but variedsomewhataccordingtothefunctionalgroup.Thisdifferencewasexpectedas oneofthefactorsdeterminingtheporesizeofthefinalfunctionalizedmaterialisthe interactionoftheprecursorswiththeaqueoussynthesismediaduringone-potsynthesis

[39].

28

Figure1. N2adsorption-desorptionisothermsofthe15%organicacidfunctionalized SBA-15materials.( )SBA-15-PrSO 3H;( )SBA-15-EtPO 3H;( )SBA-15-ArSO 3H; ()SBA-15-BuCOOH.

Table1. Texturalpropertiesoftheorganicacidfunctionalizedmesoporoussilica samples.

Loading SBET MPD Vp Catalyst (%) a (m 2/g) (Å) (cm 3/g)

SBA-15-ArSO 3H 15 637±13 60±4 0.61±0.12

SBA-15-EtPO 3H 15 625±22 67±3 0.81±0.09

SBA-15-PrSO 3H 15 758±18 54±2 0.90±0.07 7.5 744±19 56±3 0.97±0.11 2.5 788±20 59±2 0.86±0.08 SBA-15-BuCOOH 15 575±12 77±5 0.83±0.05 7.5 613±15 80±2 0.77±0.14 2.5 649±24 81±3 0.82±0.05

HMS-PrSO 3H 15 815±27 30±3 0.66±0.09 7.5 884±18 32±4 0.69±0.13 a MolarratiooforganicacidprecursortoTEOS

29

Thet-Plotanalysisindicatedthepresenceofmicroporesinthematerials.

MicroporesinSBA-15structuresaretypicalandbecauseoftheirsmallsize,no functionalgroupsareexpectedtoresidewithinthem[40].Infact,thesurfacedensity plots(Figure2),preparedaccordingtotheprocedureexplainedbyLiuandco-workers

[41],suggestedthatthefunctionalgroupswereresidingonthesurfaceofthepores therebymakingthemreadilyaccessible.

Figure2. Surfacedensityof–PrSO 3HgroupsincorporatedontoSBA-15basedonS content.

Thefunctionalgroupincorporationwasfurtherconfirmedbythermogravimetric analysis,asshowninFigure3.Thefirstpeakforeachsamplewasassociatedwiththe desorptionofphysisorbedwater.Inpreviousstudies,apeakaround220°Chasbeen observedandattributedtothepresenceofresidualsurfactant.Modificationofthereflux mediabyaddingasmallamountofHClfacilitatedsurfactantremovaland,therefore, thepeakassociatedwiththedecompositionoftheresidualsurfactantmostly disappearedasseeninFigure3.Elementalanalysischaracterizationindicatedthateven withthemodifiedrefluxmethodsomeofthecarbonaceousmaterialwasretainedinthe samples.Therefore,Cmol%wasnotusedasanindicatorofthenumberofincorporated functionalgroups.Smol%wasusedforSBA-15-PrSO3HandSBA-15-ArSO 3Handthe

30 measuredsulfurcontentsobtainedbyelementalanalysiswereingoodagreementwith themolarratiosoftheprecursorusedinthesynthesisofthematerials,demonstrating highincorporationyieldofthefunctionalgroups.Thepresenceofthepeakat450°C andtheabsenceof350°Cpeakprovescompleteoxidationofthiolgroupsforthe

-PrSO 3Hfunctionalizedmaterials[33].Thedecompositionofthe–ArSO 3Hgroups, whichwasobservedat540°C,wasalsoconsistentwiththereportedvalues[22].

Figure3. Thermogravimetricanalysisofthe15%functionalizedmesoporoussilica materials.( )SBA-15-PrSO 3H;( )SBA-15-EtPO 3H;( )SBA-15-ArSO 3H;( ) SBA-15-BuCOOH.

Theacidicstrengthandtotalacidcapacitiesofthesynthesizedmaterialswere calculatedusingtheGranPlotanddynamicequivalencepointmethods.Inthebuffer regionofthetitrationcurve,theaciddissociationconstantK aisrepresentedintheslope oftheGranPlot[42],

- -Г Г (Equation1)

where visthevolumeofthebaseaddedand Veistheendpoint.

Alternatively,intheacidicregionofthetitrationcurvetheHenderson-Hasselbalch equationcanbeusedtodeterminethepK a[42],

- Г (Equation2)

31

wherethedissociatedbaseconcentration[A -]totheundissociatedacidconcentration

[HA]ratiocanbeestimatedfromtheratioofbaseaddedvolume/endpointvolume.

However,theHenderson-Hasselbalchapproachinvolvesasingle-pointdetermination andhasbeenshowntoholdforanarrowregiononly,whiletheGranPlotsrepresentthe trendfrommultipledatapoints[29].AlthoughGranPlotsareconsideredaccuratefor thedeterminationofacidityconstants,curve-fittingtechniquesareconsideredtobe moreaccuratefordeterminingthetotalacidcapacities[32].Therefore,thedynamic equivalencepointmethod,whichdeterminestheendpointbasedonthefirstderivative ofthefittedcurve,wasusedforthedeterminationoftotalacidcapacities.

Masstransferlimitationsmustbemorerigorouslyaddressedinthetitrationof heterogeneousacidsrelativetohomogeneousacids.Externaldiffusionlimitationscan beovercomewithrapidstirringspeeds.Inordertoreduceinternaldiffusionlimitations, thebasictitrantmustbeintroducedtothesystemslowenoughtoassurethatequilibrium isreachedpriortothesubsequenttitrantinjection.Additionofasaltfacilitatesion- exchangetherebyreducingtheresponsetimeoftheelectrodebyincreasingtheion concentration.ForanaqueoussolutionofHCl(Figure4a),onlyasmallamountofsalt

(0.001M)wasrequiredtoshortentheresponsetimeformeasuringthepHvalue,which agreedwiththeoreticalvaluethatwascalculatedfromtheHClamountaddedby assumingthattheacidistotallydissociatedandrepresentedasH +.Athighersalt concentrationsthemeasuredpHvalues,namelytheprotonactivities,willnolonger representtheactualprotonconcentrationduetothedeviationofactivitycoefficient fromunity.ThesamephenomenonwasobservedforSBA-15-PrSO 3Hinwaterat similarprotonconcentration(Figure4b),buthighersaltconcentrationswererequiredto achievearapidresponsetimeforreachingtheequilibratedpHvalue.Evenatthehigher saltconcentration,theresponsetimewasnotasrapidaswiththeHClsolution.The

32 longerresponsetimeandhighersaltconcentrationrequirementwithSBA-15-PrSO 3H wereduetomasstransfer.

Figure4. EffectofsaltonresponsetimeandpHforaqueoussolutionsofhydrochloric acid(a),andSBA-15-PrSO 3H(b).( )DI-water;( )0.001MNaCl (aq); ()0.005M NaCl (aq) ;( )0.01MNaCl (aq) ;( )0.1MNaCl (aq) ;( )1MNaCl (aq) .

ExtensionofthisstudytotheotherorganicacidfunctionalizedSBA-15materials resultedinsimilartrends.Theresponsetimeoftheelectrodedecreasedwithincreasing saltconcentrationandthenremainedconstantathighersaltconcentrations,whilethe finalpHvaluestartedtodecrease.ThefinalpHvalues,theshortestresponsetimefor reachingthatvalue,andthelowestsaltconcentrationrequiredforthatresponsetimeare giveninTable2foraqueoussolutionsoftheorganicacidfunctionalizedSBA-15 materials.Fromthesedata,itcanbeseenthattherequiredminimumsaltconcentration and/ortheresponsetimeisnotsolelyafunctionoftheacidicstrengthorthe concentrationofthecatalyst,butitisdeterminedbythefinalpHvalueofthesolution, whichisacombinationofbothfactors.

33

Table2. EffectofsaltonresponsetimeandpHforaqueoussolutionsoforganicacid functionalizedSBA-15materials. Loading Cat.conc. NaClconc. Response Final Catalyst (%) (mg/ml) (mM) time(s) pH

SBA-15-PrSO 3H 15 0.20 10 64±2 3.34±0.02 0.10 5 62±3 3.49±0.01 0.04 5 40±2 3.69±0.02 7.5 0.20 5 58±1 3.51±0.02 0.10 5 52±2 3.65±0.03 0.07 1 60±3 3.75±0.01 2.5 0.20 1 48±1 3.78±0.02 SBA-15-BuCOOH 15 1.00 5 60±1 3.99±0.01 0.40 1 42±2 4.34±0.01 7.5 2.00 1 56±3 4.01±0.02 2.5 2.00 1 44±4 4.25±0.03

SBA-15-ArSO 3H 15 0.20 10 68±2 3.22±0.01 0.10 10 62±1 3.35±0.01

SBA-15-EtPO 3H 15 0.20 5 46±2 3.74±0.02 0.70 10 54±2 3.41±0.03

Asimilareffectofsaltintroductiononresponsetimeswasalsoobservedinthe bufferregionofthetitrationcurves.AsshowninFigure5a,titrationcurvesforSBA-

15-PrSO 3Hwith0.005MNaOH,introducedatthreedifferentrates,e.g.0.01,0.02,0.05 ml/min,didnotshowanydifferencefromeachotherwhen0.01MNaClhadbeen added,whichwasconfirmedwiththeotherfunctionalizedmaterialsaswell.Inthe absenceofsaltinthetitrationmedia,thespeedatwhichthebasicsolutionwas introducedchangedtheslopeofthecurveinthebufferregionaswellasthepHvalues inthebasicregime(Figure5b).Thisresultsuggestedthatthepresenceofsaltnotonly facilitatedtheprotonlossbytheacid,butalsotheprotongainbythebase.

34

Figure5. TitrationcurvesforSBA-15-PrSO 3HatdifferenttitrationspeedsinDI-water (a)andin0.01MNaCl(b).( )0.05ml/min;( )0.02ml/min;( )0.01ml/min.

Comparingthetotalacidcapacitiescalculatedfromtitrationdatainthepresenceand absenceofthesaltfurtherdemonstratedtheroleofthesaltinprotonuptakebythebase.

Greaterconsistencybetweenthetotalmeasuredacidcapacitiesandthesulfurcontents forthesulfonicacidfunctionalizedmaterialswereachievedinthepresenceofsaltthan thosedeterminedintheabsenceofthesalt(Table3).Eventheuseofslowtitration rateswasnotsufficienttoestablishtheequilibriumbetweentheprotonlossoftheacid andtheprotongainofthebasewithoutthesalt.Evenwhenthetitrationswere performedwithalessconcentratedbasesolution,e.g.with0.001MNaOHandlow additionrateof0.01ml/min,inordertoachievemorerapidequilibrium,thetotalacid capacityvaluesof0.18,0.55,and1.11meq/gforthe2.5,7.5and15%

SBA-15-PrSO 3H,respectively,werestilllowerthanthemeasuredScontent.Thus,salts wereneededtoestablishtheequilibriumforprotonreleaseanduptakeevenatveryslow ratesoftitrantintroduction.

35

Table3. TotalacidcapacitiesandsulfurmolarratiosforSBA-15-PrSO 3Hand SBA-15-ArSO 3H.

S Totalacidcapacity(meq/g) NaCl Loading a Catalyst content b Titrationrate(ml/min) conc. (%) (mmol/g) 0.01 0.02 0.05 (mM)

SBA-15-PrSO 3H 15 1.20 1.08±0.02 1.01±0.03 0.95±0.02 0 1.15±0.03 1.18±0.04 1.16±0.03 10 1.58±0.05 1.32±0.03 1.12±0.02 100 1.11±0.02 c - - 0 7.5 0.65 0.55±0.03 c - - 0 - 0.68±0.04 - 10 2.5 0.24 0.18±0.02 c - - 0

SBA-15-ArSO 3H 15 1.18 - 1.63±0.02 - 100 aOrganicacidprecursor/TEOSratio; bdeterminedbyelementalanalysis; c titratedwith 0.001MNaOH (aq) ;othermeasurementswereperformedwith0.005MNaOH (aq) .

Incontrast,excessivesaltadditionwouldbeanticipatedtochangetheactivity coefficientssignificantly,sothatthemeasuredvaluesnolongercorrespondtothe protonconcentration.TitrationsofSBA-15-PrSO 3HandSBA-15-ArSO 3Hin0.1M

NaClresultedintotalacidcapacitieshigherthanthevaluesestimatedfromsulfur content.Also,theapparentpK avaluedecreasedwithincreasingsaltconcentration

(Figure6).SimilartothetrendobservedwiththepHvaluesfromincreasingsalt concentrationsasshowninFigure4,thedecreaseintheapparentpK aandtheincreasein theacidcapacitywouldalsobeexplainedbychangeintheactivitycoefficient.Asalso showninFigure6forSBA-15-EtPO 3H,theprotonactivitywasinfluencedbythe amountofthecatalystpresentintitrationmedia.Infact,increasingamountofcatalystin themediawasfoundtoincreasetheapparentacidicstrengthforallthedifferent functionalizedmaterials.

36

Figure6. EffectofSBA-15-EtPO 3Handsaltconcentrationonacidicstrength.( )DI- water;( )0.01MNaCl (aq) ;( )1MNaCl (aq) . Figure7showstheprotonconcentrationscalculatedfromthemeasuredpHvalues assumingthattheactivitycoefficientisequaltounity.Includedarevaluesforvarying levelsofaddedSBA-15-PrSO 3H(15%)andincreasingsaltconcentrations.Ascanbe seenfromthefigure,therelationshipthatexistsbetweenthecatalystconcentrationand protonconcentrationbegantodeviatefromlinearityasthesaltconcentrationincreased.

Theaverageactivitycoefficientswereestimatedbytakingaratioofthemeasured pHvaluestotheestimatedvaluescalculatedaccordingtothefollowingequation[42];

- - Г Г (Equation3)

TopredictthepHvalueofaparticularsolutionwithanorganicacidfunctionalized materialtheacidcapacityandpK avalueneedstobeknown.However,thesevaluesare dependentonthetitrationcalculations,soabackwardfeedbackprocesswasusedthat requireddeterminationofacidicpropertiesunderselectedconditions,estimatingpH basedonthoseproperties,andcomparisontoitsmeasuredvaluethroughcalculationof theactivitycoefficient.TheconditionsthatwerefoundforpredictingpHvaluesclosest

37 tothemeasuredvalueswere0.01MNaCl,with0.005MNaOHintroducedatarateof

0.02ml/min.Theseweretakenasthedefaultvaluesforthefurthertitrations.

Figure7. Effectofsaltonthecorrespondingprotonactivitieswithincreasing concentrationofSBA-15-PrSO 3Hin( )DI-water;( )0.001MNaCl (aq) ;( )0.01M NaCl (aq) ;( )0.1MNaCl (aq) ;( )0.5MNaCl (aq) .

InFigure8theeffectofthecatalystandsaltconcentrationsontheactivity coefficientsareshownforSBA-15-PrSO 3H.Thesewerecalculatedbasedontheacidic propertiesdeterminedunderthedefaulttitrationconditions.Extensionoftheworktothe otherfunctionalgroupsrevealedthattheactivitycoefficientwasnotsolelydependent onthecatalystconcentration,theacidicstrength,ortheloadingdensityofthefunctional group,butitwasrelatedtothepHvalueofthesolution,whichwasacombinedeffectof thecatalystconcentrationandtheacidicstrengthandloadingofthefunctionalgroup.

Regardlessofthechoiceofthefunctionalgroup,theactivitycoefficientswerecloseto unityforcatalystconcentrationsthecorrespondedtopHvaluesofabout3.5-4,but deviatedfromunityforlowervalues,especiallywhenthesaltconcentrationwasmore than0.01M.AlsoshowninFigure8arethepredictedactivitycoefficientscalculated fromtheDebye-HuckelequationortheextendedDebye-Huckelequation(forthe0.1M

NaClcase).

38

Figure8. Activitycoefficientsfor15%SBA-15-PrSo3Hin()nosalt;()0.01M NaCl;()0.1MNaCl.(*ThebarsindicatethepredictedvaluesusingDebye-Huckel equation.)

TheDebye-Huckellimitinglawequationisconsideredtobecorrectuptoionic strengthsof0.01M,butforhigherconcentrationsaslightlymodifiedversionisneeded

[43].Inbothequations,thesaltconcentrationisthemajorfactorintheactivity coefficientvalue,whereasthedissociatedacidconcentrationhasonlyaminoreffect.In thecaseofmesoporoussilicasamplestheacidconcentrationalsoaffectstheactivity coefficient,whichtheDebye-Huckelequationswerenotabletopredict.When determiningtheacidicproperties,itiscrucialtoselecttheconditionsthatwillensure equilibriumforprotontransferandwhilestillallowingtheidealsolutionassumptionto beinvoked.Tomaintainthisfinebalance,theabovementioneddefaultconditionswere usedtotitratecatalystsolutionsatconcentrationsleadingtostartingpHvaluesof3.5.

Theacidicstrengthandtotalacidcapacityfortheorganicacidfunctionalized mesoporoussilicasandseveralreferencematerialsareshowninTable4.Aswouldbe expected,theprimaryfactorleadingtodifferentpK avalueswasthechoiceofthe

39 incorporatedacidfunctionalgroupwithincreasingstrengthorderhavingtheorder,–

BuCOOH<-EtPO 3H<-PrSO 3H<-ArSO 3H.WhenunfunctionalizedSBA-15was titratedunderthesameconditionsusedforTable4,adefinitivetitrationcurvecouldnot beobservedduetooftheweakacidityofthesegroupsandassuchthetechniqueisnot appropriatefordeterminingsilanolacidityvalues.Whilethesilanolsdonotinteract directlywiththebasetitrant,itispossiblethatthesilanolsmaybeahavinganindirect effectthroughinteractionwiththefunctionalgroups.

Table4. Acidicstrengthsandtotalacidcapacitiesoftheorganicacidfunctionalized mesoporoussilicasamples. Totalacid Loading a, Catalyst pK capacity % a meq/g

SBA-15-ArSO 3H 15 2.62±0.03 1.20±0.06 b SBA-15-ArSO 3H 15 2.49±0.04 1.82±0.08

SBA-15-EtPO 3H 15 3.56±0.02 0.75±0.04

SBA-15-PrSO 3H 15 2.78±0.03 1.13±0.05 7.5 2.88±0.03 0.62±0.07 2.5 3.06±0.02 0.25±0.03 SBA-15- BuCOOH 15 4.78±0.03 0.70±0.02 7.5 4.97±0.02 0.54±0.03 2.5 5.45±0.03 0.33±0.02

HMS-PrSO 3H 15 2.82±0.02 1.05±0.08 7.5 2.86±0.04 0.55±0.03 Amberlyst-15 N/A 1.78±0.05 2.18±0.06 Amberlyst-15 b N/A 1.31±0.05 2.35±0.04 Propanesulfonic acid N/A 1.57±0.06 N/A HCl N/A ~0.1 N/A N/A:notapplicable, a organicacidprecursor/TEOS, bmeasuredwith1wt% catalystconcentrationintheabsenceofNaCl

40

Toexaminetheeffectofthefunctionalgroupinteractionwiththesilanolgroupson theoverallacidity,theacidstrengthsof-PrSO 3HgroupstetheredontoHMSandSBA-

15typemesoporoussilicasattwodifferentloadingdensitieswerecompared.HMS- typemesoporoussilicasupportshavesmallerporevolumeswiththinnerwalls,areless ordered,havesmallerpores,anddonotcontainmicroporesasfoundwithSBA-15 silicas[1,2,39].Forallofthefunctionalizedmaterials,thepK avaluesforbothsilica supportswerefoundtobesimilartoeachotherandthetotalacidcapacitieswereclose tothesulfurcontentasdeterminedbyelementalanalysis.Therefore,interactionofthe surfacesilanolswiththeacidicgroupsdidnotappeartoplayasignificantroleinthe overallacidityproperties.

Incontrast,theacidicstrengthfor–PrSO 3Hgroupchangedwhenthesupportwas changedfromsilicatoresin.ThestrengthofthesulfonicacidgroupsonAmberlyst-15, whichhasapolymericbackbone,washigherthanthatforSBA-15-PrSO 3H[17].Given thatthefunctionalgroupisthesame,theincreasedacidstrengthfortheresinmaterial wouldseemtobeduetoadifferenceintheinteractionofthefunctionalgroupwiththe support,theinteractionofthesupportwiththemedia,and/orthecooperativeeffect betweentheacidicgroupsduetohigherloadingsontheresin[16].Inthecurrentwork, thetotalacidcapacityforAmberlyst-15(wet)wasfoundtobe2.18meq/gbytitration underthedefaultconditions.Intheliterature,theionexchangecapacityofthisresin wasreportedasca.1.7meq/linthewetform[21]andthedensityoftheresininthewet formis770g/lcorrespondingto2.21meq/g,whichagreeswellwithourvalue.Onthe otherhand,thepK avaluefoundinthecurrentstudywashigherthanthevaluesreported byKoujoutetal.[16,17,28].Inthosestudiestheneutralizationenthalpieswere measuredusing10wt%resininwaterandtheyfoundthatthesulfonicgroupswere actingasstrongacids.Thestrongaciditywasattributedtothepresenceofnetwork

41 interactionsbetweenthefunctionalgroups,whichoccuratlowlevelsofhydration.At higherwatercontentlevels,watermoleculeswouldbeexpectedtointerruptthese interactionsleadingtoadecreaseinacidicstrength.Itwasnotpossibletoperform titrationsfor10wt%ofcatalystsolutionsinourexperimentalset-up,becauseat10wt% catalystconcentrationaslurrymixturewasformedratherthanasolutionnotallowing foraccurateelectroderesponse.However,titrationof1wt%resinsolutionswasfound toyieldhigherpK avalues.ComparedtothosereportedbyKoujoutetal.[16,17,28],the loweracidicstrengthvaluesobtainedindilutesolutionsinthecurrentworkmightbe duetoabreakdownofthewaternetworkinteractions.

Theincreasingacidicstrengthforaparticularfunctionalgroupwithincreasing functionalgroupdensityloadingstillindicatedacooperativeeffectbetweenthe functionalgroups.Thecooperativeeffectbetween-ArSO 3Hgroupsincorporatedontoa polymericbackbonewasreportedpreviouslyandwasattributedtothepresenceof disulfonatedphenylgroups,interactionsbetweentheneighboringsulfonicacidgroups, andsulfonebridgesbetweenneighboringphenylgroupsatlowlevelsofhydration[28].

Evenathigherwaterlevels,interactionsamongthe–PrSO 3Hgroupswerereportedto enhancetheoverallacidstrength[15].AsshowninTable4,thepK avaluesdecreased somewhatforincreasingloadingsof–PrSO 3HgroupsontotheSBA-15structure.

Extensionofthestudytothe–BuCOOHgroupindicatedtheexistenceofsimilar interactionsevenfortheweakestfunctionalgroup.

The15%loadedSBA-15-PrSO 3Hdisplayedloweracidicstrengththanits homogeneousanalog,propanesulfonicacid.Itwasshownthattetheringfunctional groupsontoasurfaceledtoacidstrengthreductionduetotheirlimitedmobility[44].

Thecooperativeeffectseenwithtetheredgroupswasproposedtoarisethroughthe formationof‘acidpools’withincreasingfunctionalgrouploadingorcontrolledspacing

42 ofthegroups.Theacidicstrengthofpropanesulfonicacidwasfoundtobemore similartothatofhydrochloricacidgivingastrongacidthatdissociatescompletelyin water.Waterisnotagooddifferentiatingsolventforstrongacidssinceanyacid strongerthanthehydroniumionwillbeleveledtothestrengthofthehydroniumion, indicatedbyameasuredpK avalueequaltozero.ThepositivepK avaluesforthe preparedfunctionalizedcatalystsmeantthattherewasnowaterlevelingeffectasa portionoftheacidgroupsremainsundissociated.Therefore,differentstrengthsinwater couldbemeasured.

WhilethepositivepK avaluesfortheorganicacidfunctionalizedmaterialsinan aqueoussolutionindicatesthatthereisnolevelingeffecttakingplaceatroom temperature,itcouldbepossiblethatthesecatalystswouldbeleveledatelevated temperatures.Thetemperaturedependencyofacidicstrengthisexpressedby[43],

Г - (Equation4)

Assumingthatthefreeenergyremainsconstant,thenaturallogarithmofK amustbe proportionalto1/T.ThepK avaluesweremeasuredat25,50,and70°Cfor15%SBA-

15catalyststopredicttheacidicstrengthatmoreelevatedtemperatures.Extrapolated valuesfortheacidicstrengthat125°Cforthefunctionalizedmaterialscatalystsdidnot infactindicateanylevelingeffect(Figure9).

43

Figure9 .ExtrapolationofmeasuredpK avaluestoelevatedtemperaturesfor15% ()SBA-15-PrSO 3H;( )SBA-15-EtPO 3H;( )SBA-15-ArSO 3H;( )SBA-15- BuCOOH.

Insomestudies,thepK a-temperaturerelationshipwasstatedtobeunpredictabledue tothechangesinthesolventautodissociationconstantwithincreasingtemperature[45,

46].Alinearrelationshipwasobservedforthe25-70°CresultsasshowninFigure9.

However,itispossiblethatthelinearitywouldnotbemaintainedup125°C.However, thesetemperaturescouldnotbeaccessedwiththecurrentexperimentalapparatus.

Conclusions

Potentiometrictitrationwithastandardbasewasfoundtoprovideinsightintothe acidicpropertiesoforganicacidfunctionalizedmesoporoussilicainanaqueoussolvent.

Itwassownthattheconditionsunderwhichthetitrationsareperformedhavetobe chosencarefullyastheycanhaveasignificanteffectonthemeasuredvalues.Unlike homogeneousacidtitrations,heterogeneousacidtitrationsinvolvemasstransfer limitations,whichcanbepartiallyovercomebyusingsaltion-exchangeasthesaltcan facilitatetheprotonlossoftheacidandtheprotonuptakeofthebase.Whilesaltsaidin improvingthetitration,theirextensiveadditionleadstoactivitiesthatdeviate

44 significantlyfromtheactualprotonconcentrations.Theactivitycoefficientwasalso foundtodeviatefromunityforveryacidicstartingpHvalues,whichcanresultfroma combinationofbulkcatalystconcentration,functionalgrouploadingdensityandthe acidicstrengthofthefunctionalgroup.Accordingtothetitrationdata,whichwas obtainedundertheconditionsmeetingtheabove-mentionedcriteria,network interactionscanexistbetweentheconjugatedanionsenhancingtheacidicstrength, whiletheinteractionswiththesurfacesilanolsdidnothaveasignificantimpactonthe acidicstrength.Whenusedwiththeproperconditions,potentiometrictitrationcanbe usefultoolforcharacterizingtheacidicpropertiesofsolidmaterialscontainingtethered acidicgroups.

Acknowledgement

ThismaterialisbaseduponworksupportedbytheNationalScienceFoundation underAwardNo.EEC-0813570.

References

[1] A.Stein,B.J.Melde,andR.C.Schroden,AdvMater12(2000)1403-1419. [2] J.H.Clark,D.J.Macquarrie,andS.J.Tavener,DaltonT(2006)4297-4309. [3] J.A.Bootsma,andB.H.Shanks,ApplCatala-Gen327(2007)44-51. [4] A.S.Dias,M.Pillinger,andA.A.Valente,JCatal229(2005)414-423. [5] J.N.Chheda,Y.Roman-Leshkov,andJ.A.Dumesic,GreenChem9(2007)342- 350. [6] R.K.Zeidan,V.Dufaud,andM.E.Davis,JCatal239(2006)299-306. [7] X.S.Zhao,G.Q.Lu,A.K.Whittaker,J.Drennan,andH.Xu,MicroporMesopor Mat55(2002)51-62. [8] S.Hamoudi,S.Royer,andS.Kaliaguine,MicroporMesoporMat71(2004)17- 25. [9] S.Koujout,andD.R.Brown,ThermochimActa434(2005)158-164.

45

[10] R.Kanthasamy,I.K.Mbaraka,B.H.Shanks,andS.C.Larsen,ApplMagnReson 32(2007)513-526. [11] J.L.Smith,R.G.Herman,C.R.Terenna,M.R.Galler,andK.Klier,JPhysChem A108(2004)39-46. [12] S.Fiorilli,B.Onida,B.Bonelli,andE.Garrone,JPhysChemB109(2005) 16725-16729. [13] V.Herledan-Semmer,S.Dakhlaoui,F.Guenneau,E.Haddad,andA.Gedeon, StudSurfSciCatal154(2004)1519-1524. [14] C.Moreau,R.Durand,P.Geneste,andS.Mseddi,JMolCatala-Chem112 (1996)133-141. [15] I.K.Mbaraka,andB.H.Shanks,JCatal244(2006)78-85. [16] S.Koujout,andD.R.Brown,CatalLett98(2004)195-202. [17] S.Koujout,andD.R.Brown,CatalysisinApplication(2003)178-185 [18] G.Morales,G.Athens,B.F.Chmelka,R.vanGrieken,andJ.A.Melero,JCatal 254(2008)205-217. [19] B.Rac,A.Molnar,P.Forgo,M.Mohai,andI.Bertoti,JMolCatala-Chem244 (2006)46-57. [20] D.Farcasiu,A.Ghenciu,G.Marino,andK.D.Rose,JAmChemSoc119(1997) 11826-11831. [21] M.Hart,G.Fuller,D.R.Brown,J.A.Dale,andS.Plant,JMolCatala-Chem182 (2002)439-445. [22] J.A.Melero,G.D.Stucky,R.vanGrieken,andG.Morales,JMaterChem12 (2002)1664-1670. [23] V.Dufaud,andM.E.Davis,JAmChemSoc125(2003)9403-9413. [24] S.K.Parida,S.Dash,S.Patel,andB.K.Mishra,AdvColloidInterfac121(2006) 77-110. [25] A.Jentys,K.Kleestorfer,andH.Vinek,MicroporMesoporMat27(1999)321- 328. [26] J.M.Rosenholm,andM.Linden,ChemMater19(2007)5023-5034. [27] S.Hamoudi,D.T.On,andS.Kaliaguine,NanotechnologyinMesostructured Materials146(2003)15-22. [28] S.Koujout,B.M.Kiernan,D.R.Brown,H.G.M.Edwards,J.A.Dale,andS. Plant,CatalLett85(2003)33-40.

46

[29] J.M.B.F.Diniz,andT.M.Herrington,JChemEngData38(1993)109-111. [30] D.Rosenthal,R.G.Bates,andH.B.Hetzer,JAmChemSoc86(1964)549-555. [31] I.N.Levine,PhysicalChemistry.McGraw-Hill,NewYork,1995. [32] N.Akimoto,H.Hanakuma,andK.Hozumi,AnalyticalSciences3(1987)515- 519. [33] D.Margolese,J.A.Melero,S.C.Christiansen,B.F.Chmelka,andG.D.Stucky, ChemMater12(2000)2448-2459. [34] C.M.Yang,Y.Q.Wang,B.Zibrowius,andF.Schuth,PhysChemChemPhys6 (2004)2461-2467. [35] R.J.P.Corriu,L.Datas,Y.Guari,A.Mehdi,C.Reye,andC.Thieuleux,Chem Commun(2001)763-764. [36] W.D.Bossaert,D.E.DeVos,W.M.VanRhijn,J.Bullen,P.J.Grobet,andP.A. Jacobs,JCatal182(1999)156-164. [37] B.Rac,M.Nagy,I.Palinko,andK.Molnar,ApplCatala-Gen316(2007)152- 159. [38] I.Diaz,C.Marquez-Alvarez,F.Mohino,J.Perez-Pariente,andE.Sastre,JCatal 193(2000)283-294. [39] F.Hoffmann,M.Cornelius,J.Morell,andM.Froba,AngewChemIntEdit45 (2006)3216-3251. [40] S.H.Joo,R.Ryoo,M.Kruk,andM.Jaroniec,JPhysChemB106(2002)4640- 4646. [41] Y.H.Liu,H.P.Lin,andC.Y.Mou,Langmuir20(2004)3231-3239. [42] D.C.Harris,QuantitativeChemicalAnalysis.W.H.Freeman&Co.,NewYork, NY,1988. [43] S.I.Sandler,ChemicalandEngineeringThermodynamics.JohnWiley&Sons Inc.,NewYork,1999. [44] D.Farcasiu,A.Ghenciu,G.Marino,andR.V.Kastrup,JMolCatala-Chem126 (1997)141-150. [45] S.E.Lindberg,andJ.M.Coe,Tellus36B(1984)186-191. [46] C.McCallum,andD.Midgley,AnalChimActa65(1973)155-162.

47 CHAPTER3.QUANTUMCHEMICALMODELINGOF

SOLVATIONOFORGANICACIDFUNCTIONALGROUPSIN

MESOPOROUSSILICA

ApapertobesubmittedtoAppliedCatalysisA:General

BasakCinlar 1,MarkS.Gordon 2andBrentH.Shanks 1

1DepartmentofChemicalandBiologicalEngineering,IowaStateUniversity

2AmesLaboratory,IowaStateUniversity

Authorshiproles:

Cinlar:Primaryauthor.

Gordon:Providedadviceincomputationalmethods.

Shanks:Principalinvestigator.

Abstract

Duetotheirhighsurfacearea,tunableporesizeanduniformsupportstructure, organicacidfunctionalizedmesoporoussilicahasbeenextensivelyemployedas catalystsinliquid-phasesystems,butonlylittleinformationisavailableabouttheir solventinteractionsandtheiracidicstrengths.Investigatingthesepropertiesinaqueous mediaisofspecialimportance,becauseoftheextraordinaryhighdielectricconstantof waterduetoitsprotonmobility.Propylsulfonic-,butylcarboxylic-,ethylphosphonic- andarenesulfonic-functionalgroupsattachedonsilicabaseswithandwithoutsurface silanolgroupswereoptimizedfortheirinteractionwithwaterusingDFTwithB3LYP.

Whenthefunctionalgroupswereinteractingwithasinglewatermoleculeonly,the acidicstrengthforthefunctionalgroupsfollowedtheorder;-PrSO 3H>-ArSO 3H>-

EtPO 3H>-BuCOOH,basedonthe%elongationoftheO-Hbond.IntrinsicReaction 48

Coordinates(IRC)runofhydroniumionwiththeconjugatebaseoftheacidsresultedin thesamestructureastheoptimizedone.WhenEFP/DFT(B3LYP)modeledwater moleculesweresequentiallyaddedtothesystem,afteradditionofthefourthwater moleculethetrendoftheacidstrengthchangedto-ArSO 3H>-PrSO 3H>-EtPO 3H>-

BuCOOH.Howevercompletesolvationoftheacidicprotonwasnotattainedforanyof thefunctionalgroups.Inordertopredict pK avalues,theirinteractionwithadsorbed collidine,e.g.O-HandN-Hbonddistances,werecalculatedusingMP2withthe6-

311G(ddd)basisset.The pK avalueswereintherangeof3.74to4.94respectively; propylsulfonicgroupbeingthestrongestandbutylcarboxylicgrouptheweakestacid.

Introduction

Specificdesignofsilicasupportedcatalystswithorganicfunctionalgroupsforthe condensedphasereactionsystemsiscontingentupondeterminationoftheiracidic strengthandtheirinteractionwiththesolvent.Acidicstrengthoftheincorporated functionalgroupshasbeendeterminedviadifferentexperimentaltechniques;suchas potentiometrictitration[1],andspectroscopic[2-4]andcalorimetricstudieswithprobe molecules[5-7].However,thetrendoftheirrelativestrengthsvariesaccordingtothe methodusedandthesetechniquesdonotprovideinsightabouttherelationshipofthe acidicstrengthandthesolute-solventinteractions.Quantumchemicalcalculationsoffer theopportunitytoexaminetheinteractionsofthesegroupswithbothsolventandprobe moleculesindetail.Suchinformationisofimportancetooptimizecatalyticperformance oftheacidicfunctionalizedmesoporoussilicamaterials,especiallyforliquid-phase reactionsystems.

Acidicstrengthoftheincorporatedfunctionalgroupontoasurfaceisdeterminedby thenatureandtheconcentrationofthetetheredgroup,thenatureofthebackboneand 49 thesolvent[6-10].Techniquesinvolvingprobemoleculessuchastemperature programmeddesorption(TPD)studies,insituFTIRand2Dsolid-stateNMRavoidany solventeffects[11],butthechoiceofprobemoleculeaffectstherelativetrendsamong differentfunctionalgroups.Carbonmonoxide(CO)[12],ammonia(NH 3)[11,12], triethylphosphineoxide(TEPO)[12]andpyridine[2,3,13]areamongtheprobe moleculesthatareusedtocharacterizepropylsulfonic(-PrSO 3H),ethylphosphonic

(-EtPO 3H),butylcarboxylic(-BuCOOH)andarenesulfonic(-ArSO 3H)functional groupstetheredonsilicasurface(showninFigure1).AccordingtotheTPDstudies withpyridine[2,3,13],theacidicstrengthsof-PrSO 3Hand-ArSO 3Hareclosetoeach

31 other,infact-PrSO 3Hbeingslightlymoreacidic,whereas P-MASNMRstudieswith

TEPOasprobemoleculesrevealedthatthestrongestacidicgroupwas-ArSO 3H.

Furthermore,theorderofincreasingacidicstrengthwas-ArSO 3H>-PrSO 3H>

-EtPO 3H>-BuCOOH.Thisagreeswithpreviousresultsobtainedbypotentiometric titrationinaqueousmedia.

Figure1: Organic-acidfunctionalizedgroupsonmesoporoussilicastructures

Although2DsolidstateNMRisapowerfultechniquetomeasuretheacidicstrengths,it doesnotaccountforthesolute-solventinteractions.Theseinteractionsnotonlyaffect thestrengthofthecatalyticsite,buttheyalsochangeitsnaturebychangingthesolvent retentioncapacityaroundit[14].-ArSO 3Hgroupsareexpectedtobemoreacidicdueto thepresenceofmoreelectronegativephenylgroupattachedtosulfonicacid[15,16]. 50

However,-PrSO 3Hfunctionalizedmesoporoussilicashowedbetteractivityforthe etherificationofbenzylalcohols[16].Thehighercatalyticactivitywasattributedto increasedhydrophobicityofsulfonicacidmoietiesandenhanceddiffusionofreactants andproductsbyloweringthewaterretentioncapacityaroundthecatalyticsites.

Duetotheextraordinarypropertiesofhydratedprotons[17-19],thecharge stabilizationcapacityofwaterishigherthanmostsolvents,causingthecationtobe shielded.Whentheacidisionizeditproducesahydratedprotonthathastheabilityto beanactivesiteinthesolutionphaseawayfromthecatalystsurface[18,20,21].Thus locatingtheprotonswhentheyarefullysolvatedinwaterisnecessarytodetermine anion-cationinteractionstakingplaceonthecatalyticsurface.

Quantumchemicalcalculationsenablestudiesofone-to-oneinteractionofthe functionalgroupwitheithertheprobemoleculeorsolventmolecule.Recently,Yeragi

[22]usedRestrictedHartree-Fock(RHF)andMoller-Plessetsecondorderperturbation

(MP2)techniquestosimulatethesorptionofpyridineandcollidineonacidicfunctional groupsinmesoporoussilica.Theadsorptionenergyofpyridine,thedissociationofthe

O-Hbond,andtheO-Hbonddeformationuponcollidineadsorptionwerethe parametersusedtocharacterizetheacidstrengthsoffunctionalizedmesoporoussilicas.

TheresultsconfirmedtheresultswithTPDstudiesusingpyridineasprobemolecule, yetwereunabletopredictthetrendofacidicstrengthsinwater.

Inthiswork,theinteractionofpropylsulfonic(-PrSO 3H),ethylphosphonic(-

EtPO 3H),butylcarboxylic(-BuCOOH)andarenesulfonic(-ArSO 3H)functionalgroups withwaterarestudiedusingEffectiveFragmentPotentialmethodwithdensity functionaltheory(DFT).EffectiveFragmentPotentialmethodaccountsforboththe interactionsbetweenthesolventmoleculesasacontinuumandtheinteractionsbetween 51 thesoluteandsolventmoleculesasindividualinteractions.Thesimulationswere performedontwodifferentmodels,inwhichthefunctionalgroupsweretetheredona silicasurfacecappedwithandwithoutsurfacesilanolsinordertodeterminethe cooperativeeffectofsilanolswiththefunctionalgroups.Therebyitisaimedtoclarify theongoingtrendforacidicstrengthamongthefunctionalgroups,toexplaintheir interactionwithwaterandtoexploretheextentofsolvation.

ComputationalMethods

Thefourfunctionalgroups,(-PrSO 3H,-BuCOOH,-ArSO 3H,-EtPO 3H)attachedto silicabasewereconstructedusingMacMolPlot[23].Forallfunctionalgroupsthesilica basewasmodeledintwodifferentways;byhydrogen-cappingalltheoxygenatoms surroundingthecentralsilicontowhichfunctionalgroupsisattachedandbyhydrogen- cappingallthesiliconsadjacenttooxygenatomsthatareattachedtothecentralsilicon.

Thesestructuresandtheircorrespondingconjugatebaseswereoptimizedwiththe

RestrictedHartreeFock(RHF)methodusingthe6-311Gbasissetwith3d-polarization functionsinGAMESS[24].Also,waterandhydroniumionstructureswereoptimized withtheRHFmethodusingthesamebasisset.Initially,simulationswererunwith hydroniumionandtheconjugatebasestructuresofthefunctionalgroupstooptimizethe locationoftheproton.

TheRHFmodeledstructureswithsurfacesilanolsarefurtherrefinedwithsecond orderMoller-Plessetperturbationwiththesamebasissetandtheirinteractionwith pyridineisexaminedtostudytheeffectofthesilanolsinone-to-oneinteraction.TheO-

HandN-HbondelongationsareusedtopredictthepK avaluesasdescribedinliterature

[22]. 52

Inordertomodelthesolute-solventinteractions,thestructureswereoptimizedin thepresenceofonewatermoleculeusingDensityFunctionalTheory(DFT)with

Becke’s3parameterfunctional(B3LYP).TheRHFoptimizedstructureswereusedas aninitialmodelforthesecalculations.Therelativeacidicstrengthswereexpressedby theelongation%oftheO-Hbond,whichwascalculatedfromtheO-Hbondlengthsin theabsenceandpresenceofwater.

TotheDFT-optimizedstructurescontainingsurfacesilanols,EFP/DFT(B3LYP) modeledwatermoleculeswereaddedonebyone;uptoatotalof4EFPwatersandthe systemswereoptimizedagaininordertomeasuretheO-Hbondelongation.IRCruns werealsoperformedtoensuretheminimumenergystate.Inordertolocatetheglobal miminuminthepresenceofmultiplewatermolecules,MonteCarlosimulationswere run.

Results&Discussion

Modelingofsilica

TheDFT-optimizedstructuresfortheorganicacidsattachedtodifferentsilicabases areshowninFigure2.Thechoiceofthesemodelstructureswasbasedontheideaof maximizingandminimizingthecooperativeacidicstrengthwiththesupport.

Experimentally,threetypesofsilanolgroupswereidentifiedforthistypeofsupports: isolated,geminalandhydrogen-bonded.Whentwohydroxylgroupsarebondedtothe samesiliconatom,theyareknownasgeminalsilanols[25].Hydrogen-bondedsilanol groups,whichmustbewithin3Åofoneanother,arelessreactivetowardssurface modification [25].Thesurfacesilanoldensitydependsonthesynthesismethod.Silanol groupscanactasBronstedacids,hydrogen-bonddonors,orhydrogen-bondacceptors

[26].Ongetal.[26]usedsecondharmonicgenerationtostudythesilica/waterinterface andreported pK avaluesof4.5for19%ofthesilanol

Asaresult,thepre senceandnatureofthesilanolgroups strength.

Figure2.DFToptimizedacidfunctionalgroupstructures,(a h)withoutsilanolgroups,fromlefttoright: EtPO3H(c&g),-BuCOOH(d&h)

There-optimizedstructuresinthepres inFigure3.Duetotheinteractionofthewatermoleculeswiththeacidicproton,the bonddistanceofbetweentheOandtheacidicHincreased.Thisincreaseisani oftheacidicstrength:thelarge

Thereforebycomparingthenon bonddis tanceinthepresenceofwater,%elongationvalueswerecalculatedandare presentedinTable1. Unexpectedly,the bondelongation.Rega rdlessofthesilicabasetype,thetrendofdecreasingacidic 54 strengthfollowed-PrSO 3H>-ArSO 3H>-EtPO 3H>-BuCOOH. Excludingtheeffectof solventandexaminingone -to-oneinteraction withwatermoleculeasaprobe,the strengtheningeffectoftheelectronwithdrawingphenylgroupdiminished. Thetypeof silicamodelaffectstheelongation,infact toadifferentextentforeachfunctionalgroup.

Theeffectofthesurfacesilanol groupsismoresignificantfortheweakestacid, –

BuCOOH,andbecomeslesssignificantwiththeincreasingstrengthofthefunctional group.However,thepresenceofsurfacesilanol group sdidnotchangethetrend.

Figure3.DFToptimizedacidfunctionalgro upstructureswithwater,(a -d)withsilanol groups,(e-h)withoutthem,fromlefttoright: -SO 3H(a&e),-phSO 3H(b&f), -PO 3H2 (c&g),-BuCOOH(d&h) .

Theseresultsagreewiththepreviousmodelingstudiessimulatingthecollidine adsorptiononthesefu nctionalgroupsatMP2level[22] .However,thesilicabasemodel 55 usedinthatstudydidnotcontainanysilanolgroups,insteadallsilanolgroupswere cappedwithmethylgroups.Asthepreviousresultsindicated,theinteractionswiththe supportaffecttheacidicstrength.Thereforethecollidineadsorptionstudieswere repeatedforthefunctionalgroupswithoutcappingthesilanolgroups.

Table1.Bonddistances(B.D.)and%elongationsaccordingtoRHFoptimizedwater- functionalgroupsystems.

silanolsuncapped -PrSO 3H -ArSO 3H -EtPO 3H -BuCOOH O-HB.D.(Å) 0.9761 0.9700 0.9689 0.9584 ElongatedB.D.(Å) 1.0455 1.0381 1.0204 1.0027 Elongation% 7.11 7.02 5.32 4.62 silanolscapped O-HB.D.(Å) 0.9706 0.9629 0.9661 0.957 ElongatedB.D.(Å) 1.0384 1.0299 1.0159 1.0002 Elongation% 6.99 6.96 5.16 4.51

Collidinesorptionstudies

Sincecollidineishydrogen-bonded,theextensionoftheO-Hbonduponcollidine adsorptionisalsoanindicatorfortheacidicstrength[27]andinthiscasethereareno solvationeffectsinvolved.TheMP2optimizedstructureswithsurfacesilanolgroupsin thepresenceofcollidineareshowninFigure4.TheO-Hbondstretchingwascalculated bycomputingthedifferencebetweentheO-Hbondlengthsintheabsenceandpresence ofcollidineandistabulatedinTable2. 56

Figure4.MP2optimizedacidfunctionalgroupstructureswithcollidineadsorbed,:

-PrSO 3H(a),-ArSO 3H(b),-EtPO 3H(c),-BuCOOH(d).

Table2.O-Hbonddistances(B.D.)and%elongationsaccordingtoMP2optimized collidineadsorbedfunctionalgroupsystems.

-PrSO 3H -ArSO 3H -EtPO 3H -BuCOOH O-HB.D.(Å) 0.9761 0.9700 0.9689 0.9584 ElongateedB.D.(Å) 1.0467 1.0383 1.0193 0.9997 Elongation% 7.23 7.04 5.20 4.31 Furthermore,Lorenteetal.[28]havecorrelatedth e pK avaluestotheO-HandN-H bondlengths,whichwerepredictedfromthe 15 NNMRspectroscopybyidentifyingthe chemicalshiftsofcollidineadsorbedondifferenttypeofcarboxylicacids.Theequation is,

Г (Equation1)

Table3liststhecalculated pK avaluesandcomparesthemtotheresultsobtainedby previoussimulationstudies[22]andexperimentallybypotentiometrictitration.The inclusionofthesurfacesilanolgroupsinthemodelcontributedtotheoverallacidity,as indicatedbylower pK avaluesandmadethe pK avaluesclosertotheexperimental valuesinallcases,butthedifferencebetweenthemeasuredandcomputedvalues remainedsignificant.Asaresult,one-to-oneinteractionwiththeprobemoleculesdoes notreflectthebehaviorofthesecatalyticsitesinwater,regardlessofthesilicabase 57 modeling.Amodelthataccountsforsolvent-solventinteractionsincontinuumis necessary.

Table3: Estimated pK avalues

-PrSO 3H -ArSO 3H -EtPO 3H -BuCOOH O-Hbonddistance(Å) 0.9761 0.97 0.9689 0.9584 N-Hbonddistance(Å) 1.2447 1.3414 1.5318 1.567 pK apredicted 3.74 4.1 4.77 4.93 pK a[22] 3.91 4.31 4.94 5.2 pK a(experimental) 2.87 2.65 3.56 4.78

SolvationwithEFP/DFTwatermolecules

TheEFP/DFTmodeledwatermoleculeswereaddedtothefunctionalgroups tetheredonthesilicasurfacewithsurfacesilanolgroupsonebyone,andthebond elongationsweremeasuredaftereachaddition.Uptothreewatermoleculesthetrendof relativeacidicstrengthremainedthesame.Upontheadditionofthefourthwater molecule,the%O-Hbondelongationin-ArSO 3Hexceededtheelongationin–PrSO 3H.

Theweakestgroupwasstill–BuCOOH.Theoptimizedstructureswithfourwater moleculesareshowninFigure5andtheelongationvaluesaretabulatedinTable4.

Thehigherstrengthofthe–ArSO 3Hisduetotheinteractionofwaterwiththe electronwithdrawingphenylringascanbeseeninFigure5.IntheabsenceofanyEFP watermolecules,theringattractstheprotononthesulfonicacidgroup,ascanbeseen bycomparingtheO-Hbonddistancesofoptimized-PrSO 3Hand-ArSO 3Hstructures alone.TheO-Hbonddistanceintheoptimized–PrSO3Hstructureisshorterthanthe distanceintheoptimized-ArSO 3Hstructure.Byattractingtheproton,thephenylring makestheprotonlessacidicforone-to-oneinteractionswithwater.Inthepresence 58 multipleEFPwatermolecules,theringattractsthewatermolec ulesbyitself.Oncethe phenyl ringinteractswiththewatermolecules,theprotononthesulfonicacidisno longerwithdrawnbytheringandthusbecomesmoreacidic.Atthesamet ime,thering breakstheinteractionofwatermole culeswitheachotherandallowsamoreintimate contactof thewatermoleculewiththeacidicproton.

Figure5.DFToptimizedacidfunctionalgroupstructureswith4EFP/DFTwater molecules:-PrSO 3H(a), -ArSO 3H(b),-EtPO 3H(c),-BuCOOH(d)

Whereasthehydrogen -bondednetworkforwaterismoreorlessdistractedforthe

-ArSO 3Hand-PrSO 3Hmodels,thewaterstructureascontinuumismorerecognizable with-EtPO 3Handisalmostcompletelypresenti nthecaseof–BuCOOH.Inbothcases, thewaterstructuresdonotinteractdirectlywiththefunctionalgroupbythemselves,but supportthefirstwatermoleculethatisincontactwiththefunctionalgroup.The 59 presenceoftheEFPwaterschangesthebondelongation,butnotassignificantlyasit changedthe-ArSO 3Hand-PrSO 3H.

Table4.BondelongationsaccordingtoEFP/DFToptimizedwaterandDFToptimized functionalgroupsystems.

-PrSO 3H -ArSO 3H -EtPO 3H -BuCOOH

O-HB.D(Å) 0.9761 0.9700 0.9689 0.9584

ElongatedB.D(Å) 1.0555 1.0553 1.0225 1.0077

Elongation% 8.13 8.79 5.53 5.15

Althoughthebondelongationvaluesincreasedwithfurtheradditionofwater molecules,acompletedissociationfortheprotonfromthefunctionalgroupwasnot observed.AccordingtosimulationsofionizationconductedbyPaddison [29],sixwater moleculesarerequiredtostarttoshieldtheproton(asahydroniumion)fromdirect electrostaticchargeswiththeanion.Thecompleteshieldingoftheprotonwilloccur with22.5watermoleculesandshieldingoftheprotonallowsittomoveawayfromthe anionandthehydratedprotonisfreetocatalyzereactionsinthebulkawayfromthe supportsurface.Suchaneffectcouldnotbeobservedbysimulatingonly4water molecules.

Studieswithhighernumberofwatermoleculesenableamorerealisticapproachfor determinationofacidicstrength.Furthermore,ifamathematicalrelationshipbetween the%bondelongationandpK avaluescanbeestablished,theeffectofwatermolecules ontheacidicstrength,andtherebythestabilizationcapacityofwater,canbeoutlined quantitatively.However,EFP/DFTstudieswerealreadycomputationallyexpensive regardingthenumberofatomsinthemodelgroups.Inordertomodelthefullyhydrated 60 system,simulationswiththeMonteCarlomethodarestronglypreferredforlocatingthe globalminimum.

TheMonteCarlomethodinvolvesrandomdisplacementofthewatermolecules followedbygeometryoptimizationandthegeometrywiththelowesttotalenergyis acceptedastheglobalminimum.Thefinaloptimizedstructuredependsontheinitial structureanddifferentminimaareobtainedwithdifferentinitialgeometries.Therefore multipleMonteCarlosimulationshavetobeperformeduntilthesameglobalminimum isreached.

TheDFToptimizedfunctionalgroupsattachedontoasilicabasewithsilanolgroups wereinsertedinawaterclusterwith26members,modeledwithEFP/DFTforlocating theglobalminimum.Thegeometryoptimizationsresultedinaccumulationofmostof thewatermoleculesaroundthesilanolgroupsandglobaloptimizationcouldnotbe attainedduetotheprotontunnelingeffecttakingplacebetweenthewatermoleculesand silanolgroups.Differentinitialgeometriesdidnotresolvetheproblem,rathera limitationontherandomizationofwatermoleculesisrequiredthatisnotpossibleinthe classicalMonte-Carloapproach.

Alternatively,a-PrSO 3Hgroupattachedontosilicasupportwithcappedsilanol groupswasmodeledinawaterclusterof26membersusingtheMonteCarlomethod andtheproblemregardingtheprotontunnelingeffectwasnotencountered.Inthiscase auniformlydistributedwaterclustersurroundingthefunctionalgroupwasattainedas theglobalminimum.However,multipleMonteCarlosimulationsareneededfor ensuringtheglobalminimumthatwillbethefutureaspectsofthiswork.

Conclusions 61

Theinteractionofwaterandorganicacidfunctionalgroupstetheredonasilicabase weresimulatedwithquantumchemicaltechniques;DFTandEFP/DFTwithB3LYP whereRHFoptimizedstructureswereusedasaninitialmodel.AccordingtotheDFT- optimizedstructures,theprotonremainsonthefunctionalgroupwhenwatermolecule interactswiththem.Accordingtothebondelongationpercentagesontheoptimized structureswithDFT,theacidicstrengthisintheorderof;-PrSO 3H>-ArSO 3H>-

EtPO 3H>-BuCOOH,regardlessofthemodelingofthesilicabase.When4EFP/DFT

(B3LYP)optimizedwatermoleculeswereintroduced,theacidicstrengthorderaltered inthefollowingway:-ArSO 3H>-PrSO 3H>-EtPO 3H>-BuCOOH,basedonthe bondelongationpercentages.Completesolvationwasnotobservedhavingonly4water moleculesperacidgroup.CollidineadsorptionstudiesusingMP2providedawayto correlate pK avaluesoftheacidicgroupstotheextensionoftheO-Hbondupon

adsorption.The pK avaluesfollowedtheorder-PrSO 3H>-ArSO 3H>-EtPO 3H> -

BuCOOHregardlessofthesilicabasemodel.

References

[1] I.K.Mbaraka,B.H.Shanks,JCatal244(2006)78-85. [2] X.S.Zhao,G.Q.Lu,A.K.Whittaker,G.J.Millar,H.Y.Zhu,JPhysChemB101 (1997)6525-6531. [3] A.Ramirez,B.L.Lopez,L.Sierra,JPhysChemB107(2003)9275-9280. [4] S.Hamoudi,S.Kaliaguine,MicroporMesoporMat59(2003)195-204. [5] I.K.Mbaraka,D.R.Radu,V.S.Y.Lin,B.H.Shanks,JCatal219(2003)329-336. [6] D.Farcasiu,A.Ghenciu,G.Marino,K.D.Rose,JAmChemSoc119(1997) 11826-11831. [7] J.A.Melero,G.D.Stucky,R.vanGrieken,G.Morales,JMaterChem12(2002) 1664-1670. [8] M.Alvaro,A.Corma,D.Das,V.Fornes,H.Garcia,JCatal231(2005)48-55. [9] S.Koujout,D.R.Brown,CatalLett98(2004)195-202. 62

[10] S.Koujout,B.M.Kiernan,D.R.Brown,H.G.M.Edwards,J.A.Dale,S.Plant, CatalLett85(2003)33-40. [11] J.L.Smith,R.G.Herman,C.R.Terenna,M.R.Galler,K.Klier,JPhysChemA 108(2004)39-46. [12] S.Habib,P.Salame,F.Launay,V.Sernmer-Herledan,O.Marie,W.Zhao,N.N. Tusar,A.Gedeon,JMolCatalA-Chem271(2007)117-125. [13] S.Hamoudi,D.T.On,S.Kaliaguine,NanotechnologyinMesostructured Materials146(2003)15-22. [14] M.Hart,G.Fuller,D.R.Brown,C.Park,M.A.Keane,J.A.Dale,C.M.Fougret, R.W.Cockman,CatalLett72(2001)135-139. [15] M.Hart,G.Fuller,D.R.Brown,J.A.Dale,S.Plant,JMolCatalA-Chem182 (2002)439-445. [16] G.Morales,G.Athens,B.F.Chmelka,R.vanGrieken,J.A.Melero,JCatal254 (2008)205-217. [17] I.N.Levine, PhysicalChemistry ,Fourthed.,McGraw-Hill,NewYork,1995. [18] N.Agmon,AbstrPapAmChemS210(1995)328-PHYS. [19] C.Reichardt, SolventsandSolventEffectsinOrganicChemistry ,Seconded., VCHPublishers,NewYork,1988. [20] L.S.Tuckerman,D.Barkley,TheorCompFluidDyn16(2002)91-97. [21] T.J.F.Day,U.W.Schmitt,G.A.Voth,JAmChemSoc122(2000)12027-12028. [22] D.Yeragi, Synthesis,characterizationandcatalyticapplicationsofvanadiaand silica-basedmaterials, IowaStateUniversity,2007. [23] B.M.Bode,M.S.Gordon,JMolGraphModel16(1998)133-138. [24] M.W.Schmidt,K.K.Baldridge,J.A.Boatz,S.T.Elbert,M.S.Gordon,J.H. Jensen,S.Koseki,N.Matsunaga,K.A.Nguyen,S.J.Su,T.L.Windus,M.Dupuis,J.A. Montgomery,JComputChem14(1993)1347-1363. [25] S.Shylesh,R.K.Jha,A.P.Singh,MicroporMesoporMat94(2006)364-370. [26] S.W.Ong,X.L.Zhao,K.B.Eisenthal,ChemPhysLett191(1992)327-335. [27] T.Steiner,JPhysChemA102(1998)7041-7052. [28] P.Lorente,I.G.Shenderovich,N.S.Golubev,G.S.Denisov,G.Buntkowsky, H.H.Limbach,MagnResonChem39(2001)S18-S29. [29] S.J.Paddison,AnnRevMatRes33(2003)289-319. 63 CHAPTER4.KINETICSOFMONOSACCHARIDECONVERSION

INTHEPRESENCEOFHOMOGENEOUSACIDS

ApapertobesubmittedtoJournalofCatalysis

BasakCinlar 1,CodyJensen 2,BrandonPeters 3andBrentH.Shanks 1

1DepartmentofChemicalandBiologicalEngineering,IowaStateUniversity

2DepartmentofChemicalandBiologicalEngineering,IowaStateUniversity(formerly)

ChemicalandBiologicalEngineeringDepartment,UniversityofIllinois-Urbana,

Champagne(currently)

3DepartmentofChemicalandBiologicalEngineering,IowaStateUniversity(formerly)

Authorshiproles:

Cinlar:Primaryauthor.

Jensen,andPeters:Secondandthirdauthors,providedhelpwiththekineticstudies.

Shanks:Principalinvestigator.

Abstract

Fortheutilizationofbiomassinthefuelandpolymerindustry,awidevarietyof catalystshasbeenstudiedfortheiractivityeitheronthedehydrationreactionin particularoronthemonosaccharidedegradationsingeneral.Yet,systematicdata outliningtheeffectsofacidicfeaturesisnotavailableandacommonframeworkfor catalyticactivitycomparisonismissingthatisinevitableforrationalcatalystdesign.

Thecurrentworkaimedtoprovideinsightabouttheeffectofthenatureofacidand initialacidityondegradationkineticsofC-5andC-6carbohydratesandtherebybuilta platformallowingactivitycomparison.Mineralandorganicacidsranginginacidic strength,hydrochloric,sulfuric,phosphoric,maleic,andpropanesulfonicacidwere 64 testedfortheiractivityindegradationofxylose,fructoseandglucoseattwodifferent pHvalues;1.5and3.6.Inthepresenceofweakhomogeneousacids,glucoseundergoes degradationthroughadifferentmechanismatpHof1.5thanatpH3.6.Sucha mechanismchangedoesnotoccurinthepresenceofstronghomogeneousacids.Onthe otherhand,xyloseandfructoseundergodegradationviasinglemechanismregardlessof thepHornatureofthehomogeneousacid.Regardlessoftheacidtypeandstrength,the activationenergieswereapproximately140kJ/molforfructoseandxylose.Acommon frameworkthatcompilesthecatalyticactivitiesandoutlinesthedifferencesrelatedto underlyingmechanismchangesprovidesthebasisrequiredforrationalheterogeneous catalystdesign.

Introduction

Dehydrationofmonosaccharidestofuraniccompoundshasregainedconsiderable interestinthepastdecadeeitherasareactionwhichprovidesvaluableproductsforthe renewablefuelandpolymerindustryorasoneofthedegradationreactions accompanyingpolysaccharidehydrolysis[1].Studiesconsideringdehydrationasaside reactionduringsaccharificationfocusonhowtominimizeitsoccurrencewhilethe dehydrationreactionstudiesbyitselfhasacompleteoppositefocus,thatishowto achievehigheryieldsathighconversions.Inbothregards,awidevarietyofcatalysts rangingfromtraditionalstrongmineralacidstonovelionicliquidsimmersedonsilica supportshavebeenexamined[2,3].However,onlyfewofthesestudiesreport systematicdatathatcomparedcatalyticperformancesonacommonframeworkand providedinsightaboutthereactionsystem.Neitheraretheacidicfeaturesofthe catalystsoutlinedtoprovidetoolsfortherationaldesignofanovelcatalyst.Usingboth mineralandorganicacidsofvaryingstrengthatdifferentpHlevels,theeffectsof 65 differentacidicfeaturescanbeinvestigatedforthehydrothermaldegradationofglucose andxylose,whicharethemostcommonproductsofbiomasshydrolysis.Further knowledgeisgainedbycomparingtheirkineticstothewell-understoodfructose degradationkinetics.Thereby,notonlyacommonframeworkforcatalyticactivity comparisonisbuilt,butalsoguidelinesforarationalcatalystdesignregardingtheacidic propertiesareprovided,thatconstitutethefocusofthisstudy.

Saccharification,hydrolysisofpolysaccharidesintomonosaccharides,isacommon firststepforthevalorizationofagriculturallignocellulosicwasteproducts[4,5].While thecellulosiccompoundsleadtoglucose,hydrolysisofhemicellulosiccompoundsalso producesxyloseandarabinosebesidetheC6sugars,e.gglucose,galactoseand mannose.Utilizationoftraditionalmineralacids,suchashydrochloricandsulfuric acids,causesdegradationofthemonosaccharidesreadilyatthehydrolysisconditions, amongwhichdehydrationofC5andC6sugarsintofurfuralandhydroxymethylfurfural takesplacealso.Someoftheotherdegradationreactionsoccurringinconjunctionwith thedehydrationreactionarecondensation,fragmentationandpolymerizationreactions thatresultin,butarenotlimitedtoglyceraldehyde,glycolaldehyde,pyruvaldehyde, formaldehyde,levoglucosan,levulinicacid,aceticacidandformicacid[6].Side reactionsaccompanyingcellulosehydrolysisandglucosedehydrationaresummarized inScheme1.

Includingdehydration,allmonosaccharideconversionreactionsareacidcatalyzed andhaveverysimilaractivationenergies[7].Thisfactfurthercreatesaprobleminthe monosaccharidedehydrationandpreventsthecommercializedHMFproductionfrom glucose.Duetotheshortageofpetroleumsupplies,HMFproductionfrombiorenewable resourceshasregainedinterest,becauseitisclassifiedasoneoftheprimarybuilding blocksforthepolymerindustryalongwithfurfural[1,8].Recently,severalattempts 66 withawiderangeofnovelcatalystsweremadetoac hievehighyieldsoffuranic compounds[9-11] .Also,considerableamountofpa stliteratureinvestigatedthe monosaccharideconversion,orinparticulardehydration,butfewlinkshavebeen establishedinthemorerecentstudieswithheterogeneouscatalyststothesestudieswith homogeneousacids [3,6,8,12] .Thedifferenceinthereactionconditionsandlackof dataabouttheintrinsicvaluessuchasactivationenergiesandturnovernumbersaccount fortheabsenceofsuchlinks.Systematicev aluationofdatainthat regard willprovide valuableinsightabouttheacidicfeaturesaffectingthereactionyields.

Scheme1.Reactionschemeforcellulosehydrolysisandglucosedegradation reactions.

Parametersthatarethoughttoplayaroleontheyieldofthedehydration,andthe conversionreactionsingeneralaretemperature,natureofthesolvent,andthetypeand theconcentrationoftheacid [4,13-16] .Theeffectofdifferentacidsondehydrationhas beendemonstratedbyDumesicandco -workerswheretheytestedHMFformationf rom 67 fructoseinthepresenceofdifferentmineralacids[16].InexperimentsatpH1.5in

DMSO-watermixturewithanextractingphase,phosphoricacidshowedhighest selectivityat170ºCfollowedbyhydrochloricacid.Sulfuricacidshowedlowest selectivityundertheseconditions.Accordinglyitwasconcludedthatselectivitywas affectedbythechoiceoftheacid.However,theseselectivityvalueswerereportedat differentconversionsthatleadtothequestionofwhethertheconversionortheacid itselfisresponsibleforthevariationintheselectivity.

Anotherstudyabouttheeffectofthechoiceoftheacidonthereactionselectivity examinedorganicacids,includingdicarboxylicacids,andcomparetheiractivitytothat ofsulfuricacid[5].Whileaceticaciddidnotshowanyactivityforthehydrolysis, maleicaciddid,whichwasexplainedbyitsdi-acidiccharacterenhancingactivityvia enzymemimickingacid-baseproperties.Surprisingly,maleicaciddidnotshowany activityonglucosedegradationandhenceitwasclaimedtobeasuperiorcatalystwith higherselectivityforcellulosichydrolysisascomparedtosulfuricacid.Alsobutyl carboxylicacidfunctionalizedmesoporoussilicacatalystsshowedbetterselectivityas comparedtootherorganicacidfunctionalizedmesoporoussilica,buttherateswiththe butylcarboxylfunctionalizedmaterialweretoolowthatnosignificantyieldcouldbe obtained[17].Theabilitytoselectivelyhydrolyzecellulosiccompoundswithout degradationisnotclaimedwithotherhomogeneousorheterogeneousacids.Infact,in manystudies[8,12,14,15]bothhydrolysisandtheaccompanyingreactionsconverting monosaccharidesfurtherweredirectlyproportionaltothenumberofavailableprotons regardlessofthetypeoftheacidused,whichisincontrastwiththefindingsofthe studieswithdicarboxylicacids[5].

Moreover,studiesonglucoseconversionwithdicarboxylicorganicacidsrevealed thattherateswereindependentofthepHwhenorganicacidswereused,butinthe 68 presenceofsulfuricacidtherewasadirectrelationshipbetweenthemeasuredreaction rateandpH.Similarly,BobleterandBonnreportedpH-dependentreactionregimesof glucosedegradationwhensulfuricacidwasused,butinthepresenceofaceticacidsuch dependencycouldnotberecognized[14].Differenceintheratesduetothechoiceof catalystwasreflectedintheactivationenergiesalso,andthedifferenceintheactivation energieswasattributedtodifferentmechanisms,butdetailsaboutthemechanism changewerenotmentioned[5].Thesamestudiesonxyloseresultedintwodifferent activationenergiesforsulfuricacidandmaleicacidalso;againthereasonwasnot clarified[18].

Differentmechanismshavebeenproposedfortheglucosedegradation.Accordingto onehypothesis,glucosedehydrationoccursfromtheacyclicformviaa1,2enediol intermediatewhichisalsotheintermediateinthefructosedehydration[19].Theslower dehydrationratesofglucoseascomparedtofructosewereexplainedbythelower concentrationoftheopen-chainformduetohigherringstability.Anotherhypothesis suggeststhatglucoseisomerizestofructosefirstviahydrideshiftandsubsequently followsthesamedegradationmechanismwithfructose.Donaldetal.mentioneda hydrogentransferfromC2toC1duringtheconversionofaldosestofurfuralderivatives whichcanaccountfor28%ofthereactionproceedingviatheketose[20].Theactive formsfordehydrationwereconsideredtobethefuranosestructureforC6sugarsand pyranosestructurefortheC5.Thehigherratioofthexylopyranosylformwasusedto explaintheslowerreactionofglucosecomparedtoxylose,butitdoesnotpredictany changeintherelativeratesaccordingtotypeoftheacid.Insomestudiestheglucose dehydrationratereportedwasabouthalfthexylosedehydrationrate,whileinothersa muchslowerrelativeratewasreported. 69

Thediscrepancyintherelativeratescanbeextendedfurther.Whilecomparable

HMFyieldswereobtainedfromglucoseandfructoseat175-390ºCinthepresenceof

10 -2Mmineralacidswithorwithoutorganicextractingphase,agoodyieldofHMFis obtainedonlyfromfructoseat85-90ºCinthepresenceof>0.25Mstrongmineralacids

[3].UndertheseconditionsHMFyieldsfromglucoseorotheraldohexoseswerevery small.Whetheritisthehightemperaturesand(or)lowprotonconcentrationthatcaused thechangeintherelativeratetrendsremainedelusive.

Inthisstudy,theeffectsofthenatureofacidandinitialacidityondegradation kineticswereoutlinedbystudyingorganicandmineralacidsofdifferentstrengthfor theiractivityonglucose,fructoseandxyloseattwodifferentprotonconcentrations,pH

1.5and3.6.Sulfuricacid,hydrochloricacidwerechosenasstrongmineralacids, phosphoricacidasweakmineralacid,andmaleicacidand1-propylsulfonicacidas weakorganicacids.Bystudyingtheeffectsoftheseacidsunderthesameconditionsthe effectofprotonconcentrationwasdeconvolutedfromtheeffectoftheacidicstrength.

Furthermore,calculatingtheactivationenergiesforatemperaturerange145-175°C,the observedactivitiescouldberelatedtotheproposedmechanisms.Thereby,thisstudy buildsaplatformforactivitycomparisonandprovidesareferencepointfor heterogeneousaciddesign.

Experimental

Hydrochloricacid(12N,FisherChemicals),sulfuricacid(18N,FisherChemicals), o-phosphoricacid(85%,FisherChemicals),maleicacid(99%,Acros),and1- propanesulfonicacid(99%,Acros)wereusedaspurchased.Thereactants,D-fructose

(FisherChemicals),D-xylose(Acros)and α-D-glucose(99%,Acros),werealsousedas purchasedwithoutfurtherpurification. 70

Forthekineticexperimentsaqueoussolutionsofhydrochloricacid,sulfuricacid, phosphoricacid,maleicacid,and1-propanesulfonicacidattwodifferentpHvalues,1.5 and3.6,wereprepared.ThepHvaluesofthesolutionsweremeasuredbycombined glasselectrode(6.0233.100,Metrohm)attachedtoaMetrohm798MPTTitrino automatictitrator.Beforeeachmeasurementtheelectrodeiscalibratedusingthree standardbuffersat4.00,7.00and10.00.

Kineticexperimentswereperformedat145,160and175°Cina250mlstirredbatch reactor(ParrAssoc.)equippedwithaglassliner.Temperaturecontrolwasmaintained withaPIDcontrollerattachedtoheatingjacketandcoolingcoil.Thecorresponding sugaramountforafinalconcentrationof0.11Mwasaddedtotheacidicsolutionbefore chargingtothereactionvessel.Timezerowastakenasthetimewhenthedesired reactiontemperaturewasreachedandconversionatthattimewastakentobezero.The reactorwaspressurizedwith300psignitrogenpressuretoensurecondensedphase.

Besides,stirringspeedwasadjustedtoovercomeexternalmasstransferlimitationsas initialscreening.Samplesthatwerecollectedduringthekineticrunswerefiltered through0.2µmnylonfilter(CobertAssoc.)andthepHback-adjustedto6-7byaddition of4.0MNaOHpriortoHPLCanalysis.

ThesampleswereanalyzedwithaHi-PlexH +column(PolymerLab.)at65°Cwitha

WatersHPLCsystemequippedwithWaters2414RefractiveIndexdetector(RID)and

Waters996PhotoiodideArrayDetector(PAD).Themobilephasewas10mMsulfuric acidsolutionflowingat0.6ml/min.WhiletheRIDpeakareasandintensitieswereused toestimatethesugarconcentrationtoavoidpeakconvolutionsinthepresenceofweak acids,dehydrationproductconcentrationsweredeterminedusingbothPADpeakareas at280nm(conc.<0.2wt%)andRIDpeakareas(conc.>0.2wt%)tomaintainlinear 71 relationshipofthepeakareaorintensitywiththeconcentration.Theglucose concentrationsinthesampleswereconfirmedwiththeBio-RadGlucoseAnalyzeralso.

ResultsandDiscussion

Reactionsinvolvingconversionofmonosaccharidesareallacid-catalyzed;infact thereactionratesareproportionaltothenumberofavailableprotons.Previously,the activityofmaleicacidwascomparedtotheactivityofsulfuricacidforcellobiose hydrolysisandglucosedegradationinthepresenceofequalamountsofacidinsteadof equalnumberofprotons[5].Beingaweakacidwithadissociationconstantof1.97at roomtemperature,thesameamountofmaleicacidleadtohigherpHvaluescompared tosulfuricacid.Inthatregard,theloweractivityinthepresenceofmaleicacidwas expected,anddoesnotnecessarilyindicatethatmaleicacidisalesspowerfulproton sourceforthedegradationreaction.Abettercomparisoncanbeachievedbymeasuring theircatalyticactivitiesatequalnumberofprotons.Thereforethisstudycomparedthe acidactivitiesatthesamepHvaluesratherthanatthesamemolaracidamounts.

Theacidsusedinthisstudywerehydrochloric,sulfuric,phosphoric,maleicand1- propanesulfuricacid.Duetocompletedissociationofhydrochloricacidandsulfuric acidasstrongacids,thepHvalueforthesesolutionsatthereactiontemperatureisnot expectedtodifferasmuchasthevalueforweakacidswhencomparedtotheirroom temperaturepHvalue.Forstrongacids,theonlyreasonforthedecreaseinthepHvalue uponheatingwillbethechangeintheactivitycoefficient.However,thepHatthe reactiontemperatureisexpectedtobelowerthantheambientpHinthepresenceof weakacids,consideringtheeffectoftemperatureon pK a.The pK avaluesoftheacids usedinthisstudyareshownintheTable1atroomandelevatedtemperatures.

72

Table1.ReportedandestimatedfirstaciddissociationconstantsandpHvaluesat 175˚Coftheacidsusedinthisstudy.((a) Numbersinparenthesesarethetemperatures (°C)forthereportedvalues[29], (b) Estimatedvalues, (c) Notareportedvalue, experimentallymeasured) pK pH pH (a) a pK a,1 at175°C (b) atRT at175°C (b) Hydrochloricacid -4.0(25) N/A 1.50 1.50 3.60 3.60 Sulfuricacid -3.0(25) N/A 1.50 3.60 Phosphoricacid 2.12(25) 2.05 1.50 1.47 2.09(75) 3.60 3.57 Maleicacid 1.94(25) 1.78 1.50 1.45 1.89(75) 3.60 3.55 1-Propanesulfonic 1.57(25) (c) 1.41 1.50 1.43 acid 1.52(50) (c) 3.60 3.53

AssumingalinearrelationshipbetweenthelnK avalueandthereciprocal temperatureaccordingtotheHenry’sLaw,the pK avalueswereextrapolatedto175˚C, whichisthehighesttemperatureusedinthisstudy,andthecorrespondingpHvalues werecalculated.ThechangeinthepHvaluesuponheatinganditspotentialeffectonthe ratesweredeterminedtobewithintheexperimentalerrormargin.Thereforethechange inthepHofthesolutionduetoincreaseof pK aoractivitycoefficientisneglectedand resultswereinterpretedasifthefinalprotonconcentrationsintheexperimentalrunsat differenttemperatureswereequal.

Thetwodifferentprotonconcentrations,pH1.5and3.6,werechosentocovermost ofthepHrangeusedintheliterature.Commonly,kineticandmechanisticstudies regardingthemonosaccharidedegradationordehydrationwereconductedinthe presenceofstrongmineralacids,lowestbeing50mM.50mMsulfuricacidcorresponds toapHvalueof1.5approximately.Ontheotherhand,themorerecentstudieswiththe 73 heterogeneouscatalystswereperformedatmuchhigherpHvalues.Theexactproton concentrationsinthepresenceofheterogeneouscatalystssuchasion-exchangersand zeoliteswerenotreported.However,thepHvalueswerereportedfororganicacid functionalizedmesoporoussilicawhenusedforcellobiosehydrolysisandrangefrom pH3.0to4.5approximately.StudyingtheprotonactivityatpH1.5and3.6captureda bigportionoftheliteratureandenabledtobridgebetweentheresultswithhomogeneous acidsandheterogeneousacids.LowerpHvaluesthan1.5werenotpreferredduetothe difficultyofachievingthemwiththeweakacids.

Asimilarapproachwasfollowedforthechoiceoftemperaturerange.Although somemechanisticstudieswerecarriedoutatmuchhighertemperaturessuchas390˚C

[21],theheterogeneouscatalystsaremostlynothydrothermallystableatsuchhigh temperatures.Indeed,investigationofthekineticatlowertemperatures,whichcanbe usedinheterogeneouslycatalyzedstudiesaswell,providesmoreusefuldata.However, reactionratesat145°Careratherdifficulttodetermine.Thesizeoftheerrorbarscan shadethechangeintheratesifnotcarefullyanalyzed.Besides,atsuchlowerratesof reaction,thekineticscanbeeasilychangedbytheformationofacidsduringthe reaction.Theseacidsself-catalyzethereactionandcauseunexpectedlyhigherrates.At highertemperatures,andhencehigherdecompositionrates,theformationoftheseacids isinsignificant[12].Overall,comparingtheactivationenergiesisamorereliableway forunderstandingtheeffectofacidityratherthancomparingtherelativeratesatasingle temperature.

InFigures1and2showingthedecompositionofmonosaccharidesatdifferent temperatures,theconversionswerereadjustedtozeroatthetimezerowhichwastaken asthetimeatwhichthedesiredreactiontemperaturewasreached.Suchanadjustment allowedeasiercomparisonoftherelativetrendsamongthedifferentmonosaccharides. 74

Inreality,thereactantswerechargedtothereactorinitiallyandsomeconversion

occurredduringtheheat-upperiod.Theinitiallosswasdeterminedtobelessthan10%

andwasinsignificantcomparedtothetotalconversionduringthetimeofactualreaction

run.

100 a b c 90 80 70 60 50 %conversion 40 30 20 10 0 0 30 60 90 120 0 30 60 90 0 30 60 90 time(min) Figure1.Sugar(glucose(a),xylose(b),fructose(c))conversionsat175˚C,pH1.5in

thepresenceofHCl( ▲),H 2SO 4( ),H 3PO 4(×),maleicacid( )and1-propane sulfonicacid( ).

For all runs, significant amounts of soluble and insoluble humin formation were

observed. However the quantification of humins was not possible. Furthermore,

formationofinsolublehuminsprecludedperforming carbonbalancesonthesamples.

Onlyconversionsofmonosaccharidesandyieldsoffuraniccompoundswerecalculated.

WhentheeffectofacidtypeontheconversionrateswasanalyzedatpH1.5at160˚C

(Figure1),nosignificantdifferencewasobservedinthesugarconsumptionratedueto

theprotonsource.Thechemistryofthemonosaccharide conversion is performed via 75 protons mostly and the effect of dissociated anions could not be observed. Relative activityofthesugarswas8:4:1forfructose:xylose:glucose.

20 10 %conversion 0 0 30 60 90 120 time(min) Figure2.Glucose conversionsat160˚CatpH3.6inthepresenceofHCl( ▲),H 2SO 4 (),H 3PO 4(×),maleicacid( )and1-propanesulfonicacid( ).

Ontheotherhand,differentacidsledtodifferentselectivitiestowardsdehydration productsforeachsugarasshowninFigure3.Forglucoseandfructose,theselectivity followedthedecreasingorderofH 3PO 4,H 2SO 4andHCl.Thistrendalsofollowsthe orderofbasicstrength.Hencecomplexionofthedissociatedanionswiththe intermediateleadingtoHMFformationcanbespeculated,thestrengthofwhichvaries accordingtothebasestrengthofthedissociatedanion.Suchacomplexformationof

- -2 HMForitsintermediatewithCl andSO 4 wasmentionedpreviouslywhentheglucose dehydrationinthepresenceofmagnesiumandaluminumsaltswerestudied[22].In thatstudysaturatedsolutionsofsaltswereusedintheabsenceofacidicprotonsandthe differentactivitiesbychloridesandsulfateswereexplainedbysulfatesandchlorides constitutingdifferentclassesofsaltsexertingdifferenteffectsonglucosereactivity.

DehydrationtoHMFproceedswiththeparticipationofaquo-andhydroxyl-complexes 76 byintermediateconsistingofextensivelyhydrogen-bondedspeciesinthepresenceof sulfateions,whereasanexocyclic–CH 2OHeliminationoriginatingfrom“anions guidingrail”wasresponsibleforthefuranringformationinthepresenceofchloride ions[23].Theconditionsusedinthisstudy,e.g.muchlowerconcentrationsofanions andpresenceofacidicprotons,didnotleadtoadiscernabledifferencebetweenthe activitiesofHClandH 2SO 4forglucoseconsumption.Infact,solutionsofsulfuricacid containbisulfateionsinhigherconcentrationsthanthesulfateions,whichareless strong.ThusabetterexplanationforthehigherselectivitywithH 2SO 4thanHClisthe complexationofCl -anionswiththeHMFitselfcausingitsfurtherconversionand therebydecreasingtheyield[23].

70

60 50 40 30 %HMFselectivity 20

10

0 HCl H2SO4 h3po4 maleicacid c3h7so3h HClH2SO 4 H3PO 4 Maleic Prop.sulf. Figure3.HMFselectivityafter30minat160°Cinthepresenceofdifferentacidsat pH1.5forxylose(),glucose(),fructose()andatpH3.6forglucose().

Althoughthetypeoftheaciddidnotaffectthemonosaccharideconversionrates,the acidicstrengthaffectedtheglucoseconversionratesatpH3.6at160˚C(Figure2).A similartrendwasalsoobservedat145°CatpH3.6.Theconversionsinthepresenceof 77 maleicacid,phosphoricacidand1-propanesulfonicacidremainedsimilartoeachother, whereastheconversionsforhydrochloricacidandsulfuricaciddivergedfromtheir activityandconstitutedadifferenttrend.At160˚CatpH3.6,therelativeratesofthe monosaccharideswereintheorderof5:3:1forfructose:xylose:glucose.

Apossibleexplanationofthechangeintherelativetrendscanbemadebythe comparingtheongoingreactionsdrivenbytheacidityandtheirrates.Fructoseand xyloseconversionoccurathigherratesthanglucose.Atsuchhighrates,basecatalysis islesspowerfulontherate-determiningstepthanisacidcatalysis.Thisstatementisalso validatpH1.5forglucose;thehighprotonconcentrationshieldsthebasecatalysis effectofthedissociatedanion.AtpH3.6,dissociatedanionsdisplaytheirpowerto catalyzemoreapparentlyduetothereducedpowerofacidicprotons.Suchachange leadstodifferentmechanismsbeingdominantatdifferentregimes,whichisalso pronouncedwiththeactivationenergies.

Fortheconversionofmonosaccharides,firstorderreactionkineticsarehighly acceptedinmodeling[5,8].Inthisstudy,alsotheArrheniusequationfortheinitialfirst orderreactionrateswasused(Equation1).

(Equation1) .˗ ˫  ˓  W\ 9˞ˠ G Activationenergyvalueswerefoundtobeinthesameorderforalltheacidswith theexceptionofweakacidsatpH3.6(Table2).Undertheseconditions,activation energyforglucosewasmuchlowerthanthecommonlyreportedvalues.Thatkindof lowactivationenergywasreportedinthepresenceoforganicacidfunctionalized mesoporoussilicapreviously[17].Also,Mosier’sgroupreportedasimilaractivation energyinthepresenceofmaleicacidandsuggestedthatdifferentmechanismswere involvedinthepresenceofmaleicandsulfuricacids[24],buttheconditionswhich 78 causedthedifferenceinthemechanismwerenotexplainedclearly.Itwassolely attributedtotheenzymemimickingcharacterofmaleicacidthatstabilizedtheglucose.

Neitherwerethedetailsofthemechanismchangeexplained.Thepresenceofdifferent mechanismswasmentionedbyAntaletal.also[3],buttheconditionsleadingtotheir existencewerenotassigned.Rather,itwasmentionedthatthesecondmechanismwas goingthroughanactivationconstantwhichissimilartothefructosemechanismand wasmorelikelytohappenthantheothermechanism.

Table2. Activationenergiesforglucose,fructoseandxylose. E (kJ/mol) a E Glucose Literaturevalues a pH1.5 pH3.6 (kJ/mol)

Hydrochloricacid 138 137 1.5Msulfuricacid (4) 137 Sulfuricacid 142 138 50mMsulfuricacid (8) 118 Phosphoricacid 145 82 50mMmaleicacid (5) 73 Maleicacid 138 78 20%SBA-15-BuCOOH (29) 79 (29) Propanesulfonicacid 148 83 15%SBA-SO 3H 75

Ea(kJ/mol) E Fructose Literaturevalues a pH1.5 pH3.6 (kJ/mol) Hydrochloricacid 132 136 50mMsulfuricacid (4) 138 Sulfuricacid 139 128 1.5Msulfuricacid (8) 136 Phosphoricacid 146 144 Maleicacid 138 142 Ea(kJ/mol) E Xylose Literaturevalues a pH1.5 pH3.6 (kJ/mol) Hydrochloricacid 133 136 50mMsulfuricacid (4) 134 Sulfuricacid 135 138 1.5Msulfuricacid (8) 134 Phosphoricacid 128 126 Hydrothermolysis (37) 137 Maleicacid 138 150 50mMmaleicacid (38) 204 (29) Propanesulfonicacid 150 127 15%SBA-SO 3H 150 79

Thischangeintheactivationenergywasalsoreflectedinthepre-exponentialrate constants,whichweredeterminedbyArrheniusplotalsoandaretabulatedforglucose inTable3.Saemanin1945[25]hasmodifiedtheclassicalArrheniusequationtopredict theeffectofprotonconcentrationoncellulosehydrolysisandglucosedegradation, wheretheacidconcentrationwasexpressedseparatelyfromthepre-exponentialfactor.

Thisequationwashighlyacceptedandwasevenfurthergeneralizedbyreplacingthe acidconcentrationwithprotonconcentrationtoproduceamodifiedSaemanequation

[5](Equation2).

(Equation2)   .˗ ˫  ˓"    W\ 9˞ˠ G Inthisequationaspecialtermmisdefinedtoaccountfordifferenteffectsof differentacidcatalystsordifferentreactionconditions.Inordertodeterminethe constantm,theprotonconcentrationatthereactiontemperaturehastobeknown.

HoweverthepHchangesaccordingtothereactiontemperatureandthey-interceptof thefittedArrheniusplotincludesanaverageeffectofthesealteringpHvalues.Because thedeterminationofconstantmwasbeyondthescopeofthisstudy,thepre-exponential factorsweredeterminedbyusingtheconventionalArrheniusplotandnotthemodified

Saemanequation.Thus,theprotonconcentrationinincludedinthoserateconstants implicitly.Thisfactdoesnotcreateaproblemwhencomparingtheacidsunderthe samepH.NeverthelessthevalueswereinthesamerangeforalltheacidsatpH1.5.

HoweverinpH3.6,thereisabout5-6ordersofdifferencebetweentheweakacidsand strongacids.

80

Table3.Pre-exponentialrateconstantsforglucose(*ModifiedSaemanequation constantswiththeassumptionofmequalto1). -1 -1 A(min ) A0(min )* Glucose pH1.5 pH3.6 pH1.5 pH3.6

Hydrochloricacid 5.46E14 4.40E12 1.73E16 1.75E16 Sulfuricacid 7.18E14 5.78E12 2.27E16 2.30E16 Phosphoricacid 8.15E14 3.57E04 2.58E16 1.42E08 Maleicacid 8.26E14 3.52E05 2.61E16 1.40E09 Propanesulfonicacid 6.96E14 4.26E05 2.20E16 1.70E09

Inordertocomparethepre-exponentialfactorsfordifferentpHvalues,thefactorm inSaemanequationwasassumedtobe1,whichisahighlyacceptedvalue[4],andthe modifiedconstantsarealsolistedinTable3.Whentheeffectofprotonconcentration wasdeconvolutedformthepre-exponentialrateconstant,similarvalueswereobtained fordifferentpHvaluesinthepresenceofstrongacids.However,inthepresenceof weakacidstherestillexistsalargedifferencebetweentheconstantsatpH1.5andpH

3.6,alsoindicatingachangeinthemechanismsduetopH.

Accordingtooneoftheproposedmechanisms,theactivatedtransitionstateinthe glucoseconversionwasbelievedtoinvolve1,2-enediolintermediateanddehydration viafurtherenolizationandformationofhexosulosesasrepresentedbytheacyclicroute inFigure4.Becausetheopen-chainformwasresponsiblefortheformationofthe1,2- enediolintermediate,theloweractivityofglucosewasexplainedbythelowerratioof theopen-chainform.Thereforetheratelimitingstepwasproposedtobetheprotonation ofthepyranoseformandsubsequentringopening[3].

Alternativelyitwassuggestedthatglucoseisomerizedfirsttofructoseandthen followedthesamedecompositionpathwayasfructose[12].Therate-determiningstep wasbelievedtobetheisomerization,whichallowsglucosedecompositiontohave 81 differentactivationenergythanthatoffructosedecomposition.Glucosecanbe isomerizedtofructoseviabaseoracid/basecatalysis.Infact,basecatalysisismuch moreeffectivefortheisomerizationcomparedtoacidcatalysis.Inthepresenceofboth acidandbase,aconcertedpush-pullmechanismwassuggested,thatisfirstdrivenby theattackofthebase.Inthepresenceofthebaseonly,theisomerizationtookplacevia ahydrideshiftfromC2toC1andformationof1,2-enediolintermediatewasnot observed[19].

Studiessimulatingthexyloseandglucosedegradationpathways[7,27,28]revealed thatdifferentmechanismscandominatedependingonthereactionconditions,suchas theacidity,presenceofco-solvents,orthetemperature;buttheprotonationofglucose moleculeistheratelimitingstepnevertheless.Whilethestrongestprotonaffinitywas shownbytheC2-OHgroupandonlytheprotonationofthisgroupleadstothe formationofHMFbothinvacuumandinstudieswithexplicitwatermolecules,the protonationofC3-OHgroupmayormaynottakeplacedependingontheacidity.At loweraciditiesusuallytheprotonatC3transfersbacktowatermolecule,whileathigher aciditiesthisprotonationmayleadtodegradation[27].Inthatcase,ringopeningwas observedfollowingprotonation.Ontheotherhand,theprotonationattheC2resultedin theformationof2,5-anhydrideketoseintermediatesdirectlyviaahydrideshift[27].

Subsequenteliminationofwatermoleculesfromthe2,5-anhydrideintermediateoccurs readilysimilartofructosedegradation,asrepresentedbythecyclicrouteinFigure4.

MechanisticstudyoffructosedehydrationtoHMFat250ºCwith50mMsulfuric acidrevealedthattheformationoccursviafructofuranosyl-cationicintermediaterather than3-deoxyhexosuloseintermediateviaenediolreactions[6].Onlyunderweakacidic conditionssomeformationofHMFfromfructosevia3-deoxyhexuloseswasobservedat ratesrelativelyslowerthantheothermechanism.Thismechanismthatwasoriginally 82 proposedbyAntalandMok[6]wasacceptedinthelaterstudiesatvaryingacidic conditionsandtemperaturesaswell.Inourstudy,theobservedactivationenergywasin goodagreementwiththepreviouslyreportedvaluesanddidnotchangeaccordingtothe acidicstrengthorthepH.Hencetheproposedmechanism,showninFigure5,wasalso acceptedtoexplainthefindingsofthisstudy.

Furtherinsightisprovidedbyxylosedegradationmechanisms,becausexyloseisan aldosejustlikeglucose,buthashigherratioof β-furanoselikefructose.Mechanistic studyonfurfuralformationfromxyloserevealedthatathightemperatureacidicregime xyloseisinitiallypresentatthreedifferentforms[26].Theopen-chainformofxyloseis responsibleforfragmentationproductformation,andthexylopyranoseformleadsto furfuralvia2,5-anhydrideintermediates,whilefuranoseformisstable[3].Thering opening-isomerizationwasreportedtoberelativelylowat250ºCinthepresenceof10 -

3 -2 -10 MH 2SO 4.Thedifferentpathwaysforxylosedecompositionaresummarizedin

Figure6.

Amechanismchangewasnotobservedinourstudyaccordingtotheacidicstrength orpHandourvalueswereconsistentwiththeliteraturevalues,butsuchachangewas observedinthexylosedegradationduringthehemicellulosehydrolysisinthepresence ofmaleicacid[18].AfurtherchangeintheexaminedpHandtemperatureregimesmay leadtosuchachange.

83

Figure4.Glucosedecompositionmechanisms(decompositionviafructose isomerization( );acyclicroute( );cyclicroute( )). 84

OH O CH2OH OH OH HO HO HO OH O OH OH

+ HO H O OH OH

O CH2OH OH HO OH OH HO OH OH O OH2 OH + OH H OH

OH H2O H+ HO HO HO O O O OH OH OH H O O 2 OH O

OH OH

H2O

O HO O

Figure5.Fructosedehydrationmechanism.

85

Figure6.Xylosedecompositionpathways.

ConsideringthedifferentpathwaysforxyloseandtheHMFformationmechanism fromfructose,itseemsmorelikelyforglucosetoisomerizefirsttofructoseandthen decompose like fructose at lower pH values, whereas at 3.6 in the presence of weak acidsitdecomposesdirectlyfromthe1,2-enediolintermediate.Itisalsopossiblethat thecyclicrouteisfollowedathigherpHvalues.Baseontheexperimentsonthisstudy, establishing a further relationship between the observed activation energies and the decompositionmechanismsisnotpossible.However,competitionsexistingbetweenthe 86 water molecules as weak bases and the hydroxyl groups of the monosaccharide molecules were believed to have a strong effect on the monosaccharide conversion pathways [7, 27, 28]. In fact, due to higher proton affinity of glucose compared to xylose,thiseffectismorepronouncedonglucoseascomparedtoxylose.Ontheother hand,athigheraciditieswhereprotonationmaynotbetheratelimitingstephydrogen- bondinginteractionsbetweenthesolventwatermoleculesandthesugarringcouldalter thereactionpathwaybyupsettingtherelativestabilityoftheC-CandC-Obonds[28].

Conclusions

Understandingthedegradationpathwaysofmonosaccharidesandtheeffectofacidic propertiesonthemisofgreatimportanceforoptimizingboththepolysaccharide hydrolysisandthemonosaccharidedehydration.Regardlessofthenatureoftheacid, onlyH +activityisresponsibleforthedegradationratesoffructoseandglucose,while thedissociatedanionsleadstodifferencesinselectivitytowardsHMFandfurfural.The strengthoftheacidaffectsthemainmechanismforglucosedegradation.Inthepresence ofweakhomogeneousacids,glucoseundergoesdegradationthroughdifferent mechanismsatpH1.5andatpH3.6.Suchamechanismchangedoesnotoccurinthe presenceofstronghomogenousacids.Fructoseandxyloseundergoedegradationviaa singlemechanismregardlessofthepHandnatureofthehomogeneousacid.Acommon frameworkbringingsystematicdatatogetherprovidedinsightabouttheeffectofthe acidonmonosaccharidedegradationandenableddesignofheterogeneouscatalystsfor thedehydrationofmonosaccharideintofuraniccompoundsthatareversatilebuilding blocksforthepolymerindustry. 87

References

[1] J.N.Chheda,Y.Roman-Leshkov,andJ.A.Dumesic,GreenChemistry9(2007) 342-350. [2] C.Z.Li,Z.H.Zhang,andZ.B.K.Zhao,TetrahedronLetters50(2009)5403- 5405. [3] M.J.Antal,T.Leesomboon,W.S.Mok,andG.N.Richards,Carbohydrate Research217(1991)71-85. [4] N.S.Mosier,C.M.Ladisch,andM.R.Ladisch,Biotechnologyand Bioengineering79(2002)610-618. [5] N.S.Mosier,A.Sarikaya,C.M.Ladisch,andM.R.Ladisch,Biotechnology Progress17(2001)474-480. [6] M.J.Antal,W.S.L.Mok,andG.N.Richards,CarbohydrateResearch199(1990) 91-109. [7] X.H.Qian,M.R.Nimlos,D.K.Johnson,andM.E.Himmel,Applied andBiotechnology121(2005)989-997. [8] B.F.M.Kuster,Starch-Starke42(1990)314-321. [9] C.Carlini,M.Giuttari,A.M.R.Galletti,G.Sbrana,T.Armaroli,andG.Busca, AppliedCatalysisA-General183(1999)295-302. [10] C.Carlini,P.Patrono,A.M.R.Galletti,andG.Sbrana,AppliedCatalysisA- General275(2004)111-118. [11] M.Watanabe,Y.Aizawa,T.Iida,R.Nishimura,andH.Inomata,Applied Catalysisa-General295(2005)150-156. [12] H.E.Vandam,A.P.G.Kieboom,andH.Vanbekkum,Starch-Starke38(1986) 95-101. [13] A.S.Dias,M.Pillinger,andA.A.Valente,JournalofCatalysis229(2005)414- 423. [14] O.Bobleter,W.Schwald,R.Concin,andH.Binder,JournalofCarbohydrate Chemistry5(1986)387-399. [15] W.Schwald,andO.Bobleter,JournalofCarbohydrateChemistry8(1989)565- 578. [16] Y.Roman-Leshkov,J.N.Chheda,andJ.A.Dumesic,Science312(2006)1933- 1937. 88

[17] J.A.Bootsma,andB.H.Shanks,ApplCatalA-Gen327(2007)44-51. [18] Y.L.Lu,andN.S.Mosier,BiotechnologyProgress23(2007)116-123. [19] M.L.Mednick,JournalofOrganicChemistry27(1962)398-&. [20] N.Bhandari,D.G.Macdonald,andN.N.Bakhshi,Biotechnologyand Bioengineering26(1984)320-327. [21] T.M.Aida,K.Tajima,M.Watanabe,Y.Saito,K.Kuroda,T.Nonaka,H. Hattori,R.L.Smith,andK.Arai,JournalofSupercriticalFluids42(2007)110-119. [22] S.K.Tyrlik,D.Szerszen,M.Olejnik,andW.Danikiewicz,Carbohydrate Research315(1999)268-272. [23] S.K.Tyrlik,D.Szerszen,andS.Szymanski,NewJournalofChemistry19 (1995)1019-1021. [24] N.S.Mosier,A.Sarikaya,C.M.Ladisch,andM.R.Ladisch,Biotechnology Progress17(2001)474-480. [25] J.F.Saeman,IndustrialandEngineeringChemistry37(1945)43-52. [26] E.R.Garrett,Dvorchik,B.H.,JournalofPharmaceuticalSciences58(1969) 813-820. [27] M.R.Nimlos,X.H.Qian,M.Davis,M.E.Himmel,andD.K.Johnson,Journalof PhysicalChemistryA110(2006)11824-11838. [28] X.H.Qian,M.R.Nimlos,M.Davis,D.K.Johnson,andM.E.Himmel, CarbohydrateResearch340(2005)2319-2327. 89 CHAPTER5.HIGHLYEFFICIENTHYDROXYMETHYL

FURFURALPRODUCTIONFROMGLUCOSE

ApapertobesubmittedtoJournalofCatalysis

BasakCinlar 1,YomairaPagan-Torres 2,JamesA.Dumesic 2,BrentH.Shanks 1

1ChemicalandBiologicalEngineeringDepartment,IowaStateUniversity

2ChemicalandBiologicalEngineeringDepartment,UniversityofWisconsin-

Madison

Authorshiproles:

Cinlar:Primaryauthor,designedandconductedtheexperiments

Pagan-Torrres:Secondauthor,participatedinthedesignofexperiments

Dumesic,Shanks:Principalinvestigators

Abstract

Productionofhydroxymethylfurfural(HMF)fromglucoseoritspolysaccharidesin ahighlyefficientmannerpresentsabarrierfortheintegrationofbiorenewables technologiesintochemicalindustry.Recently,ionicliquidswerefoundtobeactive catalystsfortheconversionofglucoseintoHMF,buttheseprocessesarenotlikelytobe commercializedduetotheindustrialdifficultiesinhandlingionicliquids.Similar improvementsintheyieldscanbeachievedbyusingelectrolytesolutionsunder pressure.Inthisstudy,chloridesalts,suchasNaCl,MgCl 2andAlCl 3,wereusedto produceHMFfromglucoseundermildpressuresinthepresenceofhydrochloricacid.

HMFyieldsofca.25%wereobtainedin30minsat160°Cinthepresenceof0.8M

MgCl 2solutionatpH1.5.Furtherimprovementwasachievedbytheadditionofan organicphasetoextractHMFthatledtoHMFyieldsupto57%.Inthisstudywe 90 representtheenhancementintheglucoseconversionandHMFselectivityduetothe combinedeffectofsaltsolution,pressureandacidcatalystandinvestigatetheroleof eachelementinthereaction.Byfurthershorteningofreactiontimeandelevated pressure,thedescribedprocesshaspromisingpotentialforconvertingglucoseintoHMF veryefficiently.

Introduction

Facilecommercialproductionofversatilepolyfunctionalcompoundsfrombiomass constitutesagreatchallengeforestablishingasustainablechemicalindustry.Onesuch importantexampleisproductionofhydroxymethylfurfural(HMF)frombiomassthat hasbeenidentifiedasoneoftheprimarybuildingblockchemicalsduetoitspotentialto substituteterephthalatesinpolymerindustry[1].Considerableefforthasbeenputin developinganindustriallyfeasibleprocessforitsproductionviadehydrationofhexoses.

However,itsmassiveproductionisstillhinderedbyseveralreasons,onebeingtheuse offructoseasfeedstock,whichcontributestohighproductioncostduetoitslower abundanceandthushigherpriceforlargescaleproduction.Foritshigherabundance, glucoseisacheaperalternative;howeveritsstablestructuredoesnotallowits utilizationforfeasibleHMFproduction[2].Therearenoknowncommercialprocesses developedfortheproductionofHMFfromglucoseyet.Inthisstudy,anacidcatalyzed methodinvolvingglucosecomplexationwithalkalineearthmetalsaltsundermild pressureisproposedtoproduceHMFwithhighefficiency.

MostoftherecenteffortsdedicatedtoHMFproductionhaveacquiredoneofthe followingtwostrategies,combiningisomerizationofglucosetofructosewith subsequentdehydrationoffructoseoremployingmetalcomplexestoactivatethe glucoseringselectivelyfortheformationofHMFintermediate.Intheformerapproach, 91 acidandbasesneedtobeusedinconcertbecauseisomerizationisabase-and dehydrationisanacid-catalyzedreaction.Thisaddscomplexitytotheentireprocess.In thelatterapproach,complexationofglucosewithmetals,suchascopperorchromium inthepresenceofionicliquidshasshowntoactivatetheringforselectiveHMF production.ThefactthathighestreportedHMFyields,ca.70%,wereachievedbyusing

ChCl 3 inmethylimidazoliumchloride[2]madeionicliquidsapopularchoiceandthe focusofseveralrecentstudies[3-10].However,processesinvolvingionicliquidsdonot offerindustriallyviablesolutionsduetohighproductioncostsofionicliquidsand laborioustreatmentrequirements.

Theunderlyingreasonforthegoodactivityinthepresenceofionicliquidscanbe explainedintermsoftheirabilitytoformcomplexeswithglucose,activatethering,and holdthemoleculeinaparticularorientationsothatitundergoesselectivedehydration.

Theinternalstructureoftheionicliquidsalsohelpsinstabilizingthetransitionstate.

Alternatively,ifthesameeffectcanbeachievedwithcomplexationagentsinwater,the disadvantagesofionicliquidscanbeavoided[3,4].

Complexationofelectrophileswithglucosewasfirstreportedforitsisomerizationto fructose,wherealuminumhydroxidewasfoundtobeaneffectivecatalystbyforminga tridentatecomplex[11].AsimilarcomplexationofCa +2 ionswiththeglucoseunitof cellulosewasalsoobservedwhentheeffectofmineralswasinvestigatedforthe thermopyrolysisofbiomass[12].SignificantamountsofHMFwereobservedamong thepyrolysisproducts.Theeffectofalkaliandalkalineearthmetalsaltswerealso examinedforthedehydrationofglucoseandfructose[13,14].Whiletheadditionof

NaCl,CaCl 2andMgCl 2didnotimprovetheHMFyieldsfromfructosesignificantly, theirsaturatedsolutionsresultedinimprovedyieldsfromglucose. 92

Theroleofthiscomplexationhasbeenexplainedbybindingofthecationsto glucoseandsupplyingwatermoleculestothepositivelychargedmoleculeintheproper directionfordehydrationtooccur[14].Whethertheanionplaysaroleinthis mechanismdependsonthetypeoftheanion.Forchlorides,itwassuggestedthattheCl - bindstotheH +’softhehydroxylgroups,thatincreasestheelectrondensityoftheO’s andtherebyfacilitatesthecomplexationofMg +2 andCa +2 withtheglucosemolecule.

- Such‘anionguidingrailmechanism’wasnotobservedforNO 3 duetothebulkier structureofthegroup[15].Alsosulfatesaltsdidnotplayasignificantroleinthe complexationprocess.Rather,thecomplexwaspredictedtoinvolveaquo-andhydroxyl groupsofwaterexcessively[13].Basedonthesestudies,itcanbededucedthatwater doesnotonlyserveasasolventinthepresenceofalkaliandalkalineearthmetalsalts, butalsoplaysaneffectiveroleintheformationandstabilizationofthetransitionstate.

Similarlywaterwasalsosuggestedtoparticipateinthetransitionstateduringthe mutarotationofglucose[16].Thenegativeactivatedvolumeswereusedtoexplainthe importanceofinternalwaterstructureontherates.Ithasbeenreportedthattheinternal structureofwatercanbemodifiedbyapplyingpressure.Theratesofmutarotationwere foundtobehigherwhenpressurewasappliedtothereactionsystem[17-19].Inthe presenceofacids,dehydrationandmutarotation,bothshareacommonratelimiting step,whichistheprotonationofC2-OH[17,20].Ifthesetworeactionswerealsoto shareasimilartransitionstate,itcanbespeculatedthatachangeintheinternalwater structurebyapplyingpressurewillimprovethedehydrationyieldsaswell.

Theeffectofpressureondehydrationrateshasnotbeennotthoroughlyinvestigated, butglucosedecompositioninsub-andsupercriticalwaterhasbeenstudied[21-25].The resultshaveindicatedpositiveeffectsofwaterstructureonthedecompositionrates underthoseconditions.Theseextremeconditionsthatarenecessaryforimprovedrates 93 inthepresenceofpurewatermaynotbenecessaryinthepresenceofacidandsalts, becausethesaltsreadilymodifytheinternalwaterstructureandcatalysisisperformed bytheacidinsteadofwater.

Bycombiningtheacidcatalysiswithcomplexationbysaltsandrearrangingthe internalwaterstructureviapressureapplication,wereportahighlyefficientmethodfor theproductionofHMFfromglucoseinthisstudy.TheHMFyieldswerefurther improvedbyusinganorganiclayertoextractHMFandtherebypreventingitsfurther conversion.Overall,theunprecedentedmethodproposedinthisstudydeliversHMF withcompatibleyieldstothatwasobtainedinthepresenceofionicliquidsunder industriallyfeasibleconditionsandthereforepromiseshighpotentialfor commercializationbyfurtheroptimization.

Experimental

Hydrochloricacid(12N,Fisher)ascatalyst,thesubstratesglucose(99%,Fisher), andcellobiose(98%,Fluka),andthecomplexationsalts,sodiumchloride(99%,Fisher), potassiumchloride(99%,Fisher),magnesiumchloridehexahydrate(99%,Fisher), calciumchloridedihydrate(99%,Sigma-Aldrich),aluminumchloridehexahydrate

(99%,Fluka),potassiumsulfate(99%,Fisher),aluminumsulfate(99%,Fisher),calcium sulfate(99%,Sigma-Aldrich),andcalciumphosphate(99%,Fluka)wereusedas purchasedwithoutfurtherpurification.Thestarchusedasanothersubstratewas providedbyGrainProcessingCompany.

Inordertopreparetheglucosefeedsolution,hydrochloricacidwasaddedinto nanopurewateruntilapHvalueof1.5wasreached.ThepHvalueofthesolutionwas measuredbycombinedglasselectrode(6.0233.100,Metrohm)attachedtoMetrohm798

MPTTitrinoautomatictitrator.Beforeeachmeasurementtheelectrodeiscalibrated 94 usingthreestandardbuffersat4.00,7.00and10.00.Correspondingamountofglucose wasaddedfollowedbytheadditionofsalt.Finally,extraglucosewasaddedtoadjust theglucosecontentto5wt%.Fortheexperimentsrunwithstarchandcellobiose,the feedsolutionswerepreparedinasimilarmanner.Inthepreparationoforganicphase, methyl-isobutylketone(MIBK)wasmixedwith2-butanolintheratioof7:3(w:w).For thebiphasicsystems,theratioofaqueousphasetoorganicphasewas1:2(w:w).

Kineticexperimentsunder150,250and350psigpressurewereperformedat160°C ina50mlstirredbatchreactor(ParrAssoc.)undervigorousstirring,ca.600rpm.

TemperaturecontrolwasmaintainedwithaPIDcontrollerattachedtoheatingjacket.

Thefeedsolution,eitheraloneortogetherwiththeorganicphase,waschargedtothe reactorbeforeheatingwasstarted.Thepressurewasappliedafterpurgingtheairinside severaltimes.Theheatingperiodtookabout10-11minsandtimezerowastakenasthe timewhenthedesiredreactiontemperaturewasreached.Datawerecollectedeither duringtherunviaasamplingportorattheendofkineticrunaftersubsequentcooling to33°Cin5-6mins.Asinitialscreening,theeffectofmixingonthemasstransfer limitationswasinvestigatedand600rpmwasfoundtobesufficienttoovercomethose.

Alsotheeffectofinsitusamplingonthereactionkineticswasinvestigatedandno changeduetothesamplingduringtherunwasobserved.

Kineticexperimentsunderpressureshigherthan350psigwereperformedin250ml stirredbatchreactor(AutoclaveEngineers)undervigorousstirring,ca.1700rpm.A similarproceduretotheproceduredescribedabovewasfollowed.Themonophasicrun with0.8MMgCl 2under350psigresultedinthesameresultsinbothreactors.However thekineticrunsunderautonomouspressuredidnotresultinreliabledatainthese reactorsduetothehighamountofwaterinthevaporphaseincreasingtheglucose concentrationinliquidphase.Instead,10mlthickwallglasstubereactorswereusedto 95 generatedataunderautonomouspressure.Inthiscase,theglassreactorwasimmersed topreheatedoilbathat160°C.Ittookabout8minstoreachthereactiontemperature backthatdecreasedwiththeimmersionofglassreactor.Thetemperatureinsidethe glassreactorswasassumedtobesameasthetemperatureoftheoilbath.

Samplesthatwerecollectedduringthekineticrunswerefilteredthrough0.2µm nylonfilter(CobertAssoc.)anddiluted100timespriortoHPLCanalysis.Thesamples wereanalyzedwithHi-PlexH +column(PolymerLab.)at65°ConaWatersHPLC systemequippedwithWaters2414RefractiveIndexdetector(RID)at50°CandWaters

996PhotoiodideArrayDetector(PAD).Themobilephasewas10mMsulfuricacid solutionflowingat0.6ml/min.WhiletheRIDpeakareasofthenon-dilutedsamples wereusedtoestimatethesugarconcentration,HMFconcentrationsweredetermined usingthePADpeakareasat280nmforthedilutedsamples.BoththeRIDandthePAD peakareaswerecalibratedusing5differentstandardsolutionsforglucoseandHMF priortoanalysisandalinearrelationshipofthepeakareawiththeconcentrationwas assured.

ResultsandDiscussion

Theeffectofsaltsonglucoseconversionwasdemonstratedwithadditionof0.8M

GroupI-IIIchloridesinto5wt%glucosesolutionofpH1.5at160°Cunder350psig

N2pressureandtheresultsareshowninFigure1-a.Allchloridesaltsimprovedthe glucoseconversionwhencomparedtotheHClalone,infactalmosthalfoftheglucose wasalreadyconvertedbeforethedesiredreactiontemperaturewasreachedinthe presenceofalkalineearthandaluminumcations.Thisimprovementintheglucose conversionwasalsoreflectedintheHMFyields,asshowninFigure1-b.Ascompared tothe3%yieldinthepresenceofHClonly,theyieldsincreasedupto25%withthe 96 additionofalkalineearthmetalchloridesalts.Alkalineearthmetalsaltsshowedhigher activitythanthealkalisalts.Amongthealkalineearthmetalssalts,theactivityofMgCl 2 wasslightlybetterthanthatofCaCl 2.

5.0 a 4.5 4.0 3.5 3.0 2.5 Glucose(wt%) 2.0 1.5 1.0

0 20 40 60 80 100 time(min)

b

20

10 HMFyield(%)

0 0 20 40 60 80 100 time(min) Figure1.Glucoseconversions(a)andHMFyields(b)inthepresenceof0.8Msalt solutions(HClonly(),NaCl(),KCl(),MgCl 2(),CaCl 2(),AlCl 3()). 97

Complexationofalkaliandalkalineearthcationswithcarbohydrateswasreported previously[13,14].Whilethepresenceofsaltsdidnotleadtosignificantimprovement inthefructosedecomposition,glucosedecompositionrateswereacceleratedinthe presenceofalkalineearthmetals.Amongthealkalineearthmetals,Ca +2 wasfoundto bemoreselectivetowardsHMFwhileMg +2 showedhigherselectivitytowardslevulinic acid,oneofthedegradationproductsofHMF,whenthesaturatedsolutionsofMgCl 2 andCaCl 2 weretestedfortheirabilitytoglucosedecomposition[13].Consideringhigh concentrationofsaltsinsaturatedsolutions,referringca.7M,itcanbeexpectedthat higheractivityofMgCl 2 leadstoHMFdegradationreadilyandproduceslevulinicacid, whereasHMFdegradationoccurstoasmallextentatlowerconcentrationsofMgCl 2 likeinourstudy.TheslightlybetteractivityofMg +2 inthisstudymaypointoutits strongercomplexationabilityascomparedtoCa +2 thatturnsouttobeadisadvantageat higherconcentrationsbyleadingtofurtherreactionofHMF.

AlCl 3additionincreasedtheglucoseconversionrateevenmoreeffectivelythanthe alkalineearthcationsasshowninFigure1-a.HoweveritcausedtoHMFdegradation readily,thustheoverallHMFyieldwasnotashighfortheAl +3 asitwerewiththeMg +2 andCa +2 (Figure1-b).Inastudywheretheeffectofaluminumhydroxideascatalyst wasinvestigatedfortheisomerizationofglucoseintofructose,atridentatecomplex involvingC-1,C-3andC-4hydroxylgroupsofglucosewasmentionedtoaccountfor therateenhancement[11].Ascountertothattridentatecomplex,alkalineearthmetal cationsareabletoformbidentatecomplexesinvolvingC-1andC-3[12].Thefaster decompositionrateswithAlCl 3 comparedtoMgCl 2andCaCl 2canberelatedtothe formationofdifferentcomplexes.

Duetoitspromisingpotentialwithhighratesat160°C,theeffectofAlCl 3 was furtherinvestigatedatalowertemperature,145°C,anditsactivitywascomparedtothat 98 ofchromiumchlorideandcupricchloride,whichwereshowedtoleadenhancedHMF yieldswithionicliquids[2].Figure2showsthatCr +3 ,Cu +3 ,andAl +3 actedsimilarto eachother,showingnodiscernabledifferenceinglucoseconversionsorinHMF selectivity.Inanotherstudy,wheretheeffectofGroupIIIelementsonglucose dehydrationwasinvestigated,itwasfoundthatallGroupIIIionswereactingsimilarto eachotheralso,suggestingthatthechargeofthecationisthekeyfortheimprovement

[26].

80

70

60 Glucoseconversion(%)

50

0 10 20 time(min)

Figure2.Glucoseconversionsat145°Cinthepresenceof0.8MAlCl 3(),CuCl 3() andChCl 3(*).

AstheresultsindicateinFigure2,lowertemperaturesenabledtocapturethe conversionkineticsbetter,butevenatlowerconversionsofglucose,significantamount ofHMFlossviafurtherconversionwasnoticed.Operatingatalowertemperature decreasedtheselectivitytowardsHMFbecauseoftheelongatedresidenttimeofHMF inthereactionphase.InsearchfortheexistenceofaHMFyieldregimewithAlCl 3,the 99 kineticswasfurtherexaminedatlowerconcentrationsandsummarizedinFigure3.

Changingtheconcentrationdecreasedtheconversionandincreasedtheselectivityas expected,butineachcasethemaximumachievedHMFyieldwaslimitedto25%, whichwasalsothelimitreachedwithMgCl 2andCaCl 2.

80

60

40

20

Glucoseconversion/HMFyield(%)

0 0.02 0.1 0.8 AlCl 3concentration(M) Figure3.Changeintheglucoseconversion()andHMFyield()withtheAlCl 3 concentrationafter20minsat160°C.

Aftertheadditionofsalts,differentfinalpHvaluesweremeasuredfortheglucose feedsolutions.AlthoughalkalicationsdidnotchangethefinalpHoftheHClsolution significantlyand1.45and1.49wasmeasuredasthefinalpHvaluesinthepresenceof

0.8MNaClandKClrespectively,MgCl 2andCaCl 2hadalargerimpactonthefinalpH valueduetothehigherionicstrengthofthefinalsolution.Intheirpresence,thefinalpH droppedto1.2.Havingthehighestionicstrength,the0.8MAlCl 3solutionhadthe lowestpH,i.e.0.8.Hence,theoverallprotonactivityinthepHdifferedaccordingtothe typeofsaltaddedalthoughallofthesolutionscontainedthesameconcentrationofacid. 100

ThedehydrationofglucosetoHMFwasreportedtobedependentontheavailable protonspreviously[24],butitiselusivewhetheritistheactualprotonconcentrationor theoverallprotonactivitythataffectstheconversionrates.Becausemostofthe previousstudieswereconductedatlowionicstrength,theprotonconcentrationcouldbe assumedtobeequaltotheprotonactivitythatwasexpressedbythemeasuredpHvalue.

Therefore,previousstudiesreportedrateexpressionsbasedonpHorproton concentrationdisregardingthedifferencebetweenthesetwoterms.Ontheotherhand,at highionicstrengthsinthisstudy,theactivitycoefficientdeviatesfromunityandthe measuredpHvaluedoesnottranslatetotheprotonconcentrationdirectly.Inorderto testwhethertheoverallprotonactivityortheprotonconcentrationaffectstheglucose conversion,theeffectofsaltadditiononglucoseconversionwastestedatthesamefinal pHvalue(i.e.1.2)andsomeoftheresultsareshowninTable1.

Table1. Comparisonofglucoseconversion(%)andHMFyield(%)after30minsinthe presenceof0.8MelectrolytesolutionsunderthesamepHvalue. pHadjustmentto1.2 nopHadjustment Conversion HMFyield Conversion HMFyield % % % % HClonly 14 1.5 8 0.5 NaCl 55 18 26 6

MgCl 2 72 24 70 24 AlCl 3 89 10 94 6

EvenatthesamepHvalue,theglucoseconversionfollowedthesametrendasin

Figure1,andlowerconversionswereobservedwiththeNaClandKClcomparedtothe othersalts.Also,increasingthefinalpHvaluefrom0.8to1.2didnotchangethe performanceofAl +3 ionsandtheywerestillthemostactive.Astheadditionofextra

HCltobringthepHdownto1.2wasnotsufficienttoequalizethedecompositionrates 101 inthepresenceofGroupIandGroupIIsalts,thedecreasedprotonconcentrationinthe caseofAlCl 3didnotdiminisheditsbetterrateenhancingeffectcomparedtoothersalts either.Infact,thechangeintheactivityofAl +3 ionsduetopHchangewasnoticeably lessthanthatoftheNa +ions.Forfurtherspeculationabouttheroleoftheproton,the activityofMgCl 2andAlCl 3weretestedatafinalpHvalueof2.0.Ascanbeseenin

Table2,againthechangeintheactivityofAlCl 3 accordingtopHwaslessthanthatof

MgCl 2indicatingthattheeffectofprotonontherateschangesaccordingtothetypeof cation.

Table2.EffectofpHonglucoseconversion(%)andHMFyield(%)after30minsin thepresenceof0.8Melectrolytesolutions. pHadjustmentto2.0 pHadjustmentto1.2 Conversion HMFyield Conversion HMFyield

MgCl 2 56 11 72 24 AlCl 3 84 9 89 10

Overall,comparingtheconversionswithandwithoutpHadjustment,itcanbe suggestedthattheratelimitingstepfortheglucoseconversioninvolvestheparticipation oftheproton,butitdoesnotaccountfortheoverallenhancementsolely.Thefactthat thetrendamongthecationswaspreservedunderthesamepHvalueandthelow conversionsintheabsenceofsaltsregardlessofthepHindicatedthecrucialroleofthe electrolytesintheglucoseactivation.Moreover,theHMFselectivitydifferedaccording tothepHvaluesofthesolutionsindicatingtheroleofprotonintheformationofHMF.

SimilardependencyofHMFselectivityonpHwasobservedwhentheeffectofpHon

HMFselectivitywasexploredforfructoseaswell.

Anexplicitindicationoftheactiveroleofcationglucosecationcomplexationinthe

HMFformationcanbeobtainedbyexaminingtheeffectofsaltatvarying 102 concentrationsontheglucoseconversionandHMFyields.Thevaluesobtainedat varyingMgCl 2concentrationsaretabulatedinTable3.The5wt%glucosefeedsolution correspondsto0.2M,thusbothlowerandhigherGlucose/Saltconcentrationratiosthan

1wereexamined.Anenhancementwasobservedwiththeincreasingsaltconcentration forglucoseconversionswhichwasalsoreflectedintheHMFyields.Inliterature, saturatedmagnesiumandcalciumsaltswerestudiedfortheireffectonglucose dehydration[13].Itwasclaimedthatthesaturatedsolutionsconstituteadifferentclass thanthesaltsolutionsatlowerconcentrationsintermsoftheircomplexationabilities.

Forcomparison,saturatedmagnesiumchloridesolutionwastestedforglucose dehydrationinthisstudyalso.ThefinalpHofthesolutionwasmeasuredas-0.55and therunwasperformedat145°Cfor15mininordertocapturetheglucosedehydration kinetics.TheconversionoftheglucoseandtheyieldoftheHMFwerefoundtobe78 and34%respectively.

Table3. EffectofMgCl 2concentrationonglucoseconversion,andHMFyieldand selectivityafter30minsat160°C. MgCl conc. Conversion Yield Selectivity 2 pH (M) (%) (%) (%) 0.02 1.49 23 6 28 0.1 1.49 24 8 28 0.2 1.45 29 9 31 0.4 1.25 66 21 31 0.8 1.20 75 24 32

Previously,aconcertedmechanismwasproposedforthecoexistenceofacidic protonsandmagnesiumsalts,wheretheconcentrationofbothshouldwereproposedto haveaneffectontheglucoseconversionrates[14].Inthatmechanism,norolewas assignedtothewatermoleculesinthetransitionstate.Later,thismechanismwas modifiedandtheroleofcomplexationisexplainednotonlybyincreasingtheacidityof 103 theringandmakingitmorepronetotheprotonattackbutbysupplyingwatermolecules atthecorrectcoordinationtohydroxyl-groupsinordertoinitiatetheconversion.A transitionstatethatinvolvedthefreealdehydeformofglucosecomplexedwithcation andwatermoleculeswassuggested[14].Alsothestudiessimulatingtheglucoseand xylosedegradationpathwaysinthepresenceandabsenceofwaterrevealedthatwater playsasignificantroleintheongoingmechanism[20,27].

TheinternalstructureofwaterisdeterminedbythepHofthereactionmedia, temperature,thepresenceofco-solvents,saltsandbypressure[20].Henceachangein anyoftheseparameterswillaffecttheoverallHMFyieldfromglucoseifthetransition stateinvolveswatermoleculesassuggested.Toexploretheeffectofpressure,theeffect ofsaltswasalsotestedbyvaryingpressureupto1000psig.Underautonomous pressure,theconversionsandtheyieldsdidnotshowanyobviousdifferencewiththe typeofthesaltusedandonlysmallamountofenhancementintheHMFyieldwas observedwhencomparedtoHClwithoutanysaltaddition,asshowninFigure4.HMF yieldswereaslowas1%with20-30%conversionandselectivityforMgCl 2solution.

Amongthesaltsolutionsstudiedunderautonomouspressure,aluminumchloride showedhighestconversion,buttheselectivitywasratherpoor,i.e.about13%.At350 psig,theconversionsweresignificantlyhigher.Furthermore,anincreaseinthepressure ledtoasteadyincreaseintheconversionasshowninFigure5.Suchanenhancement wasnotobservedintheabsenceofMgCl 2.Applicationofpressuredidnotonlyimprove theglucoseconversionrates,butimprovedtheHMFselectivityalso,indicatingthe presenceofwaterinthetransitionstateandplayingaroleinthedehydrationstep togetherwiththeprotonandthecation.

104

90 80 70 60 50

40

30

Glucoseconversion(%) 20 10 0 HClonly NaCl MgCl2 AlCl3

Figure4.Glucoseconversionsinthepresenceof0.8Msaltsolutionsunderautonomous pressure()andunder350psigN 2pressure()at30mins.(InthecaseofAlCl 3,the conversionsafter15minsisshown.) 80

60

40

20

Glucoseconversion/HMFyield(%) 0 0150250350500750

Initialchargepressure(psig)

Figure5. Effectofpressure(psig)onglucoseconversionat30minintheabsence() andpresenceof0.8MgCl 2()at160°C(HMFyieldsareshownwith()onthe glucoseconversionsforMgCl 2solution). 105

Asimilartransitionstatewasreportedfortheacid-catalyzedmutarotationofglucose from α-pyranoseto β-pyranoseorfrompyranosetofuranoseconfigurations[17-19].

Forthetransitionstateofglucosemutarotationanegativetransitionstatevolumeof about-10cm 3wasreportedand2watermoleculesperglucosemoleculewerethoughtto beinvolvedwiththetransitionstate.Thereforetherateofmutarotationcouldbealtered easilybychangingtheinternalwaterstructureviaadditionofco-solventsorapplication ofpressure[17].

Thepressuresusedinthisstudyarenotevenclosetobeashighastheapplied pressuresinthosestudiesanditwassurprisingthattheimprovedeffectcouldbe observedevenwithapressureincreaseaslowas70bars.Therefore,theinertnessof nitrogenpressurewasfurtherconfirmedbychangingthedeliverygastohelium.The resultsundertheheliumpressuredidnotshowanydifferenceandwereabletoduplicate theresultsobtainedundernitrogenpressure.Besides,eventheairpressurewasreported tobeinertfortheglucosedegradation.Itcanbespeculatedthatthepresenceofsalts contributedtotheeffectofpressureandthepressureapplicationtogetherwiththesalts createdasynergeticeffectonimprovingtheglucoseconversionandHMFyields.The depressingeffectofsaltadditiononwatervaporpressureiswellknown.Forthe depressedvaporpressuresbythepresenceofelectrolytes,apressureapplicationof70 barscanbemoresignificantthanitisforthenormalvaporpressuresobtainedbywater solely.Thefactthatthesamerateincreasewasnotobservedintheabsenceof electrolytesfurthersupportsthehypothesis.Howeverfurtherclarificationontheroleof pressurewillbeconsideredinfuture.

Abouttheparticipationofanionsintheglucosecomplexwithcationsandwater molecules,differenttheorieswereproposed.Inthisstudytheeffectoftheanionwas investigatedbysulfateandphosphatesaltsatvaryingconcentrationsandtheresultsare 106 showninTable4.TheeffectofCa(SO 4)wascomparedtoCaCl 2attwodifferent concentrationsensuringthattheactivitieswerecomparedbothatthesamecationand anionconcentration.Inbothcases,theactivityofCa(SO 4)waslowerthantheCaCl 2.

Furthermore,runswithCa(SO 4)andCa 3(PO 4)2wererepeatedafteradjustingthefinalto

1.2whichwasthepHvalueinthepresenceofCaCl 2.Thetrendfollowedthedecreasing orderofCaCl 2>Ca(SO 4)>Ca 3(PO 4)2.Toeliminatethepossibilitythattheanioneffect wasshieldedbytheenhancingeffectofCa +2 ,theactivityofsulfateionswascompared tochlorideionswiththeirpotassiumsalts.StilltheKClshowedloweractivitythan

K(SO 4)2.Inaddition,Al 2(SO 4)3wasalsocomparedtoAlCl 3,butatmuchlower molaritiesthantheabovementionedsalts.Inallcases,theactivitywiththechlorideions wasfoundtobehighestfollowedbysulfateandphosphateions.AlsotheHMFyield obtainedbychlorideanionswashigherthantheotheranions.

Table4. EffectofaniononglucoseconversionandHMFyieldandselectivityafter30 minsat160°Cunder350psigN 2pressure.(*ThefinalpHofthesolutionadjustedto 1.2) Concentration Conversion Selectivity Yield (M) % % %

CaCl 2 0.8 69 37 24

Ca(SO 4) 0.8 51 21 11

Ca(SO 4) 0.4 49 17 8

Ca(SO 4)* 0.8 49 17 8

Ca 3(PO 4)2* 0.8 33 22 7 KCl 0.8 39 32 12

K(SO 4)2 0.8 28 10 3

K(SO 4)2 0.4 30 11 4

Al 2(SO 4)3 0.05 85 21 18

Regardingtheeffectofanionsinthecomplexation,thechlorideionswerereported tobeinvolvedwiththecomplexbywithdrawingtheprotonsonthehydroxylgroups 107 increasingtheelectrondensityontheoxygens.Withtheincreasedelectrondensity,the oxygenatomswereabletoformstrongercomplexeswiththecationsleadingtoamore stablestructure[15].Ontheotherhand,thismechanismwasnotobservedwiththe sulfateionsandthesulfateionswereproposednottobeinvolvedwiththecomplex structureduetotheirbulkiness.Insteadthecomplexwiththecationinthepresenceof sulfatesaltswasmentionedtobeformedwiththeaquo-andhydroxyl-groupsofthe water,ahighlyhydratedstructure[14].Asaresult,decreasedglucoseconversionrates werereportedwiththesulfatesaltsascomparedtochloridesalts,agreeingwiththe resultsofthisstudy.Hence,chloridesaltsarepreferredoversulfateandphosphatesalts intheaspectofincreasedglucoseconversionrates.However,complexionofchloride ionswithHMFitselfwasreportedalsoleadingtofurtherdegradationofHMF.Sucha negativeeffectontheselectivitywasnotobservedwiththesulfateanionsmaking sulfatesaltsabetterchoiceforhigherHMFselectivity.Alternatively,advantagecanbe takenfromchloridesforfasterglucoseconversionandtheirdisadvantageforHMF degradationcanbeexcludedatthesametime,ifaHMFextractingorganicphaseis coupledwiththeaqueousreactionphase.

Anorganicphaseconsistingof7:3(w:w)MIBK-2-butanolsolutionwassuggested toeffectivelyextracttheHMFproducedduringthefructosedehydrationinthepresence ofHCl[1,28].ThesameorganicphasewasusedinthisstudytoextractHMFand therebypreventitsdegradationtosolubleandinsolublehumins.Basedontheresults presentedinFigure6,theadditionoforganicphaseinthepresenceofmagnesiumsalts overcamethemostcommonproblemindehydrationreactionsthatisthedecreaseofthe selectivitywiththeincreasingconversion.Inthecaseofaluminumchloride,the degradationofHMFoccurredalmostsimultaneouslyduringitsformation,sothat additionoftheorganicphasedidnotimprovetheselectivityasmuchasitdidinthe 108 presenceofmagnesiumsalts.InthepresenceofMgCl 2,ca.57%ofHMFyieldreferring toca.70%selectivityat80%conversionin30minat160°Cwasobtained.Thesevalues areveryclosetohighestreportedvalues[2],whichwereobtainedinthepresenceof ionicliquids,substancesthatarenotindustriallypreferred.Infact,theseresultswerenot obtainedundertheoptimizedreactionconditions.Todemonstratetheenhancingeffect ofextractingphase,theconditions,i.e.saltmolarityandpressure,werechosenfor convenienceandaresubjecttofurtheroptimization.Forexample,increaseinthesalt molarityandpressure,andshortenedHMFresidencetimeswillleadtofurther improvementintheyields.

80

60

40

20

Glucoseconversion/HMFselectivity(%) 0 mono biphasic mono biphasic mono biphasic

MgCl 2 -30 MgSO 4 -60 AlCl 3 -15 Figure6.Effectoforganiclayerextractiononglucoseconversion()andHMF selectivity()inthepresenceof0.8MMgCl 2andMgSO 4at30mins,andinthe presenceof0.1MAlCl 3at15minsat160°Cunder350psigN 2pressure.

TheproposedmethodinthisstudyfortheHMFproductionfromglucosecanbe furthercombinedwiththepolysaccharidehydrolysis.Whenglucosewasreplacedwith starchorcellobioseinthepresenceof0.8MMgCl 2withoutorganicphase,25%and 109

19%ofHMFyieldsat66%and57%conversionswereobtainedforstarchand cellobioserespectively.Duetothehigherstabilityofthe β-1,4linkagecomparedto α- linkages,theactivityforthecellobiosewaslowerthanthestarch.However,the characteristicsofthestarch,suchasitsamylosevs.amylopectincontent,degreeof polymerizationandaveragechainlengthmaychangethehydrolysisratesandtherefore theHMFrates.FurtherinvestigationoftheeffectofthesecharacteristicsontheHMF yieldandtheextensionofthestudyforcellulosiccompoundsareamongthefurther aspectsofthisstudy.

Conclusions

Presenceofsaltsintheacidicmediaenhancesboththeglucoseconversionandthe selectivitytowardsHMFviacomplexationanddirectingthewatermoleculestothe complex.Duetotheroleofwaterinthetransitionstatecomplex,thechangeinthe waterstructureaffectstheglucoseconversionandHMFyields,whichcanbe manipulatedbyapplyingpressure.Theeffectofpressureonwaterstructureissensitive tothepresenceofelectrolytes.Overall,thecombinedeffectofelectrolytesolutions, pressureandacidcatalystpromisehighpotentialfortheefficientHMFproductionfrom glucose.Usingthesameprocess,hydrolysisofstarchproductscanbecombinedwith thedehydrationwithoutanysacrificeintheactivity.

References

[1] Y.Roman-Leshkov,J.N.Chheda,J.A.Dumesic,Science312(2006)1933- 1937. [2] H.B.Zhao,J.E.Holladay,H.Brown,Z.C.Zhang,Science316(2007)1597- 1600. [3] C.Lansalot-Matras,C.Moreau,CatalysisCommunications4(2003)517-520. 110

[4] C.Moreau,A.Finiels,L.Vanoye,JournalofMolecularCatalysisA-Chemical 253(2006)165-169. [5] F.S.Asghari,H.Yoshida,CarbohydrateResearch341(2006)2379-2387. [6] C.Z.Li,Z.H.Zhang,Z.B.K.Zhao,TetrahedronLetters50(2009)5403-5405. [7] X.H.Qi,M.Watanabe,T.M.Aida,R.L.Smith,Chemsuschem2(2009)944- 946. [8] A.Boisen,T.B.Christensen,W.Fu,Y.Y.Gorbanev,T.S.Hansen,J.S.Jensen, S.K.Klitgaard,S.Pedersen,A.Riisager,T.Stahlberg,J.M.Woodley,Chemical EngineeringResearch&Design87(2009)1318-1327. [9] S.Yu,H.M.Brown,X.W.Huang,X.D.Zhou,J.E.Amonette,Z.C.Zhang, AppliedCatalysisA-General361(2009)117-122. [10] G.Yong,Y.G.Zhang,J.Y.Ying,AngewandteChemie-InternationalEdition47 (2008)9345-9348. [11] A.J.Shaw,G.T.Tsao,CarbohydrateResearch60(1978)327-335. [12] C.Y.Yang,X.S.Lu,W.G.Lin,X.M.Yang,J.Z.Yao,ChemicalResearchin ChineseUniversities22(2006)524-532. [13] S.K.Tyrlik,D.Szerszen,B.Kurzak,K.Bal,Starch-Starke47(1995)171-174. [14] S.K.Tyrlik,D.Szerszen,M.Olejnik,W.Danikiewicz,JournalofMolecular CatalysisA-Chemical106(1996)223-233. [15] S.K.Tyrlik,D.Szerszen,S.Szymanski,NewJournalofChemistry19(1995) 1019-1021. [16] G.Livingstone,F.Franks,L.J.Aspinall,JournalofSolutionChemistry6(1977) 203-216. [17] B.Andersen,F.Gronlund,ActaChemicaScandinavicaSeriesA-Physicaland InorganicChemistry33(1979)275-280. [18] B.Andersen,ActaChemicaScandinavicaSeriesB-OrganicChemistryand Biochemistry38(1984)415-418. [19] B.Andersen,F.Gronlund,H.C.Jorgensen,ActaChemicaScandinavicaSeries a-PhysicalandInorganicChemistry38(1984)109-114. [20] X.H.Qian,M.R.Nimlos,M.Davis,D.K.Johnson,M.E.Himmel, CarbohydrateResearch340(2005)2319-2327. [21] T.M.Aida,Y.Sato,M.Watanabe,K.Tajima,T.Nonaka,H.Hattori,K.Arai, JournalofSupercriticalFluids40(2007)381-388. 111

[22] B.M.Kabyemela,T.Adschiri,R.M.Malaluan,K.Arai,Industrial& EngineeringChemistryResearch38(1999)2888-2895. [23] B.M.Kabyemela,T.Adschiri,R.M.Malaluan,H.Ohzeki,Industrial& EngineeringChemistryResearch36(1997)5063-5067. [24] M.Watanabe,Y.Aizawa,T.Iida,T.M.Aida,C.Levy,K.Sue,H.Inomata, CarbohydrateResearch340(2005)1925-1930. [25] M.Watanabe,Y.Aizawa,T.Iida,C.Levy,T.M.Aida,H.Inomata, CarbohydrateResearch340(2005)1931-1939. [26] S.K.Tyrlik,D.Szerszen,M.Olejnik,W.Danikiewicz,CarbohydrateResearch 315(1999)268-272. [27] X.H.Qian,M.R.Nimlos,D.K.Johnson,M.E.Himmel,AppliedBiochemistry andBiotechnology121(2005)989-997. [28] J.N.Chheda,Y.Roman-Leshkov,J.A.Dumesic,GreenChemistry9(2007) 342-350. 112 CHAPTER6.FUTURECONSIDERATIONSANDGENERAL

CONCLUSIONS

FutureConsiderations

Thecombinationofalkaliearthmetals,acidcatalystandpressureresultsinhighly improvedyieldsofHMFfromglucose.Furtherimprovementisachievedbythe integrationofanorganiclayertoextracttheformedHMFandpreventitsdegradation.

Howevertheprocessisalreadycomplicatedbythepresenceoftheorganiclayerandthe partitionofsaltsintheorganiclayerconstitutesfurthercomplication.Theincreased separationcostsdecreasetheindustrialfeasibilityoftheentireprocess.Arobust heterogeneouscatalystwithhighdensityofstrongacidsitesreplacingthehydrochloric acidwillcutdowntheseparationcostsandenvironmentalhazards.Theseparationcosts canfurtherbereducedifthecatalystiscapableofseparatingtheHMFsimultaneously fromtheaqueousreactionmediaduringthereaction.

Mostofthehighlythermallystablecatalystsdesignedforthegasphasereactionsdo notperformwellinthecondensedaqueousphasereactionsduetotheirlimited hydrothermalstability.Despitetheiruniquetexturalandcatalyticproperties, mesoporoussilicacatalystswerenotgoodcandidatesforthedehydrationreaction becauseofthehydrothermalstabilityproblem.Recently,sulfonicacidmoietieswere incorporatedontoactivatedcarbonbyapreviousgroupmembersuccessfullyfollowing themethodsuggestedbyHaraetal.Thematerialsshowedhighhydrothermalstability andcompetitivecatalyticactivitytosulfuricacidforthedehydrationoffructose,even afterhydrothermallytreated.

Thesesulfonatedcarbonspecieswerepreparedbypyrolysisoftocreatethe activecarbonspeciesfollowedbysulfonationviawetimpregration.Toremovethe 113 physisorbedandchemisorbedsulfatesthefinalmaterialwerecalcinedagain.The resultingmaterialhasasurfaceareaofca.0.2m 2/gwithatotalacidcapacityofca1.3 meq/g.Althoughthesurfaceareaisratherlowforaheterogeneouscatalyst,theacid densityiswithinthesamerangeasorganicacidfunctionalizedmesoporoussilica.In ordertotestthehydrothermalstability,thecatalystsweretreatedinaqueousphaseat

145°Cfor2hrsunder350psigpressure.Theseconditionswerechosentomimickthe dehydrationreactionconditions.After3timesofhydrothermaltreatment,the characterizationstudiesshowedthatthematerialsstillkeptmostoftheiracidicsides, whichwasalsoprovedbytheircatalyticactivity.Theuntreatedandhydrothermally treatedsamplesweretestedfortheiractivityinfructosedehydration.Theresultsare showninTable1.

Table1 .Theactivityofthefructosedehydrationtohydroxymethylfurfuralat145 oC Catalyst Time Fructose HMF Conversion Selectivity Yield (min) wt%±0.15 wt%±0.0 % % % SC0* 0 4.92 0 45 3.19 0.63 35 52 18 SC3 0 4.67 0.07 45 3.15 0.68 32 73 24

H2SO 4 0 4.78 0.02 45 3.72 0.48 22 73 16

IntheseteststheconversionoffructosetoHMFwasmeasuredat145°Cunder350 psigpressureinthepresenceofsulfonatedcarboncatalystassynthesized,3times hydrothermallytreatedsulfonatedcarboncatalystandsulfuricacid.Theamountofthe catalystineachbatchwasadjustedsothatthefinalpHofthesolutionwasthesamein eachcase,i.e.3.3.AsshownintheTable1,nosignificantlossinthecatalyticactivity 114 wasobservedduetothehydrothermaltreatment.Infact,thecatalystsshowed competitiveactivewiththesulfuricacid.Hencesulfonatedcarbonspeciespromise potentialasactivecatalystsforthedehydration.HoweverhighyieldsofHMFfrom glucosewereonlyobservedatveryfastreactionrates.Withthisloadingdensityof acidicgroups,itisdifficulttoreachlowpHvaluesrequiredforhighyields.

Inordertoincreasethetotalacidcapacitypergram,thespatialdensityoftheacidic groupsdoesnotneedtobechanged.Byincreasingthesurfacearea,totalacidcapacity canbeincreasedforthesameacidicgroupdensityperarea.Thusadifferentsupport withahighersurfaceareawillresolvetheproblem.Dispersingthesucroseonto mesoporoussilicasurfacewassuggestedbeforetoincreasethesurfacearea.However thelowhydrothermalstabilityofthemesoporoussilicawasobservedduetothestrong interactionofthesurfacehydroxylgroupswithwaterinducingsilicahydrolysisand condensation.Becauseimmersingsucroseonthesurfacewillnotcoverallofthesurface hydroxylgroupsandtheremaininggroupswillcausecollapseoftheentirestructure againinthepresenceofwater,immersionofsucroseontosilicaisnotafeasibleoption toincreasethesurfacearea.

Alternatively, β-cyclodextrincanbeusedasstartingmaterialinsteadofsucrose.

β-cyclodextrinconstistsof7glucoseunitsconnectedviaglycosidicbondsbuildingan insidehydrophobiccavityof6Åandhasverylowwatersolubilityoverall.Ifthecyclic structurecanbemaintainedduringthesynthesisofthematerials,highersurfaceareas andhencehighertotalacidcapacitiespergramcanbeachieved.Whilethehydroxyl groupsoftheglucoseunitsarereplacedwiththesulfategroups,theglycosidicbonds holdingthemoleculetogetherhastobepreserved.Itisnotknownwhetherthe glycosidicbondlinkageinsucroseispreservedduringthesynthesis.Evenifnot,thereis ahigherpossibilitythatglycosidicbondsinthecyclodextrincanbepreservedbecause α 115

1-4linkagesinthecyclodextrinhavehigherbondstrengthcomparedtothe α1-6 linkageinsucrose.Asthecatalyticallyactivesitesonthefinalstructurewillface outwards,theporesizeisnotimportant.Indeedsmallerporesizesarepreferredin termsofincreasingthetotalacidcapacity.Ontheotherhand,ifbiggerporecavitiesare desired,recentstudiesshowedthatcyclodextrinswithlargernumberofglucoseunits canbesynthesized.

Biggerporecavitiesmaybeusefulifaspecificproductisdesiredtobetrappedin, suchasHMF.Thehydrophobiccharacterofthecavitycanbetakenadvantageofto extracttheHMFfromtheaqueousreactionlayerwithoutusinganorganiclayer.

However,inordertotakeadvantageofthehydrophobiccharacterofthecavity,bigger poresizesmaynotevenbenecessary.Duetothelowwatersolubilityof β- cyclodextrins,moleculestendtostackoneachotherforminglonghydrophobicchannels thatcanresidemultipleHMFmolecules.Testsmustberunbyreplacingtheorganic layerwiththe β-cyclodextrinstomeasureitseffectonHMFextractionandthereby preventingfurtherdegradationofHMFbeforesearchingforcyclodextrinsofhigher orders.

Anotherpointofinterestforimprovingtheprocessfurtheriscombiningthe polysaccharidehydrolysiswiththeglucosedehydrationinonepot.Primaryresults regardingthishasshowedthatbreakageofthe β1-4linkageincellobioserepresents moreofabarrierthan αlinkagesinthestarch.Clearly,thecharacteristicsofstarch,such asitsamylose/amylopectinratio,degreeofpolymerizationanddegreeofbranchingare importantparametersaffectingthehydrolysisrate.Detailedinvestigationoftheeffect ofthesecharacteristicsonthehydrolysisrateiscrucialforthecouplingofhydrolysis withdehydrationreaction.Howeverunderthepropercircumstancesstarchhydrolysis canbecombinedwithdehydrationwithnosacrificeontheHMFyields.Onthehand, 116 hydrolysisofcellulosiccompoundsismoretroublesomeanditscombinationwith dehydrationmayresultindecreasedHMFyieldsaccordingtotheprimaryresults.The extentofhydrolysisratesaffectingthedehydrationmustbeinvestigatedinadetailed manner.HowevertheprocessshowspotentialforonepotsynthesisofHMFeitherfrom starchorfromcellulosiccompounds.

GeneralConclusions

Furfuralanditsderivative,hydroxymethylfurfural(HMF),areimportantversatile polyfunctionalcompoundsinthepolymerindustry.Highlyefficientindustrial productionofthesematerialshasgainedsignificantimportanceduetheincreasing concernsforasustainableeconomyintheshortageofpetroleumsupplies.While furfuralandHMFareproducedbythedehydrationofthepentosesandhexoses respectively,accompanyofmanyothersidereactionsdecreasetheoverallproduct yields.Differentmechanismsweresuggestedforthedecompositionof monosaccharides,dominanceofwhichisdeterminedaccordingtothereaction conditions.Inthepresenceofweakacids,glucosedecomposesviadifferent mechanismsatdifferentpHregimes.Althoughlowacidicconcentrationleadtohigher selectivitytowardhydroxymethylfurfural,slowreactionratesdoesnotallowfor developmentofaviableprocessundertheseconditions.Athigheracidconcentrations, additionofalkalineearthmetalsundermildpressureincreasestheglucoseringactivity selectivelyforhydroxylmethylfurfuralproduction.Couplingdehydrationwiththe polysaccharidehydrolysisdoesnotaffecttheHMFyieldsandallowforonepot synthesisofhydroxymethylfurfuralfromstarch.Theseconditionswithextractionof hydroxymethylfurfuraltoanorganiclayerleadstohighproductyieldsthatare competitivewiththehighestyieldsreportedsofarforthehydroxymethylfurfural 117 productionformglucose.Byfurtheroptimizationoftheparameters,theprocess promiseshighpotentialforcommercialization.Substitutionofhomogeneousacid catalystwitharobustheterogeneouscatalystpresentsanimportantbarrierforthe commercialization.Differentacidmoietiesincorporatedintomesoporoussilicaprovide enhancedacidicstrengthduetotheinteractionbetweentheacidicgroupsandareableto displaytheirownstrengthinwater.Intermsofunderstandingtherelationshipofthe functionalgroupsandthesupportwithwater,quantumchemicalsimulationscoupled withMonteCarlomethodprovideausefultool.Togetherwiththetunabletextural properties,organicacidfunctionalizedmesoporoussilicamaterialscanbepromisingfor thedehydrationifhydrothermalstabilityisprovided.Replacingthemesoporoussilica supportwiththeactivatedcarbonprovideshydrothermalstabilityandthecatalysts showedactivityforthedehydrationoffructose.Howeverthecatalystsuffersfromlow surfaceareaandlowacidgroupdensity.Thetexturalandcatalyticpropertiesofthe materialsneedtobeimprovedfortheirutilizationinthedehydrationofcarbohydrates.

Overall,arobustheterogeneouscatalystwithsufficientacidcatalyticsitescanprovide highyieldsofHMFfromglucoseintheaqueoussolutionofalkalineearthmetalsunder pressure.

118 APPENDIX1.MONOSACCHARIDEDEHYDRATIONUSING

ORGANIC-INORGANICHYBRIDMESOPOROUSSILICA

Abstract

Dehydrationofmonosaccharidesisanimportantreactionthatproducesthevaluable chemicalbuildingblocksinpolymerindustry,hydroxymethylfurfuralandfurfural,and isanintermediatesteptoproduceliquidfuelsfrombiomass.Inordertoincreasethe feasibilityofproductionofthesechemicalsindustrially,thereisagreatdesiretodesign anenvironmentfriendlyrobustcatalystofferinghighselectivityandyield.Mesoporous silicafunctionalizedwithorganicacidsispromisingduetothecombinedadvantageof highsurfaceareawithtailorabletexturalandcatalyticproperties.Inthiswork,propyl sulfonic,arenesulfonic,butylcarboxylicandethylphosphoricfunctionalgroupswere incorporatedontoSBA-15typemesoporoussilicasupportandtestedfortheiractivity fordehydrationofglucose,fructose,xyloseandarabinoseinaqueousmedia.The observedactivitywasindependentoftheacidicstrengthofthetetheredgrouponto catalystsurface.Regardlessofthecatalysttype,therelativeactivityofsubstrateswas followedthedecreasingorderof;fructose,arabinose,xylose,andglucose.The calculatedactivationenergyforsubstrateconsumptionusingkineticdataat145,160 and175°Cwere120and130kJ/molforxyloseandfructose,respectivelyanddidnot changeaccordingtothetypeofthefunctionalgroupincorporated.Forglucose,two differentactivationenergies,80kJ/moland120kJ/mol,wereobtainedwithdifferent functionalizedmaterials.Noneofthefunctionalgroupsshowedhigherselectivity towardthedehydrationproductthantheothers.Theseresultscanbeexplainedbythe poorhydrothermalstabilityofthematerialsatthetemperaturesusedinthisstudy. 119

Introduction

Duringthetransitionfromapetroleum-basedeconomytoabio-basedeconomy, dehydrationreactionofmonosaccharidesisconsiderablyimportantintwoaspects:first, itisanintermediatestepinproducingliquidalkanefuelsfromcellulosicmaterials,and second,thefuranderivativeproductsofthereactionareimportantchemicalsinpolymer industry[1-3].Beingthemostcommonproductsofbiomasshydrolysis[4-8],xylose, arabinoseandglucosearethemostwidelystudiedsubstratesfordehydration.Onthe otherhandfructoseisahighlyconsideredsubstratefortheproductionofhydroxymethyl furfural(HMF)foritshigheractivityandratherbetter-understoodmechanismas comparedtoglucose[9-11].Forindustrialapplications,catalystsprovidingboth environmentalandeconomicalbenefitsoughttobedevelopedforthereaction.Being cheapandenvironment-friendly,functionalizedmesoporoussilicacatalystshavebeen usedinsimilarreactionsystems[12,13]andthereforearepromisingcatalystsfor dehydrationreactionsalso.Inthiswork,mesoporoussilicaswithorganicacidfunctional groupsofvariousacidstrengthsweretestedfortheirabilitytodehydrate monosaccharides.

Dehydrationreactionproceedsalongwithsomeparallelandconsecutiveside reactionssuchasisomerization,fragmentationandpolymerization[1-3,14].Mostof thesesidereactionsinvolveC-Cbondbreakagethathasabondingenergyofca.348 kJ/mol.Ontheotherhand,dehydrationreactionsinvolveC-Obondbreakage,whichhas abondingenergyofca.360kJ/mol[10,11].Thesimilaritybetweenthebonding energiesmakesitdifficulttodecouplethemfromeachother.Moreover,boththeside reactionsandthedehydrationreactionsareacid-catalyzedandoccuratsimilarratesat similartemperaturescreatingfurtherchallengesforobtaininghighyieldstowards desiredproducts[9,14]. 120

QuakerOatsprocessemployingconcentratedsulfuricacidismostcommonlyused toproducefurfuralfrompentoses[15].Inliterature,othermineralacidsbesidessulfuric acid,suchashydrochloricacidandphosphoricacid[9,16-18],aswellassomeorganic acids,suchasaceticacid[19],maleicacid,andsuccinicacid[20,21],havealsobeen usedtostudythedehydrationofmonosaccharides.Ingeneral,itwasfoundthatthe selectivitydecreaseshighlyforconversionsover50%.Besideslowselectivitywith theseacids,corrosivenessofmineralacidsandhighseparationcostforcatalystaddto thedrawbacks.

Enzymesofferhigherselectivitythanthehomogeneousacids.Howevertheirhigh pricesandbeingeasilyaffectedbythereactionenvironmentdoesnotsatisfytheneeds foranindustrialapplication.Therehasbeensomeworkdonewithzeolitestructuresby

Moreauandhisco-workers[22-24]indicatingthattheselectivitytowardsdehydration wasaffectedbytheshapeofthepores.Theauthorsobtained90-95%selectivitywhen theconversionwaskeptaslowas30%.However,theselectivitydecreased significantlyathigherconversions.Theyhavealsofoundsomeactivitywitha sulfonatedpolymer-resincommercialcatalyst[23],butpolymer-resinsupported materialsprovidelowsurfaceareaslimitingtheiruseforliquidphasereactions.By providingahighersurfaceareawithtunableporesizes,micelle-templatedmesoporous silicahasattractedattentionasheterogeneouscatalysts.

Mesoporoussilicafunctionalizedwithawiderangeofacidicandbasicfunctional groupshavebeenfoundtobeeffectiveforvariousorganicreactions[25].RecentlyDias andthecoworkersstudieddehydrationreactionwithMCM-41typemesoporoussilica functionalizedwithvariousgroupsbygrafting,andtheyhavefoundpromisingresults

[26-29].Whengrafted,thefunctionalgroupsarenotuniformlydistributedinsidethe poresbutrathertendtoaccumulateattheporeopenings[25,30].One-potsynthesis 121 methodprovidesamoreuniformdistributionofthefunctionalgroupsandtherebyoffers enhancedreproducibility[30-32].Ontheotherhand,SBA-ntypesupportsprovide higherstabilityduetoitsthickerwallscomparedtoMCM-41[32].Thusorganicacid functionalgroupstetheredontoSBA-15supportarepromisingheterogeneouscatalysts fordehydrationreaction.Inthiswork,mesoporoussilicacatalystsfunctionalizedwith organicgroupsofdifferentacidicstrengthweretestedforthefirsttimefortheiractivity fordehydrationofpentoseandhexoses,e.g.xylose,arabinose,glucoseandfructose.

Experimental

Forcatalystsynthesis,silicaprecursortetraethylorthosilicate(TEOS)(98%,

Aldrich),andfunctionalgroupprecursors,3-cyanopropyltriethoxysilane(CPTES)(98%,

Gelest),diethylphosphatoethyltriethoxysilane(DEPTES)(95%,Gelest),2-(4- chlorosulfonylphenyl)ethyltrimethoxysilane(CSPTMS)(50%indichloromethane,

Gelest),and(3-mercaptopropyl)trimethoxysilane(MPTMS)(85%,Gelest),wereused aspurchased.Thesubstrates α-D-glucose(99%,Acros),D-xylose(Acros),D-fructose

(FisherChemicals)werealsousedwithoutfurtherpurification.

Catalystsynthesisandcharacterization

Propylsulfonic(-PrSO 3H),arenesulfonic(-ArSO 3H),butylcarboxylic(-BuCOOH) andethylphosphonic(-EtPO 3H)functionalizedSBA-15typemesoporoussilica catalystsweresynthesizedusingtheco-condensationproceduredescribedinliterature

[13,30,31,33]. Thefunctionalgroupprecursortosilicaprecursormolarratiowasthe sameforeachcatalyst,e.g.15%.

Assilicatemplate,4gofPluronic123(BASFCo.),atri-blockco-polymer consistingofpoly(ethyleneoxide)/poly(propyleneoxide)/poly(ethyleneoxide),

(EO) 20 (PO) 70 (EO) 20 ,wasdissolvedin125mlof1.9MaqueousHClsolution.TEOS 122

(8.2ml)wasintroducedintothesolutionwhenthetemperaturereached40ºC.Aftera pre-hydrolysisperiodof45min,thefunctionalgroupprecursorwasaddedinamolar ratioof0.15relativetotheTEOS.ForoxidationofthethiolgroupsinSBA-15-PrSO 3H synthesis,3partshydrogenperoxide(30wt%aqueous,Fisher)withrespecttoTEOS wasaddedtothemixture.Theresultingmixturewasstirredfor20handagedfor24h understaticconditionsbeforefiltration.Thesurfactanttemplatewasremovedbytotal refluxinethanolwith0.1MHClfor24h.WhensynthesizingSBA-15-BuCOOH,the functionalgroupswereacidifiedfurtherbyrefluxingfor24hina50wt%aqueous

H2SO 4solution.Thecatalystswererecoveredbyfiltration,washedmultipletimeswith

DIwater/ethanolandoven-driedat80°C.

Texturalpropertiesofthecatalystsweredeterminedusingnitrogen adsorption/desorptionisothermsmeasuredat-196°CbyaMicromeriticsASAP2020 system.Priortomeasurementthesamplesweredegassedfor5hat100°C.Thepore volume/poresizedistributionsandsurfaceareaswerecalculatedusingBJHandBET methodsrespectively.Theincorporationofthefunctionalgroupsandremovalofthe surfactantwereconfirmedbythermogravimetricanalysisfrom50°Cto650°Cwitha temperaturerampof5°C/minandnitrogenpurgeusingPerkin-ElmerTGA7.

Potentiometrictitrationdataofca.0.02wt%catalystin0.01Msodiumchloridesolution with0.005Maqueoussodiumhydroxidewasusedtocalculatethetotalacidcapacities andaciddissociationconstantsforindividualcatalysts.Titrationswereconductedwitha

Metrohm798MPTTitrinoautomatictitratorequippedwithMetrohmcombinedglass electrodeandtheresultswereanalyzedusingMetrohmTiamosoftwareandGranPlot methodasdescribedinliterature[34].TheresultswereconfirmedwithCHNS elementalanalysisusingaPerkin-ElmerSeriesII2400CHNSanalyzer. 123

Kineticruns

ThekineticstudiesforthedehydrationreactionsofD-fructose,D-glucose,D-xylose andD-arabinosewereconductedinanAutoclaveEngineers100mlstainlesssteelbatch reactoratthreedifferenttemperatures,145,160and175°C.Thetemperaturecontrol wasmaintainedwithaprogrammablelogiccontrollerconnectedtobothheatingjacket andcoolingloop.Inatypicalreactionrun,100mlof11mMaqueoussugarsolution togetherwiththecorrespondingamountofcatalysttocontain0.25mmolofacidic protonswaschargedintothereactorvesselandheatingwasstarted.Toensure condensedphasereactionenvironment,nitrogenpressureof300psigwasapplied duringtherunsafterpurgingtheair.Timezerowastakenasthetimewhenthedesired temperaturewasreachedandtheconversionatthattimewastakentobezero.Samples weretakenevery30minfor2handwerefilteredthrough0.2µmnylonfilter(Cobert

Assoc.)priortoanalysis.

Sampleswereanalyzedfortheirsubstrateandproductconcentrationsusinga

300x7.7mmPLHi-PlexH +column(PolymerLab.)at65°ConaWatersHPLCsystem equippedwithWaters2414RefractiveIndexdetector(RID)andWaters996

PhotoiodideArrayDetector(PAD).Themobilephasewas10mMsulfuricacidsolution flowingat0.6ml/min.TheconcentrationsofsugarswerecalculatedusingRIDdata.

Injectionofstandardsugarsolutionsshowedthatthepeakintensitieswerelinearly relatedtosugarconcentrationsintherangeof0.5to2.0wt%.Toremaininthelinear correlationregimeforproducts,datafrombothdetectorswereused.Concentrationsless than0.25wt%werecalculatedfromPADdataat280nmwhereashigherconcentrations ofproductswerecalculatedfromRIDdata.

124

ResultsandDiscussion

Catalystcharacterization

ThefunctionalgroupsincorporatedintoSBA -15areshowninScheme1.Allthe functionalgroupswereincorporatedsuchthatthefunctionalgroupprecursortosilica precursorratiois0.15thatisslightlyhigherthanthecommonlyusedratio,e.g0.10.

Thi sisthehighestloadingthatcanbeincorporatedontoSBA -15structure.Loadings higherthanthisresultindisorderingofmesoporousstructure [13,35] .TheN 2 adsorption-desorptionisothermsforthesecatalystsdisplayedTypeIVhysteresisloops, characteristicform esoporousmaterials,suggestingthatthecurrentloadingsmaintained themesoporousorderedstructure.Thecalculatedtexturalpropertiesoftheprepared catalystsarelistedinTable1.Thesurfaceareasandporevolumeswerewithinthe expectedrangeformesoporousmaterials [36,37] .Thesharppeaksindicatenarrowpore sizedistributions.Also,thet -plotana lysisshowedevidenceforthepresenceof micropores.ThemicroporesinSBA -15structuresaretypicalandtheyarethoughttobe smallenoughthatnofunctionalgroupsresideinthem [36,37].

Scheme1. Functionalgroupsincorporatedontomesoporoussilica.Propylsulfonicacid (a);arenesulfonicacid(b);ethylphosphonicacid(c);butylcarboxylicacid(d).

125

Table1.Texturalandcatalyticpropertiesofthecatalysts.

Avg. Total Surface Pore ElementalAnalysis Pore Acid Area Volume pK Size C H S Capacity a (m 2/g) (cm 3/g) SBA-15- (A) (mol%) (mol%) (mol%) (meq/g)

ArSO 3H 637 55 0.61 1.23 3.29 0.13 1.2 2.62

PrSO 3H 758 48 0.92 0.59 2.5 0.16 1.13 2.78

EtPO 3H 625 64 0.82 0.41 1.64 --- 0.75 3.56 BuCOOH 575 72 0.83 0.62 2.97 --- 0.7 4.78

Theincorporationofthefunctionalgroupsandthethermalstabilityofthecatalysts

weretestedwiththermogravimetricanalysisinthetemperaturerangeof50°Cto650°C.

Threemainpeakswereidentifiedforthecatalysts.Thefirstpeakisaround100°C,

associatedwiththelossofphysisorbedwater[36,37].Theamountofphysisorbedwater

wasfoundtobeapproximately10%ofthetotalweightandwasalmostthesameforall

catalysts.Around250-280°C,theremainingsurfactantcomesoff[36,37].Thepresence

ofremainingsurfactantwasalsoconfirmedwiththeelementalanalysisresults,having

higherC/Sratiosthanthetheoreticalvalue.Thelastpeakbelongstothesurfacesilanol

decompositiontakingplacearound600°C[36,37].

TheelementalanalysisresultsshowingCandSamountsandthetotalacidcapacities

andtheacidstrengthofthesefunctionalgroupsarealsolistedinTable1.For

SBA-15-PrSO 3HandSBA-15–ArSO 3Hcatalysts,theC/Sratioishigherthanits

theoreticalvaluethatis3and9respectively.Thissuggeststhatsomeofthe

carbonaceousmaterialswereretainedinthesamples,probablyfromresidualsurfactants

and/orunhydrolyzedmethoxy,ethoxygroupsofthefunctionalgroupprecursors[25,35,

37].ThemolarSamountsforpropylsulfonicandarenesulfonicSBA-15’sindicatetheir

totalacidcapacityanditwascalculatedtobe1.1and1.2respectively.Thesulfur 126 contentofSBA-15-PrSO 3Hisingoodagreementwiththemolarratiosoftheprecursor usedtosynthesizethematerials,demonstratinghighcorporationyieldofMPTMS precursor.Alsoitisingoodagreementwithtotalacidcapacitycalculatedfromthe titrationindicatingthatallofthethiolgroupswereproperlyoxidized.Theacidic strengthofSBA-15-PrSO 3HisfoundtobeclosetoSBA-15-ArSO 3H,thesebeingmore acidicthantheothers.However,positive pK avaluesdonotindicateanylevelingeffect duetoaqueousmedia[38].Hencealltheacidicgroupsareabletodisplaytheirown acidicstrengthinwater.

Kineticstudies

Conversionratesofmonosaccharidesat145,160and175°Cforeachcatalystare plottedinFigure1.Regardlessofthecatalystused,theactivityofsugarsfollowedthe order;fructose<arabinose<xylose<glucose.Whilefructosewassignificantlymore activethantheothersubstrates,theconversionratesforglucose,xyloseandarabinose weresimilar.Thehigheractivityoffructoseandthestabilityofglucosestructurehave beenreportedinliteratureatseveralinstances[3,9,39].Comparingtheactivitiesof pentosestoeachother,arabinoseisfoundtobemoreactivethanxylose.Therearefew studiescomparingtherelativeratesofhexosesandpentoses[40-42].However,similar relativeactivitieswerereportedpreviouslybyourgroup.Especiallythedifferencein activitiesbetweenfructoseandtheothersbecomesmoresignificantat175°C.At175°C, fructoseisalmost5timesmoreactivethantheothers,whereastherateswerealmostin thesameorderofmagnitudeat145°C,ascanbeseeninFigure1.

127

2 145°C ) -1

1 k*1000(min

0 Glu Xy Ara Fru

10 9 160°C 8 7 ) -1 6 5 4

k*1000(min 3 2 1 0 Glu Xy Ara Fru

Figure1. Monosaccharideconversionratesat145,160,175°CforSBA-15-BuCOOH(),

SBA-15-PO 3H(),SBA-15-SO 3H(),SBA-15-phSO 3H(). 128

25 175°C

20 )

-1 15

k*1000(min 10

5

0 Glu Xy Ara Fru

Figure1.(continued) Monosaccharideconversionratesat145,160,175°CforSBA-15-

BuCOOH(),SBA-15-PO 3H(),SBA-15-SO 3H(),SBA-15-phSO 3H().

Inthisstudythecatalystsaretestedsuchthateachruncontainedthesamenumberof

acidicsites.Sothetrendintherateswasexpectedtofollowthetrendoftheacidic

strengthsforeachsugar.Only,forglucoseconversionat145°Candfructoseconversion

at175°C,therateswithdifferentcatalystsincreaseintheorderofincreasingacidic

strength.Otherwise,catalystswithdifferentacidicstrengthshowedsimilaractivityfora

particularsugar.Previousstudiesbyourgrouphavealsodemonstratedthattheactivity

wasdependentonlyontheacidicprotonconcentration,regardlessoftheproton

source [12].Thefactwasexplainedwiththelevelingeffectinwater.

Levelingeffectconsistsoftheconceptthatnostrongeracidthanhydroniumioncan

existinwater[38].Thusanyacidthatisstrongerthanhydroniumionisleveledoffto

theacidityofit.Inorderlevelingeffectcantakeplace,theacidmustcompletely

dissociateinwater.Howeveragoodportionoftheincorporatedfunctionalgroups 129 remainundissociatedinwaterandareabletodisplaytheirownstrengthasexpressedby thepositive pK avaluesshowninTable1.

Abetterexplanationwasprovidedwhenthecatalystswereexaminedfortheir hydrothermalstability.Althoughtheyshowedhighthermalstability,theentirestructure collapsedinthepresenceofwateratelevatedtemperaturesusedinthisstudy.Inorderto testforthehydrothermalstability,thesecatalystsweretreatedinwaterat145°Cfor

2hrsandtestedfortheirtexturalandcatalyticpropertiesusingN 2adsorption-desorption isothermsandpotentiometrictitration,respectivelyaftercatalystrecovery.TypeIV hysteresisloopsweremaintainedafterthetreatmentbutsignificantdecreaseinthe surfaceareawasobservedindicatingcollapseofthesilicasupport.Alsotheporesize distributionswerewideincludinglargeporesizesintheorderofnanometers.Moreover, potentiometrictitrationresultsindicatedthattherewerenoacidgroupspresentafterthe hydrothermaltreatment.Asaresult,inwateratelevatedtemperatures,theacidicgroups leachedfromthesupportandthesupportdidnotmaintaineditsuniquetextural properties.Thepoorhydrothermalstabilityofthecatalystsexplainthefactthattherates wereproportionaltothetotalnumberofacidicsitesandtheeffectofthedifferentacidic strengthofdifferentfunctionalgroupscouldnotbeobserved.

IfanyofthefunctionalgroupswereselectivelybetterforHMFformation,thatcould stillbeobservedeventhoughthecatalystsarenothydrothermallystable.The selectivitieswithdifferentcatalystsat175°Chavebeenplottedagainstconversionfor eachsugarinFigure2.Thereisnoobviouspatternforselectivitywiththedifferent functionalgroupsforanyofthesugars,theselectivitieschangedrandomlyaccordingto thecatalystused,butSBA-15-EtPO 3Hleadstohigheryieldsforallsugars.Acommonly observedproblem,whichisthattheselectivitiesdecreasewiththeincreasing 130

conversion,wasnotrecognizedwiththeuseofmesoporoussilica,mostprobablydueto

thelowconversions.

80 a

60

40 selectivity(%) 20

0 0 10 20 30 40 50 conversion(%)

b 80

60

40 selectivity(%)

20

0 10 20 30 40 50 60 70 conversion(%)

Figure2.SelectivityforHMFandfurfuralfor;a)glucoseb)xylosec)fructose,at175°Cinthe

presenceofSBA-15-SO 3H(),SBA-15-phSO 3H(),SBA-15-PO 3H(),SBA-15-BuCOOH (),propylsulfonicacid(x). 131

100 c 80

60

selectivity(%) 40

20 0 10 20 30 40 50 60 70 80 conversion(%)

Figure2.(continued)SelectivityforHMFandfurfuralfor;a)glucoseb)xylosec)fructose,at

175°CinthepresenceofSBA-15-SO 3H(),SBA-15-phSO 3H(),SBA-15-PO 3H(),SBA- 15-BuCOOH(),propylsulfonicacid(x).

Dataatthreedifferenttemperatureswereusedtodeterminetheactivationenergies

andfrequencyfactorsforeachsubstrateandcatalystandthevaluesaretabulatedin

Table2.Forthecalculations,firstorderreactionassumptionwasappliedassuggested

andacceptedbyseveralauthors[20,21].Ratherthanusingproductappearancerate,

reactantdisappearancerateswereusedincalculationstobeabletocomparewiththe

literaturevalues.Thus,theseactivationenergiesandfrequencyfactorsarenotspecific

forthedehydrationreaction,butreflectoverallconversionofthesugars.Activation

energiesdidnotchangeaccordingtothecatalystused,exceptinthecaseofglucose.In

glucoseconversion,theactivationenergywasfoundtobe72kJ/moland135kJ/molfor 132

SBA-15-BuCOOHandSBA-15-ArSO 3Hrespectively,indicatingthepresenceoftwo differentmechanisms.

Table2 :Activationenergyandfrequencyfactorsformonosaccharidedehydration

Ea(kJ/mol) Arabinose Xylose Glucose Fructose SBA-15-BuCOOH 79 74 71 136

SBA-15-EtPO 3H 73 80 85 131

SBA-15-PrSO 3H 80 78 109 136

SBA-15-ArSO 3H --- 82 135 136 A(min -1) Arabinose Xylose Glucose Fructose SBA-15-BuCOOH 8.04E+06 1.86E+06 2.08E+13 1.27E+14

SBA-15-EtPO 3H 2.19E+06 9.24E+06 6.03E+09 4.29E+13 SBA-15PrSO 3H 1.27E+07 5.33E+06 1.99E+07 1.70E+14

SBA-15-ArSO 3H --- 1.31E+07 5.62E+05 1.98E+14

Whentheactivationenergieswerecomparedtothevaluesinliterature,the activationenergiesforfructosewerefoundtobeingoodagreement.Thetwodifferent activationenergiesobservedforglucoseatdifferentpHvaluesalsoexistwiththeuseof homogeneousacids.Inastudyinvestigatingglucosedecompositioninthepresenceof sulfuricacidandmaleicacid,differentactivationenergieswerefound.Theactivation energiesforxylosewerealsofoundtobelowerthanthecommonlyreportedvalues.

However,establishingfurtherparallelismwiththeliteraturevaluesandmoredetailed explanationoftheresultsisfutileduetothelowhydrothermalstabilityofthecatalysts.

Designofahydrothermallystableheterogeneouscatalystisoneofthemajorchallenges forthedehydrationofhexosesandpentoses

133

Conclusions

Organicacidsofdifferentstrengthwereincorporatedontomesoporoussilicasupport andshowedactivityfordehydrationofpentoseandhexoses.Regardlessofthetypeof catalystused,thedecreasingorderofthereactivitywasfructose,arabinose,xylose,and glucose.Reactionrateswerefoundtobeindependentoftheacidicstrengthofthe tetheredgroup,buttheyweredirectlycorrelatedtothetotalnumberofacidicsites.The observedtrendisexplainedbythepoorhydrothermalstabilityofthesecatalystsat elevatedtemperatures.Thedifferentactivationenergiesforglucosewithdifferent functionalgroupsindicatedpresenceofdifferentdecompositionmechanisms.

References

[1] J.N.Chheda,J.A.Dumesic,CatalToday123(2007)59-70. [2] J.N.Chheda,G.W.Huber,J.A.Dumesic,AngewChemIntEdit46(2007)7164- 7183. [3] J.N.Chheda,Y.Roman-Leshkov,J.A.Dumesic,GreenChem9(2007)342-350. [4] M.Watanabe,Y.Aizawa,T.Iida,T.M.Aida,C.Levy,K.Sue,H.Inomata, CarbohydRes340(2005)1925-1930. [5] Q.Xiang,Y.Y.Lee,R.W.Torget,ApplBiochemBiotech113-16(2004)1127- 1138. [6] Q.Xiang,Y.Y.Lee,P.O.Pettersson,R.Torget,ApplBiochemBiotech105 (2003)505-514. [7] B.M.Kabyemela,T.Adschiri,R.M.Malaluan,K.Arai,IndEngChemRes38 (1999)2888-2895. [8] M.Sasaki,B.Kabyemela,R.Malaluan,S.Hirose,N.Takeda,T.Adschiri,K. Arai,JSupercritFluid13(1998)261-268. [9] M.J.Antal,W.S.L.Mok,G.N.Richards,CarbohydRes199(1990)91-109. [10] M.R.Nimlos,X.H.Qian,M.Davis,M.E.Himmel,D.K.Johnson,JPhysChem A110(2006)11824-11838. [11] X.H.Qian,M.R.Nimlos,M.Davis,D.K.Johnson,M.E.Himmel,CarbohydRes 340(2005)2319-2327. 134

[12] J.A.Bootsma, RecoveryofMonosaccharidesviaCatalyticHydrolysis ,Chemical Engineering,IowaStateUniversity,Ames,Iowa2006. [13] J.A.Bootsma,B.H.Shanks,ApplCatala-Gen327(2007)44-51. [14] X.H.Qian,M.R.Nimlos,D.K.Johnson,M.E.Himmel,ApplBiochemBiotech 121(2005)989-997. [15] K.J.Zeitsch, Thechemistryandtechnologyoffurfuralanditsmanyby-products, Elsevier,Amsterdam2000. [16] H.E.Vandam,A.P.G.Kieboom,H.Vanbekkum,Starch-Starke38(1986)95- 101. [17] M.J.Antal,T.Leesomboon,W.S.Mok,G.N.Richards,CarbohydRes217 (1991)71-85. [18] M.J.Antal,W.S.L.Mok,G.N.Richards,CarbohydRes199(1990)111-115. [19] G.Bonn,M.Rinderer,O.Bobleter,JCarbohydChem4(1985)67-77. [20] N.S.Mosier,C.M.Ladisch,M.R.Ladisch,BiotechnolBioeng79(2002)610- 618. [21] N.S.Mosier,A.Sarikaya,C.M.Ladisch,M.R.Ladisch,BiotechnolProgr17 (2001)474-480. [22] C.Moreau,R.Durand,J.Duhamet,P.Rivalier,JCarbohydChem16(1997) 709-714. [23] C.Moreau,R.Durand,D.Peyron,J.Duhamet,P.Rivalier,IndCropProd7 (1998)95-99. [24] C.Moreau,R.Durand,S.Razigade,J.Duhamet,P.Faugeras,P.Rivalier,P. Ros,G.Avignon,ApplCatalA-Gen145(1996)211-224. [25] A.Stein,B.J.Melde,R.C.Schroden,AdvMater12(2000)1403-1419. [26] A.S.Dias,S.Lima,P.Brandao,M.Pillinger,J.Rocha,A.A.Valente,CatalLett 108(2006)179-186. [27] A.S.Dias,S.Lima,M.Pillinger,A.A.Valente,CarbohydRes341(2006)2946- 2953. [28] A.S.Dias,M.Pillinger,A.A.Valente,MicroporMesoporMat94(2006)214- 225. [29] A.S.Dias,M.Pillinger,A.A.Valente,JCatal229(2005)414-423. [30] J.A.Melero,G.D.Stucky,R.vanGrieken,G.Morales,JMaterChem12(2002) 1664-1670. 135

[31] D.Margolese,J.A.Melero,S.C.Christiansen,B.F.Chmelka,G.D.Stucky, ChemMater12(2000)2448-2459. [32] J.A.Melero,R.vanGrieken,G.Morales,ChemRev106(2006)3790-3812. [33] C.M.Yang,Y.Q.Wang,B.Zibrowius,F.Schuth,PhysChemChemPhys6 (2004)2461-2467. [34] D.C.Harris, QuantitativeChemicalAnalysis ,Sixthed.,W.H.FreemanandCo., NewYork2003. [35] I.K.Mbaraka,B.H.Shanks,JCatal244(2006)78-85. [36] J.H.Clark,D.J.Macquarrie,ChemCommun(1998)853-860. [37] J.H.Clark,D.J.Macquarrie,S.J.Tavener,DaltonT(2006)4297-4309. [38] D.F.Shriver,P.W.Atkins, InorganicChemistry ,Thirded.,W.H.Freemanand Co.,NewYork,1999. [39] Y.Roman-Leshkov,J.N.Chheda,J.A.Dumesic,Science312(2006)1933-1937. [40] R.M.Musau,R.M.Munavu,Biomass23(1990)275-287. [41] R.M.Musau,R.M.Munavu,Biomass13(1987)67-74. [42] E.R.Garrett,B.H.Dvorchik,JPharmSci58(1969)813-&. [43] C.Reichardt, SolventsandSolventEffectsinOrganicChemistry ,Seconded., VCHPublishers,NewYork,1988. [44] I.N.Levine,PhysicalChemistry,Forthed.,McGraw-Hill,NewYork,1995. 136

APPENDIX2.SULFATEDZIRCONIAMODIFIEDSBA-15CATALYSTSFOR

CELLOBIOSEHYDROLYSIS

VolkanDegirmenci 1,BasakCinlar 2,AysenYilmaz 3,RutgerA.vanSanten 4,

BrentH.Shanks 1,EmielJ.M.Hensen 4,DenizUner 5

1DepartmentofChemicalEngineering,MiddleEastTechnicalUniversity,Ankara,

Turkey(formerly),SchuitInstituteofCatalysis,EindhovenUniversityofTechnology,

Eindhoven,TheNetherlands(currently)

2ChemicalandBiologicalEngineeringDepartment,IowaStateUniversity

3DepartmentofChemistry,MiddleEastTechnicalUniversity,AnkaraTurkey

4SchuitInstituteofCatalysis,EindhovenUniversityofTechnology,Eindhoven,The

Netherlands

5 DepartmentofChemicalEngineering,MiddleEastTechnicalUniversity,Ankara

Turkey

Authorshiproles:

Degirmenci:Primaryauthor,synthesizedandcharacterizedthecatalysts.

Cinlar:Secondaryauthor,conductedthekineticstudies.

Yilmaz:Thirdauthor,advisedincatalystsynthesis.

VanSanten,Shanks,Hensen,andUner:Principalinvestigators.

Abstract

ZirconiamodifiedSBA-15becomesaveryactivecatalystfortheselectivehydrolysisof cellobiosetoglucoseaftersulfation.Spectroscopicinvestigationsindicatethepresence ofBrønstedacidsitessimilartothosepresentinconventionalsulfatedzirconia.Thered

137 shiftofabout140cm -1uponcarbonmonoxideadsorptionoftheisolatedsilanolbandin sulfatedcatalystsininfraredspectraishigherthaninnon-sulfatedcatalysts(~100cm -1) andcomparabletotheshiftinconventionalsulfatedzirconia.Thecatalyticactivityin cellobiosehydrolysiscorrelateswellwithresultsfortemperature-programmed decompositionof i-propylamineforarangeofsulfatedZrO 2/SBA-15catalystswith increasingzirconialoading.Aglucoseselectivityof80%duringcellobiosehydrolysisat areactiontimeof30minat160°Cisobtained.Theyieldismuchhigherthanthatof conventionalsulfatedzirconia,mostprobablyduetotheabsenceofLewisacidicZr 4+ sitesintheSBA-15modifiedsulfatedzirconia.Theelutionofthesulfurspeciesremains thelimitationfortheapplicationunderhydrothermalconditions.

Introduction

Sofar,considerableefforthasbeendedicatedfortheeconomicproductionof ethanolasitisanexcellentalternativetransportationfuelandcanbeblendedwith gasoline[1,2].However,ethanoliscurrentlyproducedfromsugarcaneandthestarch portionofcorn,competingwithfoodproduction,thusraisingethicalconcerns[3].Itis alsoveryimportanttodeveloptechnologiesfortheefficientutilizationofcellulose,a majorconstituentoflignocellulosicagriculturalresidues,asoneoftherenewable sourcesofchemicals[4,5]. Celluloseisapolymerofglucosemonomersconnectedby

β-1,4-glycosidicbonds.Itcanbehydrolyzedtoglucosethroughenzymaticoracid hydrolysis[6,7].Theadvantageoftheenzymaticrouteistheabsenceofthedegradation productsbutthereactionsproceedratherslowlyandseparationiscumbersome[8].

Mineralacidscandepolymerizecelluloseintoindividualglucoseunits,accompaniedby degradationproductssuchasfurfural,hydroxymethylfurfuralandtar-likeproducts.

Thesesideproductsaretoxicforthemicroorganismsusedforfurtherfermentationof

138 theglucoseproduct.Recoveryofthemineralacidsisanotherchallengeandinanycase mineralacidsarenotdesiredbecauseoftheircorrosivenature[9].Inordertoovercome thesedrawbacks,heterogeneouscatalyticsystemshavebeenproposed[10-13].The conversionofcelluloseintoglucoseandthesimultaneoushydrogenationofglucoseinto sugaralcohols,suchassorbitolandmannitolonRu/C[10],polymerstabilizedRu nanoclusters[11],andPtandRusupportedbyHUSYand γ-Al 2O3[12]hasbeen reported.Inordertoreplacethemineralacidsintheacidhydrolysisofcellulose,solid acidcatalystssuchassulfonatedactivatedcarbon(AC-SO 3H)[13],sulfonicacid- mesoporousmaterials[14],andBrønstedacidiczeolites[12,13]wereused.Higher glucoseyieldswerereportedforsulfatemodifiedcatalyststhanforacidiczeolites.

Besidesinthehydrolysisofsucroseandstarch,sulfonatedmesoporoussilicasshowed higheractivitiesthanionexchangeresinsandHZSM-5catalysts[15].Inthissense, sulfatedzirconiaisexpectedtoshowhighglucoseyields,albeitasignificantamountof by-productshasbeennoted[13].

Thetexturalpropertiesofconventionalsulfatedzirconiaarenotbeneficialwith typicallyrelativelylowsurfacesareas(100-120m2/g).Muchefforthasbeenspentin ordertoprepareahighsurfaceareasulfatedzirconia.Mesoporoussilicashaveattracted wide-spreadinterestduetothehighsurfacearea(upto1000m 2/g),largeporevolume, andahexagonalarrayofuniformpores.Thesilanolgroupsonthesurfaceofthese materialsareneutralorslightlyacidic.Combiningthesebeneficialtexturalpropertiesof orderedmesoporoussilicaswiththeintrinsicacidityofsulfatedzirconiabydispersing thelatterintheformerwouldgreatlyenhancethecatalyticactivity.SBA-nmesoporous materials[16,17]havehigherstabilitythanothertypicalmesoporoussilicassuchasof theM41Sfamily[18] duetotheirthickerwalls,whichshouldbebeneficialwhenthe aimistointroduceothercomponentsintotheframework.Theintroductionofthe

139 zirconiaprecursorsimultaneouslywiththesiliconprecursorinthepreparationofSBA-

15wasshowntobeeffectiveforagooddistributionofzirconiumwithinthesilica framework[19].

Inourpreviouswork,wehavefoundindicationsforstrongBrønstedacidityof

1 sulfatemodifiedZrO 2/SBA-15by HMASNMR[20].Theoriginofthestrongsurface acidityinsulfatedzirconiahasnotbeenunequivocallyresolved[21,22].Several postulatesontheacidity,whetheritisrelatedtothesulfategroupandvariousbinding structuresofthisgrouptothezirconiasurface,havebeenproposed[23-29].Here,we investigatedthesurfaceacidityofarangeofZrO 2/SBA-15compositesbyinfrared spectroscopyofadsorbedcarbonmonoxide.Inaddition,temperature-programmed decompositionofadsorbedalkylamineswasusedtoprobethedensityofsurfaceacidic sites.Itisknownthat,alkylammoniumionsformuponprotonationofaminesby

BrønstedsitesanddecomposeintothecorrespondingandNH 3inanarrow temperaturerangethroughareactionsimilartotheHoffmanelimination[30].The hydrolysisreactivityofarangeofZrO 2/SBA-15compositeswasdeterminedusing cellobioseasamodelsubstrate.Itisadimerofglucosewith β-1,4-glycosidicbonds, providingausefulmodelcompoundforthehydrolysisofcellulose.

Experimental

Synthesisofmaterials

SBA-15silicamaterialswerepreparedbyawell-establishedprocedure[16,17].

SiliceousSBA-15waspreparedbyadding9mloftetraethylorthosilicate(TEOS)to

150mlof1.5MHClsolutioncontaining4gofPluronic-123(Aldrich).Themixture wasstirredfor24hat40°Candallowedtofurtherreactat100°CovernightinTeflon bottles.Subsequently,thesolidmaterialwasobtainedbyfiltration,driedatroom

140 temperatureovernightandcalcinedat500°Cinanairflowfor5h.Zirconiumwas introducedinthesynthesissolutionsimultaneouslywithTEOSintheformof zirconiumoxychloride(ZrOCl 2·8H 2O,99.9%,StremChemicals).Appropriateamounts ofthezirconiumprecursorwereaddedtoobtainfinalproductswith5-25:100ZrO 2:SiO 2 ratios.ThematerialsaredenotedasZr( x)SBA-15with xbeingtheZrO 2molaramounts per100molesSiO 2.Sulfatedcatalystswerepreparedbysulfationina0.25MH 2SO 4 solutionfor15minfollowedbydryingovernightat80ºC.Al-SBA-15waspreparedby prehydrolysingaluminumiso-propoxide(AcrosOrganics,98%)in10mlofHCl solution.ThissolutionwasthenaddedtothesynthesisgelofSBA-15toobtainAl-

SBA-15.TheSi/Alratiois34inthefinalcatalystwithasurfaceareaof903m 2/g.

Conventionalsulfatedzirconiawaspreparedbycalcinationofthesulfatedzirconium hydroxideprovidedbyMELChemicals(XZO1249/01)at500°Cfor5h.

Characterization

ElementalanalyseswerecarriedoutbyICP-OES(SpectroCirosCCDICP opticalemissionspectrometerwithaxialplasmaviewing).Toextractthemetals,the catalystsweredissolvedina1.5mlsolutionofHF/HNO 3/H 2O(1:1:1)acidmixture.The elementalcompositionsofthecatalystsweredeterminedunderthereactionconditions aswell.Inatypicaltest10mgcatalystwasaddedto5mlofwaterat160°Cfor0-60 min.Thecatalystwasrecoveredbycentrifugalseparationundervacuumandthe elementalanalysiswasperformedbyusingPerkin-ElmerSeriesII2400CHNS analyzer.

TEMimagesweretakenonaFEIT20electronmicroscopeoperatingat200V.The specimensweredispersedinethanolandplacedonholeycoppergrids.

141

Thesurfaceareasweremeasuredusingnitrogenadsorptionisothermsat−196°Con aMicromeriticsASAP2000gassorptionandporosimetrysystem.Thesampleswere preparedformeasurementbydegassingat150°Cfor24h.Surfaceareaswere calculatedbytheBET(Brunauer-Emmett-Teller)methodandtheporesizedistributions weredeterminedbyusingtheBJH(Barrett-Joyner-Halenda)method.

FT-IRspectraofthesampleswererecordedintherangeof4000-400cm -1bya

BrukerIFS113vinstrument.Thespectrawereacquiredata2cm -1resolutionand averagedover20scans.Thesampleswerepreparedasthinself-supportingwafersof5-

10mg/cm 2andplacedinsideacontrolledenvironmentinfraredtransmissioncell, capableofheatingandcooling,gasdosingandevacuation.PriortoCOadsorption,the catalystwaferwasheatedto450°Catarateof10°C/mininanoxygenatmosphere.

Subsequently,thecellwasout-gassedatthefinaltemperatureuntiltheresidualpressure wasbelow5x10 -5 mbar.Thesamplewasthencooledto-190°C.COwasintroduced intothecellviaasampleloop(0.4 molperdose)connectedtoaValcosix-portvalve.

Temperatureprogrammeddecomposition(TPD)of i-propylamine(IPAm)was performedinapacked-bedquartzreactor.Theeffluentgaseswereanalyzedbya

Balzersquadrupolemassspectrometer.100mgofcatalystwasheatedatarateof5

°C/minto450°CinaHeflowof100ml/min.Thesamplewasthencooledto100°C andexposedtoexcessgaseousIPAm(99.5%,Aldrich)for10min.PhysisorbedIPAm wasremovedat100°Cbypurgingin100ml/minHefor24h.TPDofIPAmwas carriedoutbyheatingthesampleto550°Catarateof5°C/minin200ml/minHe.The formationofpropene(m/e=41)andammonia(m/e=17), i.e. thedecomposition productsofIPAm,aswellastheamountofdesorbedIPAm(m/e=44,41,and17)were followedandcomparedtowell-calibratedstandards.

142

Catalyticactivity

Cellobiosehydrolysiswascarriedoutinalab-scalebatchreactor(Autoclave

Engineers,100ml).Typically,thereactorwaschargedwithasolutionof0.5wt.% cellobioseinwatertowhichapredeterminedamountofcatalyst(0.1wt.%comparedto solvent)wasadded.Kineticexperimentswereperformedat160°Cunderanitrogen pressureof20bars.20barsnitrogenoverpressurewasnecessarytoensurethatthe reactantsandtheproductsremainedintheliquidphase.Thestartofthereactionwas takenasthemomentwhenthereactorcontentsreachedthedesiredreactiontemperature.

Althoughthereactorswereheatedasfastaspossible,theheatingdurationwas10-12 min.whensomereactionalreadytookplace.Thismethodisstillpreferredover injectionofthesolutionafterheating,becauseinthelattermethod,higherpressures than20barsisneededtoinjectthesolutionwhichcannotbeachievedwiththecurrent set-up.Whentheinitiallossofcellobiosewastraced,itwasfoundthatthelosswasnot morethan10%thatissignificantlylowerthantheinitialrates.Sampleswerewithdrawn every30minfor2h.AnalysiswasperformedofflineusingaWatersHPLCsystem equippedwithaH +-column(PolymerLab.)andRIdetector.Thecolumntemperature waskeptconstantat60°C.Themobilephasewas10mMsulfuricacidsolutionwhich wasfedataflowrateof0.6ml/min.

ResultsandDiscussions

Physicochemicalproperties

Theintendedcompositions,ZrandScontentsdeterminedfromtheelemental analysis,SO 4/ZrratioandBETsurfaceareasofthecatalystsarecollectedin Figure1.

PureSBA-15hasasurfaceareaofnearly800m 2/g,whichisconsistentwiththehighly orderedmesostructureseenfromTEMimage(Figure1).Uponintroductionofzirconia,

143 theBETsurfaceareasdecreasedtovaluesbetween500and600m 2/g,indicatingthatthe introductionofzirconiainSBA-15hasresultedinalessorderedstructurethansiliceous

SBA-15.

Figure1. ElectronmicrographsofSBA15(a)andSZrSBA15(b).

Thezirconiumcontentsinthecalcinedmaterialswerelowerthantheamountsinthe synthesisgel,implyingthatnotallZrwasbuiltintoSBA-15andremaineddissolvedin thesynthesissolution.Initially,weused1MH 2SO 4tosulfatetheZr(x)SBA-15 materials,butthishadastrongadverseeffectonthetexturalproperties(surfaceareas below100m 2/g).Asulfuricacidconcentrationof0.25Mwassufficienttoprovidegood sulfationwithoutcausingtoomuchlossofsurfacearea.Thesurfaceareaofthesulfated

Zr(x)SBA-15materialswasabove200m 2/gandstillmuchhigherthanthatof conventionalsulfatedzirconia.Thesulfurcontentofthecalcinedsulfatedsampleswas about3.3wt.%anddidnotchangemuchwiththeZrcontent.TheXRDpatternsdidnot showclearreflectionsinthelowangleregionforthezirconium-containingsamples, indicatingthatthelongrangeorderofmesoporeswasabsent.Noreflectionswere observedinthehigh-angleregion,implyingthateitherthezirconiumatomswerewell dispersedorthatthezirconiacrystalswereverysmall.

144

Table1. Zirconiaandsulfurcontentsofthecatalystsdeterminedbyelementalanalysis andtheBETsurfaceareaofthenon-sulfatedandsulfatedZr-SBA-15. Si/Zr BET SO /Zr Pore Zr S 4 Surface Volume Catalyst molar gel product (wt. %) (wt. %) Area ratio (cc/g) (m 2/g)

SBA -15 na 1 na na Na na 773 1.18

Zr(15)SBA -15 7 26 5.3 Na na 586 1.46

Zr(25)SBA -15 4 11 10.9 Na na 506 1.15

SZr(5)SBA -15 20 33 4.3 3.5 2.3 313 0.43

SZr(10)SBA -15 10 39 3.7 3.4 2.6 311 0.43

SZr(15)SBA -15 7 27 5.2 3.4 1.9 284 0.40

SZr(20)SBA -15 5 15 8.9 3.2 1.1 261 0.39

SZr(25)SBA -15 4 12 10.8 3.3 0.9 246 0.34

SZr(30)SBA -15 3 13 13.4 3.1 0.7 203 0.24

SZ -Commercial na na na 7.0 2 0.22 123 0.10

Al -SBA -15 na na na Na na 903 1.11

1 not applicable; 2 before calcinations

Theelementalanalysisofthecatalystsafterhydrothermaltreatmentat160°C(Table2) indicatedthatthesulfuriselutedunderreactionconditionsinbothconventionalsulfated zirconiaandSZr(x)SBA-15catalysts.

145

Table2. Sulfurcontentsofthecatalystsaftertreatmentinwaterat160°Cdetermined byelementalanalysis.

S(wt%)

Catalyst 0min 10min 30min 60min

SZr(15)SBA-15 3.40 0.30 0.20 0.20

SZr(25)SBA-15 3.30 0.30 0.21 0.20

SZ-Commercial 7.01 1.03 0.97 0.99

Infraredspectroscopyofadsorbedcarbonmonoxide

FT-IRspectraintheCOstretchingregionofSBA-15aftercarbonmonoxide adsorptionatliquidnitrogentemperatureisshowninFigure2a.Thespectraexhibittwo distinctbandsat2138and2158cm -1.ThelatterisattributedtoCOadsorbedonweakly acidicsilanolgroups.Thebandat2138cm -1isduetoaweaklyperturbedcondensed carbonmonoxidephaseonthesurfaceofSBA-15[31,32].Theweakfeatureat2110

-1 cm derivesfromcarbonmonoxidecoordinatingwithitsoxygenatomtothesilanol group.TheFT-IRspectraintheCOstretchingregionofZr(15)SBA-15catalystare giveninFigure2b.Inthepresenceofzirconia,anadditionalbandat2186cm -1wasalso observed.ThisbandwasassignedtoLewisacidcentersformedbycoordinatively unsaturatedZr 4+ centers[30].IncreasingCOcoveragesaturatedthesesitesearlierthan thesilanolgroups,implyingthattheformersitesbindCOstrongerthanthelatterin accordancewiththelargershiftofthecarbonmonoxidestretchingfrequency.

InfraredspectraofCOadsorptiononSZr(15)SBA-15areshowninFigure2c.

Similartothenon-sulfatedcatalyst,abandat2138cm -1wasobservedduetotheweakly physisorbedCO.Thebandaround2160cm -1wasattributedtosilanolgroups.Itwas locatedataslightlyhigherwavenumberthanthatinSBA-15andZr(15)SBA-15

146

-1 -1 (CO =2158cm ).Thebandat2186cm duetoCOcoordinatingtolowcoordinated

Zr 4+ centersdisappearedonsulfatedsamples.Thiswasattributedtocompletecoverage oftheLewisacidcentersbysulfategroups.

a ( ) 2158 (b) (c)

0.2 0.2 0.2 2158 2160

Absorbance 2138 2138 2138 2185

2100 2150 2200 2100 2150 2200 2100 2150 2200 Wavenumber (cm -1 ) Figure2.FT-IRspectraofadsorbedcarbonmonoxideatliquidnitrogentemperaturefor (a)SBA-15,(b)Zr(15)SBA-15and(c)SZr(15)SBA-15.

TheinfraredspectraofCOadsorptiononconventionalsulfatedzirconiaare showninFigure3.Thebandat2170cm -1 wasattributedtotheterminalhydroxylgroups onthezirconiasurface.Thehighfrequencybandwasblue-shiftingwithincreasingCO coverageintheregionbetween2195-2205cm -1.ThisbandwasassignedtotheC-O stretchingmodeofcarbonmonoxideinteractingwithLewisacidcenters, i.e. theZr 4+ centers,ofvaryingacidity.

147

2170 0.025

2192

Absorbance 2100 2120 2140 2160 2180 2200 2220 -1 Wavenumber (cm ) Figure3. FT-IRspectraofadsorbedcarbonmonoxideatliquidnitrogentemperaturefor commercialsulfatedzirconia .

TheinfraredspectrainthesilanolstretchingregionofSBA-15,Zr(15)SBA-15and

SZr(15)SBA-15catalystsareshownin Figure4 a-c,respectively.ThespectrumofSBA-

15exhibitsasharpfeatureat3747cm -1whichisascribedtotheisolated,non-hydrogen

bondedsilanolgroupsonthesurface.Thebroadtailextendingtowards3400cm -1isdue

tothehydrogenbondedsilanolgroups.COadsorptiononisolatedsilanolgroups

weakensthehydroxylbondandleadstoaperturbedbandaround3653cm -1witha

frequencyshiftof94cm -1.ThesilanolstretchingregionoftheZr(15)SBA-15catalystis

similartopureSBA-15.Theisolatedsilanolgroupsareidentifiedbythebandat3747

cm -1.Thetailispreservedanditsextensionto3400cm -1indicatesthepresenceof

hydrogenbondedasilanolgroups.TheshiftofthehydroxylgroupsuponCO adsorption

isverysimilartoSBA-15.Thisindicatesthesilanolgroupsarestillonlyweaklyacidic

inthezirconia-substitutedSBA-15.Thecorrespondinghydroxylregionfor

SZr(15)SBA-15isshownin Figure4 c.AtlowCOcoverage,thehydroxylbandis

148 perturbedtoawavenumberof3601cm -1from3745cm -1,correspondingtoashiftof

144cm -1uponCOadsorption.WithincreasingCOcoverage,thebandofperturbedOH

-1 broadensand ∆υOH athighCOcoverageis106cm .

(a) (b) (c)

3747 0.25 0.5 0.5 3747

3639

3601 3745

Absorbance 3653 3651

3400 3600 3400 3600 3400 3600

-1 Wavenumber(cm ) Figure4. FT-IRspectraofadsorbedcarbonmonoxideatliquidnitrogentemperaturein thehydroxylstretchingregionfor(a)SBA-15,(b)Zr(15)SBA-15and(c)SZr(15)SBA- 15.

Thiscanbeexplainedbythepresenceofstrongeracidicsitesgivingriseto ∆υOH =

-1 -1 144cm incloseproximitytoweaklyacidicsites( ∆υOH =94cm ).AnIRfrequency shiftof144cm -1uponCOadsorptiononSZr(15)SBA-15isveryclosetothe139cm -1 shiftreportedearlierforaconventionalsulfatedzirconiacatalyst[33].

PreviousFT-IRinvestigationsprovideevidencethatsulfationofzirconia enhancesthestrengthofthebridgingzirconiahydroxylgroups,thatisZr-(OH)-Zr,and eliminatestheterminalones( i.e. ,ZrOH)[25].Inaddition,itcreatesanewtypeof

Brønstedacidsite,presumablyprotonsformingmulticenteredorsinglebondswith

149 sulfateions.Theseprotonsarehydrogenbondedtothesurface[26].Similarly,when zirconiaincludedSBA-15catalystwasmodifiedbysulfation,theLewisacidcenters werecoveredbysulfategroupsandtheterminalhydroxylsofzirconiawereeliminated.

AsaresultstrongBrønstedacidityisdeveloped.

ThepresenceofstrongBrønstedaciditywasindicatedbythesulfateandthe silanolstretchingregions.Thelargerperturbationinthesilanolregionforthesulfated catalystthanthenon-sulfatedcatalystscanbedescribedasfollows.Eithertheacidic protonbondedtothesulfategroupwasdirectlyprobedortheoxygenofthesilanol groupisinvolvedinhydrogenbondingwiththeadjacentacidicprotonbondedtothe bisulfategroupshowninFigure5.TheredshiftobservedinhydroxylregionforSZr-

SBA-15catalystsisnotmuchhigherthanthatforconventionalsulfatedzirconia.

Therefore,weconcludethatourcatalystshaveaslightlyhigheracidicstrengththan

-1 conventionalsulfatedzirconia.The ∆υOH of144cm ishigherthantheshiftforweakly acidicsilanol,yetlowerthanthatofstronglyacidiczeolites(stabilizedfaujasitezeolite,

-1 ∆υOH ≈300cm )[34].TheIRspectraoftheS=OstretchingregionforSZr(15)SBA-15 arepresentedin Figure6 .COadsorptionbringsaboutapositivefrequencyshiftofabout

26cm -1.ThisshiftindicatesanincreaseoftheS=Obondstrengthandisattributedtothe interactionofCOwiththestronglyacidicproton,asweakeningoftheSO−Hbondupon interactionoftheprotonwithCOcausesanincreaseoftheS=OHbondstrength.This observationprovidesanindirectindicationforthepresenceofprotonicsitesconnected tothesulfategroups.Indeed,directobservationofthestrongBrønstedacidprotonsin sulfatedzirconiacatalystsisnotstraightforward,likelybecauseofthestronghydrogen bondingtoadjacentsurfacegroups[20].

150

Figure5 .ProposedbindingstructureofsulfatetozirconiacentersinSBA-15andthe hydrogenbondingbetweentheacidicprotonofthesulfategroupandthesurface oxygens.

0.01 1412

1435

0.0

Absorbance 1400 1420 1440 1460 Wavenumber(cm -1 ) Figure6.FT-IRspectraofadsorbedcarbonmonoxideatliquidnitrogentemperaturein theregionofS=OstretchforSZr(15)SBA-15.

Temperature-programmeddecompositionofIPAm

TheevolutionofpropeneduringtemperatureprogrammedIPAmdecomposition forthevariouscatalystsisshowninFigure7.NoIPAmdecompositionisobservedfor siliceousSBA-15.Forthezirconia-containingcatalysts,decompositionofadsorbed

IPAmtakesplacebetween310and360°Cwithamaximumaround340°C.Incontrast,

151

thedecompositioninthesulfatedcatalystsoccurredintheinterval290-340°Cwitha

maximumaround312°C.InTable3,theamountofdecomposedIPAmaswellasthe

decompositiontemperaturearegivenforthesecatalysts.Introductionofzirconiainthe

silicaresultsinthecreationofsitescapableofchemisorbinganddecomposingIPAm.

13.4wt% SZr(30)SBA-15

10.8wt% SZr(25)SBA-15

8.9wt% SZr(20)SBA-15

5.2wt% SZr(15)SBA-15

Propenesignal(a.u.) 4.3wt% SZr(5)SBA-15

3.7wt% SZr(10)SBA-15 Zr(15)SBA-15 SBA-15 100 200 300 400 500 Temperature(ºC) Figure7. Productionofpropenefrom i-propylaminedecompositionduringTPDforthe variouscatalysts.ActualZrloadingsforzirconium-containingsilicasareindicatedleft.

Uponsulfation,thedecompositiontemperatureforZr(15)SBA-15decreases

considerably.Thedifferenceshouldbeduetostrongeractivationofthechemisorbed

IPAmcomplex.Table3alsogivestheresultsfortworeferencesamplesHZSM-5and

Al-SBA-15.Theformercontainsexclusivelyaluminuminthezeoliteframeworkand

theamountofIPAmdecomposedcorrespondstothealuminumdensity.Thelatter

containsmainlyLewisacidicAlsitesonthesurfaceofSBA-15.IPAmchemisorbedto

152 theseLewisacidicsitesdecomposesatahighertemperatureandtheresultisvery similartothatofthenon-sulfatedZr( x)/SBA-15samples.

Table3. IPAmdecompositiontemperaturesamountsfordifferentcatalysts.

N Zr loading IPAm, total Tmax,1 NIPAm,1 Tmax,2 NIPAm,2 Catalyst (mmol/g (wt. %) cat.) (ºC) (mmol/g cat.) (ºC) (mmol/g cat.)

SBA -15 - 0.0 - - - -

Zr(15)SBA -15 5.3 0.09 - - 340 0.09

SZr(5)SBA -15 4.3 0.26 314 - - -

SZr(10)SBA -15 3.7 0.14 313 - - -

SZr(15)SBA -15 5.2 0.50 313 - - -

SZr(20)SBA -15 8.9 0.37 307 0.36 342 0.01

SZr(25)SBA -15 10.8 0.39 308 0.36 341 0.03

SZr(30)SBA -15 13.4 0.27 308 0.23 342 0.04

HZSM -51 - 0.82 310 - - -

Al -SBA -15 2 - 0.09 345 - - -

1 Si/Al = 20; 2 Si/Al = 34.

ItisthenstraightforwardtoconcludethatIPAminthenon-sulfatedcatalystadsorbs toLewisacidZr 4+ centers,whereasthisadsorptionstateshouldbeabsentaftersulfation.

Instead,theBrønstedacidicsitesadsorbIPAmmorestronglythroughprotonationofthe alkylamine,whichresultsinalowerdecompositiontemperature.Fortheseriesof sulfatedZr( x)/SBA-15,theamountofdecomposedIPAmfirstincreasesuptoavalueof

0.5mmol/gforSZr(15)SBA-15andthendecreaseswithincreasingzirconiumloading indicatingthatthereisanoptimumdispersionofzirconiainthematerial.Thedecrease

153 inzirconiadispersionaboveazirconiumcontentof5.2wt.%(SZr(15)SBA-15)canbe attributedtothepartiallossinthelongrangeorderofsilica.

ForSZr(20)SBA-15andthesampleswithhigherZrloading,wefindthatthereare twopeaksinpropeneproduction,onemainpeakaround310°Candtheothersmaller contributionaround340°C.Thecontributionofthelatterpeakincreasessomewhatwith thezirconiumloading.Asitslocationissimilartothepeakobservedforthenon- sulfatedsample,weinferthatthesesamplescontainasmallamountofLewisacidicZr 4+ centers.Indeed,theSO 4/ZrratiodecreaseswithincreasingZrloadingofthecatalysts aboveZrcontentsgreaterthan3.7wt.%.

Catalyticactivity

Theconversionofcellobioseandtheyieldtoglucoseatareactiontemperatureat

160°CaregiveninFigure8.ComparingtheSBA-15basedcatalysts;thesulfated catalystsaremoreactiveincellobioseconversion.Completecellobioseconversionis obtainedafterareactiontimeof120minforSZr(15)SBA-15andSZr(25)SBA-15.In comparison,Zr(15)SBA-15displaysamuchloweractivity.TheactivityofanAl-SBA-

15referencecatalystisalsoverylow.

154

100 80 SBA-15 SBA-15 Zr(15)SBA-15 Zr(15)SBA-15 Zr(25)SBA-15 Zr(25)SBA-15 SZr(15)SBA-15 SZr(15)SBA-15 75 SZr(25)SBA-15 60 SZr(25)SBA-15 SZr SZr Al-SBA-15 Al-SBA-15

50 40 glucose(%) cellobiose(%) Y X 25 20

0 0 0 30 60 90 120 0 30 60 90 120 Time(min) Time(min)

Figure8. Cellobioseconversion(left)andglucoseyield(right)asafunctionof reactiontimeforalargesetofcatalysts( T =160°C; pN2 =30bar;autoclave;0.5wt% cellobioseand0.1wt%catalystinwater).

TheloweractivitiesofZr(15)SBA-15implythatthehydrolysisofcellobioseismore

favorableonBrønstedacidsitesthanonLewisacidsites.Theactivityofthe

conventionalsulfatedzirconiamaterialisveryclosetothesulfatedZr( x)SBA-15

materials.Ontheotherhand,theglucoseyieldsofthesulfatedZr( x)SBA-15aremuch

higherthanconventionalsulfatedzirconia.CatalystswithBrønstedacidsitesshowed

highselectivityforglucoseinapreviousstudy[14].Hence,thehigheryieldsofglucose

onsulfatedZr(x)SBA-15incomparisontoconventionalsulfatedzirconiaismostlikely

duetotheabsenceofLewisacidsites,knowntocatalyzethedehydrationofglucose,in

thecompositecatalysts.Thesulfurcontentoftheconventionalsulfatedzirconia

catalystaswellastheSZr( x)SBA-15catalystsdecreasesunderthereactionconditions.

TheincorporationofsulfatedzirconiaintoSBA-15structuredoesnotimprovethe

hydrothermalstabilityofthecatalystsandthisremainsthelimitationforthecatalytic

applicationofthesulfatedzirconiacatalysts.

155

Conclusions

StrongBrønstedacidityofsulfatedzirconia-SBA-15catalystswere demonstradedbyFTIRspectroscopyofsurfacehydroxylsuponCOadsorptionandTPD ofIPAmdecomposition.Thestrongacidityofthesematerialsresultsfromthesulfation ofzirconiapatchesincludedintheSBA-15silicamaterial.Theaciditybeforesulfation stemsfromLewisacidicZr 4+ centers.TheintrinsicBrønstedacidityofasulfated zirconiamodifiedSBA-15isclosetothatofconventionalsulfatedzirconia.Sulfated zirconiadispersedthroughoutSBA-15isanefficientcatalystforthescissionofthe1,4-

βglycosidicbondsincellobiosewhichisamodelreactionforthecriticalstepinthe depolymerizationofcelluloseintovaluablechemicals.Thepresentstudysuggeststhat theisolatedBrønstedacidsitescatalyzecellobiosehydrolysisresultinginhighglucose yields.Ontheotherhand,catalystswhichcontainLewisacidicsitesnexttothese protonssuchasconventionalsulfatedzirconiaexhibitalowerglucoseyield.

Acknowledgements

Oneoftheauthors,V.D.,isgratefulforthedoctoralscholarshipandexchangegrants fromtheScientificandResearchCouncilofTurkey(TUBITAK)throughtheBDP program.NationalScienceFoundationsupportedthisworkthroughgrantCTS-

0455965.ThisworkhasbeenpartiallysupportedbyDutchTechnologyFoundation

(STW)underaVIDIgrant.WethanktheMELChemicalsforprovidingthesulfated zirconiumhydroxide.WewouldliketoacknowledgeJieFanandGalenStucky(UC,

SantaBarbara)fortransmissionelectronmicroscopymeasurements.

References

[1] A.E.Farrell,R.J.Plevin,B.T.Turner,A.D.Jones,M.O'Hare,D.M.Kammen, Science311(2006)506-508.

156

[2] L.R.Lynd,J.H.Cushman,R.J.Nichols,C.E.Wyman,Science251(1991)1318- 1323. [3] R.F.Service,Science315(2007)1488. [4] G.W.Huber,S.Iborra,A.Corma,Chem.Rev.106(2006)4044-4098. [5] A.J.Ragauskas,C.K.Williams,B.H.Davison,G.Britovsek,J.Cairney,C.A. Eckert,W.J.Frederick,J.P.Hallett,D.J.Leak,C.L.Liotta,J.R.Mielenz,R.Murphy,R. Templer,T.Tschaplinski,Science311(2006)484-489. [6] Y.H.P.Zhang,L.R.Lynd,Biotechnol.Bioeng.88(2004)797-824. [7] W.S.L.Mok,M.J.Antal,G.Varhegyi,Ind.Eng.Chem.Res.31(1992)94-100. [8] B.C.Saha,R.J.Bothast,Appl.Biochem.Biotechnol.76(1999)65-77. [9] C.E.Wyman,Bioresour.Technol.50(1994)3-16. [10] C.Luo,S.A.Wang,H.C.Liu,Angew.Chem.Int.Ed.46(2007)7636-7639. [11] N.Yan,C.Zhao,C.Luo,P.J.Dyson,H.C.Liu,Y.Kou,J.Am.Chem.Soc.128 (2006)8714-8715. [12] A.Fukuoka,P.L.Dhepe,Angew.Chem.Int.Ed.45(2006)5161-5163. [13] A.Onda,T.Ochi,K.Yanagisawa,GreenChem.10(2008)1033-1037. [14] J.A.Bootsma,B.H.Shanks,Appl.Catal.AGen.327(2007)44-51. [15] P.L.Dhepe,M.Ohashi,S.Inagaki,M.Ichikawa,A.Fukuoka,Catal.Lett.102 (2005)163-169. [16] D.Y.Zhao,Q.S.Huo,J.L.Feng,B.F.Chmelka,G.D.Stucky,J.Am.Chem.Soc. 120(1998)6024-6036. [17] D.Y.Zhao,J.L.Feng,Q.S.Huo,N.Melosh,G.H.Fredrickson,B.F.Chmelka, G.D.Stucky,Science279(1998)548-552. [18] J.S.Beck,J.C.Vartuli,W.J.Roth,M.E.Leonowicz,C.T.Kresge,K.D.Schmitt, C.T.W.Chu,D.H.Olson,E.W.Sheppard,S.B.McCullen,J.B.Higgins,J.L.Schlenker, J.Am.Chem.Soc.114(1992)10834-19843. [19] Y.C.Du,Y.Y.Sun,Y.Di,L.Zhao,S.Liu,F.S.Xiao,J.PorousMater.13(2006) 163-171. [20] V.Degirmenci,O.F.Erdem,A.Yilmaz,D.Michel,D.Uner,Catal.Lett.115 (2007)79-85. [21] X.M.Song,A.Sayari,Cat.Rev.Sci.Eng.38(1996)329-412. [22] T.Kanougi,T.Atoguchi,S.Yao,J.Mol.Catal.A:Chem.177(2002)289-298.

157

[23] M.Bensitel,O.Saur,J.C.Lavalley,B.A.Morrow,Mater.Chem.Phys.19 (1988)147-156. [24] A.Clearfield,G.P.D.Serrette,A.H.Khazisyed,Catal.Today20(1994)295-312. [25] T.Riemer,D.Spielbauer,M.Hunger,G.A.H.Mekhemer,H.Knozinger,J. Chem.Soc.,Chem.Commun.10(1994)1181-1182. [26] L.M.Kustov,V.B.Kazansky,F.Figueras,D.Tichit,J.Catal.150(1994)143- 149. [27] V.Adeeva,J.W.Dehaan,J.Janchen,G.D.Lei,V.Schunemann,L.J.M. Vandeven,W.M.H.Sachtler,R.A.Vansanten,J.Catal.151(1995)364-372. [28] X.B.Li,K.Nagaoka,J.A.Lercher,J.Catal.227(2004)130-137. [29] R.Olindo,X.B.Li,J.A.Lercher,Chem.Ing.Tech.78(2006)1053-1060. [30] A.G.Palkhiwala,R.J.Gorte,Catal.Lett.57(1999)19-23. [31] T.P.Beebe,P.Gelin,J.T.Yates,Surf.Sci.148(1984)526-550. [32] K.Hadjiivanov,B.M.Reddy,H.Knozinger,Appl.Catal.AGen.188(1999) 355-360. [33] O.V.Manoilova,R.Olindo,C.O.Arean,J.A.Lercher,Catal.Commun.8(2007) 865-870. [34] G.Crepeau,V.Montouillout,A.Vimont,L.Mariey,T.Cseri,F.Mauge,J.Phys. Chem.B110(2006)15172-15185.

158 APPENDIX3.STUDYONTHEHYDROTHERMALSTABILITYOF

SULFATEDZIRCONIUMMODIFIEDSBA-15

ApapertobesubmittedtoAppliedCatalysisA:General

HaiyangZhu 1,BasakCinlar 1,ShaojunMiao 1,BrentH.Shanks 1

1DepartmentofChemicalandBiologicalEngineering,IowaStateUniversity,Ames

Authorshiproles:

Zhu:Primaryauthor,designedandconductedthehydrothermalstabilityexperiments.

Cinlar:Secondauthor,conductedpartofthehydrothermalstabilityexperiments.

Miao:Thirdauthor,conductedkineticexperiments.

Shanks:Principalinvestigators.

Abstract

Zirconiumsulfate,zirconiumoxychloride,andzirconiumn-propoxidewereusedas precursorstosynthesizesulfatedzirconiummodifiedSBA15.Togetherwiththedifferent synthesisparameters,theinfluenceoftheseprecursorsonthefinalzirconiumcontent, texturalpropertiesandthehydrothermalstabilitywereinvestigatedbyN2adsorption- desorptionisotherms,inductivelycoupledplasmaopticalemissionspectrometry(ICP-

OES),thermogravity(TG),andX-raydiffraction(XRD).Alsotheircatalyticactivitywas measuredforamodelreaction,theesterificationofethanolandaceticacid.Theresults indicatedthat(1)calcinedSBA15showedbetterhydrothermalstabilitythanextracted

SBA15samples,suggestingthatsurfacehydroxylgrouphadanegativeeffectin hydrothermalstability;(2)thefinalzirconiumcontentvariedwiththeprecursorsduetothe 159 differenthydrolysisproductssuchasacidandalcohol;(3)thesampleswithlowzirconium contentshowedbetterhydrothermalstabilitythanthosewithhighzirconiumcontent;(4) thesampleswouldlosetheiractivesiteswiththedissolutionofthesulfateions.The possiblemechanismsforthesephenomenawereproposedinthiswork.

Introduction

Sulfatedzirconiahasreceivedgreatinterestascatalystduetoitsactivityinmany importantreactionsincludingisomerization,cracking,andfattyacidesterificationwith methanol[1-9],butitsutilizationislimitedbyitslowersurfacearea.Toincreasethe surfacearea,manyattemptshavebeenmadebyusingdifferenttypeofsupportsthatcan providethermalstabilityaswell[6,10,11].Theprecursorandthesynthesisprocedure werereportedtoenhancethestability,butthereareonlyfewstudiesfocusedonthisaspect andadetailedunderstandingisnotprovided.Outliningtheeffectoftheprecursorandthe synthesisprocedureontexturalpropertiesandrelatingthosetothestabilityofsupported sulfatedzirconiaisofgreatimportancebecauseitwillallowforextendedutilizationof catalystinmanydifferentreactions.

Inordertocombinetheextraordinaryacidicpropertiesofsulfatedzirconiawithlarge surfaceareas,sulfatedzirconiahavebeentriedtobesupportedondifferentmaterials[6,10,

11].Duetotheirlargesurfaceareaswithorderedstructure,mesoporoussilicamaterialsare oneofthepotentialsupportsforthedispersionofsulfatedzirconia[6,10,11].Withthe introductionofzirconiaintotheframeworkofMCM41,enhancedthermalstability,acidic strengthandincreasednumberofacidicsiteswerereported[12-15].Similarly,whenhigh loadingsofzirconiawasintroducedintoMCM41particlesviaevaporationinducedself 160 assembly,improvedhydrothermalstabilitywasobtainedascomparedtopureMCM41 particlesthatwasinfactproportionalontheloadingdensityofzirconia[16].Sofar,most oftheeffortwasspendontheincorporationofzirconiumintotheMCM-41framework.

However,withitslargerporesizeandbetterthermalstability,SBA15isabettercandidate amongthemesoporoussilicasupports.Suchincorporationwillenableutilizationofthe catalystforreactionswithlargemoleculesatrelativelyhightemperaturessuchasthe esterificationofthelongchainfattyacids[17,18]whichisanimportantreactionfor biorenewableindustry.Alsoifhydrothermalstabilityisprovided,thecatalystwillbea potentialcandidateforpolysaccharidehydrolysisreactions,anotherimportantreactionfora biomassbasedeconomy.

FortheincorporationofsulfatedzirconiaintoSBA-15,postsynthesisgraftingisthe commonmethodastheacidicmediumduringSBA15synthesispreventsthehydrolysisof zirconium.Inthepostsynthesisgrafting,thepHofthemediumisreadjustedtoanalkaline valueaftertheformationofmesoporousstructureallowingforzirconiumhydrolysis[19-

22].Usingthismethod,SBA15sampleswithhighzirconiumcontentsweresynthesized, whichshowedhighactivityinacidcatalyzedreactionscontaininglargemolecules[19,20].

However,inthismethodtheuniformporestructuremaybedestroyedandthechannels maybeblocked[23].Chenetaldevelopedadirectsynthesismethodforsulfatedzirconium incorporatedSBA15byusingzirconiumpropoxideandammoniumsulfateasthe precursors.Thecatalysts,synthesizedaccordingtothismethodattainedwellordered mesoporousstructureandshowedbetteractivityfortheesterificationoflong-chainfree fattyacidsthantheconventionalsulfatedzirconia[22]. 161

Anotherapplicationareaforthesecatalystswillbethecondensedphaseaqueous reactionswithlargemoleculesthatrequirehydrothermalstabilityofthecatalyst.Dueto theextraordinarypropertiesofwaterassolvent,differentstabilityconcernsmayarisein aqueousphaseascomparedtoothersolventsorgasphasereactions.Investigationof hydrothermalstabilityisthereforeanimportantelementincatalystcharacterization, howeveronlylimitedliteraturecanbefoundonthisaspect.Thezirconiumprecursorsand thesynthesisprocedurearereportedtoinfluencethehydrothermalstability,butdetailswere notexplained.

Inthispaper,theeffectofsynthesismethodanddifferentzirconiumprecursors,i.e zirconiumsulfate,zirconiumoxychloride,andzirconiumn-propoxide,onthetexturaland catalyticproperties,thefinalzirconiumcontentandonthehydrothermalstabilityofthe finalmaterialwasinvestigatedusingN2adsorption-desorptionisotherms,inductively coupledplasmaopticalemissionspectrometry(ICP-OES),thermogravimetry(TG),X-ray diffraction(XRD)andthemodelreaction,esterificationofethanolandaceticacid.The possiblereasonforthepoorhydrothermalstabilityofzirconiummodifiedSBA15was proposed.

Experimental

SynthesisofsulfateZr-SBA15materials

ForthesynthesisofzirconiumsubstitutedSBA-15samples(Zr-SBA15),themicelle templatewaspreparedusingPluronic123(EO 20 PO 70 EO 20 )assurfactantand tetraethylorthosilicate(TEOS)wasusedassiliconsource.Zirconiumsulfate,zirconium oxychlorideandzirconiumn-propoxidewerethezirconiumprecursorsusedinthisstudy. 162

SynthesisofsulfatedZr-SBA15usingzirconiumsulfateasaprecursor

4gofsurfactantwasdissolvedin120mldeionizedwater.20mlof37wt%HClwas mixedwiththeresultantsolution.Therequisiteamountofzirconiumsulfateand9.2mlof

TEOSwereaddedtothemixedsolution.Aftervigorousstirringat40 oCfor24handaging at100 oCfor24h,thesamplewascollectedbyfiltrationandcalcinedat550 oCfor4hata rampof1 oC/min.ThesesamplesweredenotedasxxZrS,forexample,15ZrSrepresented thesamplebyusingzirconiumsulfateasprecursorandthezirconiummolarloadingis15%

(Si/Zrmolarratioof17:3).

SynthesisofsulfatedZr-SBA15usingzirconiumoxychlorideasaprecursor

Thesameprocedurewasfollowedexceptthatrequisiteamountsofzirconium oxychloridewereaddedinsteadofzirconiumsulfate.Thesamplesweresulfatedbeforeand aftercalcinationbyimmersingin1mol/Lsulfuricacidsolutionfor2h.Thesesampleswere denotedasxxZrO,forexample,15ZrOrepresentedthesamplebyusingzirconium oxychlorideasprecursorandthezirconiummolarloadingis15%.

SynthesisofsulfatedZr-SBA15withzirconiumn-propoxideasaprecursor

ThesulfatedZr-SBA15withzirconiumn-propoxideasaprecursorwassynthesized accordingtothesuggestedmethodbyChenetal[22].Againasimilarproceduretothatof sulfatedZr-SBA15withzirconiumsulfatewasfollowed,butthistimetherequisiteamounts

2- ofzirconiumn-propoxideandammoniumsulfate(theSO 4 /Zrmolarratioof1.0)were addedtogetherwith9.2mlofTEOS.ThesesamplesweredenotedasxxZrP,Prepresenting thezirconiumn-propoxideprecursorandxxrepresentingthezirconiummolarloading.

163

Characterization

Nitrogenadsorptionisothermswereobtainedat196 oConaMicromeriticsASAP2020.

Thesurfaceareaandtheporevolume/poresizedistributionwerecalculatedbyusingBET andBJHmethods,respectively.Zirconium,siliconandsulfurcontentsweredeterminedby elementalanalysisviaICP-OES,wherethesampleswerepreparedbydissolvingca.0.05g in4mlHF/HNO 3/H 2O(1:1:1)acidsolution.X-raydiffraction(XRD)wascarriedouton

SiemensD500X-raydiffractometerwithaCuK αradiationsource.TheX-raytubewas operatedon45kVand30mA.Forthehydrothermalstabilitytesting,about0.2gofcatalyst wasdissolvedin50mlwater,andwastreatedto145 oCfor2hin75mlsteelreactorunder nitrogenpressuretomaintaincondensedphase.Therecoveredcatalystsweretestedfor theirtexturalpropertiesandzirconiumandsulfurcontents.

Theesterificationofaceticacidwithmethanolwascarriedoutinatwo-necked100ml flaskwitharefluxcondenser,whichwasplacedinathermostaticbathwithamagnetic stirrer.Inatypicalexperimentbeforethereaction,reagentmixtures(aceticacid3M, methanol6M,aswellasthesolvent1,4-dioxanetobalancethetotalvolumeto50ml)were heatedtothedesiredreactiontemperaturewhilebeingvigorouslystirred.Oncethedesired temperaturewasreached,thereactionwasstartedbyintroducingthecatalyst.Here,acetic acidwasselectedastherepresentativeoforganicacidamountpresentinbio-oilgenerally.

Amicroscalesyringewasusedforsamplingatdefinedtimeintervalsincludingthetimejust priortocatalystchargingasthezeropoint.AVarianGC3800gaschromatographequipped withaCP-select624CBcolumn(0.53mm×75m×3m)andaFIDdetectorwasusedfor sampleanalysis.Theconcentrationsofallspeciesexceptwaterwereaccuratelyquantified.

Theoverallmassbalancewasmorethan98%. 164

ResultsandDiscussion

Aftertheformationofthesilicatemplate,thesurfactantfromthestructurecanbe removedeitherviacalcinationorviasolventextraction.Theeffectofthesetwomethodson texturalpropertiesisdemonstratedinFigure1,wheretheporesizedistributionsareplotted forSBA15beforeandafterthehydrothermaltreatmentforbothcalcinedandextracted samples.Asindicatedbysharppeaks,SBA15hasaverynarrowporesizedistributionfor bothofthecalcinedandextractedsamplesbeforethehydrothermaltreatment.N 2 adsorptionanddesorptionisotherms(notpresentedinthispaper),indicatedasimilarpore structureforcalcinedandextractedSBA15.Afterthehydrothermaltreatment,theextracted sampleslosttheirorderedmesoporousstructure;whilethecalcinedsampleskepttheir structurewellwiththeporesizeincreasingfrom8.4to9.6nm.Theseresultsindicatedthat thecalcinedsampleshadabetterhydrothermalstabilitythantheextractedsamples.

Beforehydrothermaltreatment Afterhydrothermaltreatment 12 12 9.6nm

10 8.9nm 10 /g) 3 8 8 8.4nm

6 6 SBA15CAL SBA15EXT

PoreVolume(cm 4 4 6.1nm 2 2

0 0 0 100 200 300 400 500 0 100 200 300 400 500 PoreSize(A)

Figure1.PoresizedistributionresultsforcalcinedandextractedSBA15beforeandafter hydrothermaltreatment. 165

Apossiblereasonforbetterhydrothermalstabilityofthecalcinedsamplescanbethe absenceofhydroxylgroups.Thesampleslostmostofthesurfacehydroxylgroupswhen calcinedat550 oC[24,25].Suchalossdidnotoccurduringtheextractionwhichwas confirmedbyTGresultsasshowninFigure2.TheweightlossforSBA15intherangeof

50~200 oCwasattributedtothephysicallyadsorbedwater.Whethercalcinedorextracted, theweightlossforSBA15is~2-3wt%inthisrange.Inaddition,theextractedSBA15lost

8.2wt%in250~500 oC,thatcanbeattributedtotheremovaloftheresidualsurfactantinthe poresandthecondensationofsurfacehydroxylgroup[24].Theabsenceoftheweightloss attemperatureinterval250-500°Cfortheextractedsampleindicatesthatmostofthe hydroxylgroupswereremovedduringcalcination.Similarweightlosstrendwasalso observedforMCM41[26].Thehydroxylgroupsaremorepronetointeractwithwater inducinghydrolysisofsilicastructure.Asaresult,thelargeramountofsurfacehydroxyl groupsintheextractedsampledecreaseitshydrothermalstability.Thereforethesamplesin thisstudywerepreparedviacalcinationforbetterhydrothermalstability.

102 CalcinedSBA15 100 ExtractedSBA15 98

96

94 92 90 88

Weightpercentage(%) 86 84

82

200 400 600 800 Temperature( oC) Figure2. TGAresultsforcalcinedandextractedSBA15sample. 166

Tovalidatethesynthesismethodswithdifferentprecursorsforthedispersionof zirconia,XRDresultsforZr-SBA15sampleswithhighzirconiumloadingsareshownin

Figure3.XRDresultsforcrystallinezirconiainthemixturephaseoftetragonaland monoclinicisalsoincludedforcomparison.Noneofthediffractionpeaksofcrystalline zirconiacouldbeobservedforanyofthezirconiumincorporatedSBA15preparedwith differentprecursorsindicatingthatzirconiumwasintroducedintotheSBA15skeletal[22,

27].

crystallineZrO 2

Intensity(a.u.) 25ZrO 25ZrS 25ZrP

10 20 30 40 50 2θ (θ ( οοο))) Figure3.XRDresultsforZr-SBA15sampleswithdifferentprecursorsathighzirconium loading.

Althoughhighzirconiumdispersionswereachievedforalltheprecursors,thezirconium contentsaregenerallylowerthanwhatwasanticipatedduethehighlyacidicconditionsfor

SBA15synthesis.ThehighlyacidicsynthesisconditionsforSBA15hinderthehydrolysis andcondensationofzirconiumintothestructureresultinginlowerzirconiumcontentsthan anticipated.ICP-OESwasusedtomeasuretheSi/Zrmolarratiofortheresultingmaterials. 167

Forallprecursors,mostzirconiumionscouldnotincorporateintotheskeletalofSBA15 andwerewashedoffduringfiltration,aspresentedinTable1.Moreover,thezirconium contentintheresultingZr-SBA15samplewasgreatlyinfluencedbytheprecursors.The zirconiumcontentsinthosesamplesbyusingzirconiumsulfateasprecursorweremuch lessthanthosesamplesbyusingzirconiumoxychlorideandzirconiumn-propoxide.This canbeexplainedbythedifferenthydrolysisproductsoftheprecursorsasshownbythe equations1-3fortherelatedreactionsbelow.

Zr(SO 4)2+4H 2O →Zr(OH) 4+2H 2SO 4 (Equation1) ZrOCl 2+3H 2O→Zr(OH) 4+2HCl (Equation2) (Equation3) Zr(n-C3H7O) 4+4H 2O→Zr(OH) 4+4n-C3H7OH

Forthehydrolysisof1moleofzirconiumion,4,2and0molesofprotonionsare producedforzirconiumsulfate,zirconiumoxychlorideandzirconiumn-propoxide, respectively,asshownintheseequations.Asaresultoftheacidconcentrationofthe solutionwasfurtherincreased,thatinhibitedthecondensationofzirconiumhydroxidein theorderoftheprecursor:zirconiumn-propoxide<zirconiumoxychloride<zirconium sulfate.Furthermore,itwasproposedthatthealcoholproducedduringthehydrolysisof zirconiumn-propoxidedecreasedtheprotonconcentrationaroundsurfactant,whichledto fastercondensationofzirconiumhydroxideandtherebyhigherzirconiumcontents[28,29].

Inthisstudy,theinfluenceofalcoholonthezirconiumcontentofthefinalmaterialwas furtherinvestigatedbymodifyingthesynthesismediumwithalcoholaddition.When methanolorisopropanolwasaddedtotheinitialsolutionwithanalcohol/Zrmolarratioof

4,thefinalSi/Zrratiodecreasedfrom88.8to45.3and60.6forthesamplespreparedwith 168 zirconiumsulfateinthecaseofmethanolandisopropanol,respectively.Similar improvementwasobservedwiththeadditionofmethanolwhenzirconiumoxychloridewas usedasprecursoralso.Theseresultssuggestedtheexistenceofalcoholinthesolution mightpromotetheincorporationofzirconiumionsintoSBA15structure.Asreportedby

Chenetal.[28]andDenkovaetal.[29],alcoholaffectsthemorphologiesoftriblock copolymermicellesinthesolutionbytheinteractingwiththecopolymer.Theincreased alcoholconcentrationaroundthesurfactantmicellesleadstoadecreasedtheprotonand waterconcentrationaroundthem.Althoughthehydrolysisrateofzirconiumdecreaseswith thedecreasingprotonconcentration,thecondensationrateofzirconiumhydroxide increases[30,31]resultingingreaterincorporationofzirconiumintotheSBA15structure.

Asaresult,thezirconiumcontentinthestructurewashigherwhenextraalcoholwasadded tothesolution.

Forthesulfonation,theZr-SBA15sampleswereimmersedin0.25M,1.0Msulfuric acidor1.0Mammoniumsulfatesolutions.Duetothecoordinationbetweensulfateand zirconiumions,sulfateionsareabsorbedbyZr-SBA15creatingBronstedacidsites[22].

BothICPandaciditytitrationresultsindicatedthatsulfateionscannotbeabsorbedonpure

SBA15withoutzirconiumloadingsfollowingthesameprocedure.Itissuggestedthatthe zirconiumionsplayanimportantroleintheabsorptionofsulfateions.However,duringthe sulfonationzirconiumionsmayleachfromZr-SBA15andthemesoporousstructuremaybe destroyedbecauseoftheacidityofsulfuricacidandammoniumsulfatesolution.After immersedinto0.25and1.0Mofsulfuricacidsolution,theSi/Zrratiointhefinalmaterials increasedfrom34.5to41.7and88.1,respectively.Forthesamplesimmersedinammonium sulfatesolution,theSi/Zrmolarratioincreasedfrom34.5to55.6.Amongthetested 169 samples,thesulfonationwith1.0Msulfuricacidresultedinthehighestaciditydensityand lowestzirconiumcontentinthefinalsamples.

AmongtheZr-SBA15sampleswithdifferentprecursors,ZrSsampleshadthelowest zirconiumcontent;indeedthatfinalzirconiumcontentdidnotaltermuchaccordingtothe initialloadingofzirconia.However,thehydrothermalstabilityofZrSsampleswas influencedbytheinitialzirconiumloading.Figure4showedtheporesizedistribution resultsofZrSsamplesbeforeandafterhydrothermaltreatment.Beforehydrothermal treatment,allsampleshaveanarrowporesizedistributionat~10.7nm.Afterhydrothermal treatment,onlythesamplewithlowzirconiumloading(5%)maintaineditsmesoporous structure,and15%and25%ZrSmaterialslosttheirorderedstructure.Forthe5%ZrS,the poresizeincreasedfrom10.7to12.1nmwithhydrothermaltreatmentsimilartowhatwas observedwithcalcinedSBA15sample.

16 16 Hydorthermaltreated 10.7nm 14 14

12.1nm 12 12 /g) 10 10 3

8 8

6 6

4 4 PoreVolume(cm 05ZrS 2 15ZrS 2 25ZrS 0 0 0 200 400 600 0 200 400 600 PoreSize(A) Figure4.PoresizedistributionresultsforZrSsampleswithdifferentzirconiumloadings beforeandafterhydrothermaltreatment. 170

Figure5showstheporesizedistributionresultsofZrOsamplesassynthesized,after sulfonationandafterhydrothermallytreated.FortheZrOsamplestheintroductionof zirconiumathighconcentration(25%)ledtoawideporesizedistribution,butthe5%and

15%loadedZrOsamplesshowednarrowporesizedistributionsassynthesized.Afterthe sulfonation,the15%loadedZrOalsolostitsorderedstructure.Onlythe5%ZrOsample keptitsstructure,butagainaslightincreaseintheaverageporesizewasobservedfrom

10.5to11.0nm.

10 10 10 Assynthesized Sulfated Hydrothermaltreated 05CSC 10.7nm 10.7nm 15CSC 8 8 8 25CSC /g) 3 10.6nm 6 6 6

4 4 4

PoreVolume(cm

2 2 2

0 0 0 0 200 400 600 0 200 400 600 0 200 400 600 PoreSize(A)

Figure5. PoresizedistributionresultsforZrOsampleswithdifferentzirconiumloadings beforeandaftersulfatedandafterhydrothermallytreated.

171

ZrPsampleshadhigherzirconiumcontentascomparedtothesamplespreparedby othertwoprecursors.Atallloadings,theZrPmaterialsmaintainedawellordered mesoporousstructurewithanarrowporesizedistribution,evenathighzirconiumloading, thatisdifferentfromthesamplespreparedbyothertwoprecursors.However,alloftheZrP sampleslosttheirstructureduringhydrothermaltreatment,asshowninFigure6.

Hydrothermaltreated 10 10

8 8 /g) 3 6 6

4 4 PoreVolume(cm

2 05ZrPCA 2 15ZrPCA 25ZrPCA 0 0 0 200 400 600 0 200 400 600 PoreSize(A) Figure6. PoresizedistributionresultsforZrPsampleswithdifferentzirconiumloadings beforeandafterhydrothermaltreatment.

Basedontheporesizedistributionresultsabove,itcanbeconcludedthatthesamples withlowzirconiumcontenthavebetterhydrothermalstabilitythanthosewithhigh zirconiumcontent.Afterthehydrothermaltreatment,onlythesamplewithlowzirconium contentmaintaineditsstructureandkeptitsnarrowporesizedistributionwithaslight 172 increaseintheporesize.Thesametrendwasalsoobservedinthehydrothermaltreatment ofcalcinedSBA15sample.

Theincreaseintheporesizeduringthehydrothermaltreatmentcanpossiblybe explainedwiththefollowingmechanism.Asmentionedabove,thepresenceofsurface hydroxylgroupshadanegativeeffectonthehydrothermalstabilityofSBA15structureby interactingwithwatermoleculesandinitiatingthehydrolysisofsilicaonthesurfacelayer.

Duringthehydrothermaltreatment,thehydrolysisofsilicaonthesurfaceoccursmuch fasterduetoelevatedtemperaturesandfinallythehydrolysisproductdepartsfromthepore.

Thiswaythesiliconatomsarepeeledfromthesurfacelayerbylayerleadingtoanincrease intheporesize.Alsothehighvaporpressureofwateratthishightemperaturehasarolein destroyingporestructure.

AsimilarprocesscanbespeculatedforthezirconiumdopedSBA15materialsalso, wherethezirconiumionsarehydrolyzedandformzirconiumhydroxidethatdissolvesinto solution.Infact,zirconiumionsaremoreproneforhydrolysisascomparedtosilica.

Extractionofzirconiumionstoacidicsolutionwasobservedevenattemperatureduring synthesis.Furthermore,hydrolysisofzirconiumcontinuedtooccurduringtheaging process,butthepresenceofsurfactanthelpedtomaintaintheregularstructure.Afterthe surfactantwasremovedbycalcination,themesoporousstructurewithdefectswas maintainedwhicharemorepronetostartastructuralbreakdown.Thedensityofthedefects inthefinalproductismostprobablyproportionaltotheinitialzirconiumloading.The sampleswithlargeamountofdefectswerelessstablethanthosewithsmallamountof defectsinhydrothermaltreatment,andthehydrothermalstabilitywasindependentofthe finalzirconiumcontent.Thiscanbeusedtoexplainthedifferenthydrothermalstabilityof 173

ZrSsampleswithsimilarfinalzirconiumcontents.Thelowertheinitialzirconiumloading was,thelowerwasthedefectdensityinthefinalmaterialandthemorehydrothermally stableitwas.

AlthoughthistypeofdefectsforzirconiummodifiedSBA15wasnotreported elsewhere,asimilarphenomenonwasdocumentedforZSM5,mordenites,andothertypeof zeolitesonwhichthedefectswerecreatedduringthedealumination[32-34].Whentreated inhotsteam,aluminumionsarewashedofffromthestructureofzeolitesandthedefects withfoursilanolsarecreated[34].Thesedefectsplayanimportantroleintheincorporation ofotheratomsintothedealuminatedzeolitestructure[33].Alternatively,thedealumination processcanbecarriedoutatroomtemperatureinthepresenceofhydrochloricacidathigh concentrations.AccordinglyitcanbesuggestedthattheexistenceofacidicsitesonSBA15 acceleratesleachingofzirconium.

Theamountofzirconiuminthefinalstructureaffectedthesulfateiondensityofthe finalmaterialdirectly.TheSi/SratiofollowedthesametrendastheSi/Zrratio,bothof whicharepresentedinTable1fortheaspreparedandhydrothermallytreatedsamples.For example,onlytraceofsulfurcouldbefoundinZrSsamplesduetothelowzirconium content.AlsoforZrOsamples,theS/Simolarratioincreasedfrom~40to~200after hydrothermaltreatmentindicatingmostsulfateionswereremovedwiththelossof zirconium.Thetitrationresultsshowedthatthetotalacidcapacityof25ZrOsamples decreasedfrom0.83to0.01mmol/gwiththehydrothermaltreatmentthatagreeswithICP results.

174

Table1. ZirconiumandsulfurcontentsintheresultingsamplesmeasuredbyICP.

ZrS ZrO ZrP

5%15%25% 5%15%25% 5%15%25%

Initial 19 5.67 3 19 5.67 3 19 5.67 3 Si/Zr Si/Zrby 97.8 88.8 95.8 35.6 34.5 19.2 80.0 20.6 6.6 ICP Si/Zr 137.4 88.1 82.4 sulfated Si/Sby ∞ 441.6 394.3 42.8 34.8 46.2 ∞ 36.4 9.3 ICP

Si/Safter 187.0 155.8 198.4 242.6 194.5 215.7 ∞ 39.0 16.6 treated

ThehighsulfurcontentoftheZrOsamplesbeforehydrothermaltreatmentcanbe

explainedbythepresenceofdefects.Removalofzirconiumandtheformationofdefects

werealreadyobservedforthe15ZrOsampleduringtheintroductionofsulfateions,infact

thematerialcollapsed.HoweveratlowZrloading,thepresenceofdefectsmighthave

facilitatedtheintroductionofsulfateionsintothestructure,similartothedefectsinzeolites

usedtoincorporateotherions[33].Thesulfateionstrappedinthesedefectswerehardtobe

washedoutatroomtemperatureandcreatedtheacidsitesonthecatalyst.However,they

werereleasedafterthecollapseofthesedefectsduringthehydrothermaltreatment.

ForZrPsamples,mostofthesulfurstayedinthestructureafterhydrothermaltreatment

asmostofthezirconiumionsaccordingtotheICPresults.However,thetitrationresults

showedthattheaciditydensityon15ZrPand25ZrPsamplesis0.07and0.04mmol/g,

respectively,indicatingnotalltosulfurthatwasintroducedintothestructure,createdacidic 175 sitesinthesesamplesorammoniumionsmighthaveneutralizedtheacidsitesintheof sulfonationwithammoniumsulfate.Inanycase,thepoorhydrothermalstabilityprohibits theuseofZrPcatalystsinaqueousphasereactions.

Figure7showstheactivityofsulfatedZrO,25ZrP,andhydrothermallytreatedsulfated

25ZrOsamplesfortheesterificationofethanolandaceticacid.Forcomparison,theactivity ofSBA15functionalizedwith10mol%ofsulfonicgroupisalsopresented.TheZrO samplesshowedcomparableactivitytotheSBA15functionalizedwith10mol%ofsulfonic group,buttheactivityof25ZrOdecreaseddramaticallyafterbeinghydrothermallytreated thatisinagreementwiththetitrationresults.

100 05ZrO 90 15ZrO 25ZrO 80 Hydorthermaltreated25ZrO 25ZrP 70 SBA15with10%sulfonicgroup 60

50

40

30 20

Conversionofaceticacid(%) 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 Time(min) Figure7. Ethanolconversionsinesterificationofethanolandaceticacidinthepresenceof ZrO,25ZrP,andhydrothermaltreated25ZrOsamples.

176

Inaddition,theactivityofZrOsampleswerenotrelatedtothezirconiumcontent,but followedthesametrendwiththesulfurcontentasdeterminedbyICP.Ontheotherhand,

ICPresultsindicatedhighersulfurcontentfor25ZrPsamplethantheZrOsamples,butthe activityof25ZrPwasmuchlowerthanZrOsamples.Thereforeitcanbeconcludedthat neitherthezirconiumcontentnorthesulfurcontentarethesoleindicatorsofcatalytic activity,buttheresultantnumberofacidicsites,measuredbyacid-basetitration,is importantforthecatalyticactivity.

Conclusions

Thezirconiumcontentofthefinalmaterialwasinfluencedgreatlybythechoiceof zirconiumprecursorbecausedifferentproductsformedduringhydrolysisofdifferent precursors,suchasacidandalcohol,changingthenatureofthesynthesismedium.The samplespreparedbyusingzirconiumpropoxideasprecursorhadthehighestzirconium content.Asreportedelsewhere,theintroductionofzirconiumionsintoSBA15could enhancethethermalstabilityofSBA15.However,ourresultsindicatedthatthe introductionoflargeamountofzirconiumleadstopoorhydrothermalstabilityduetothe fasterhydrolysisofzirconiaascomparedtosilica.Inaddition,thesurfacehydroxylgroups haveanegativeeffectinthehydrothermalstabilityofSBA15.

References

[1] K.Suwannakarn,E.Lotero,J.G.Goodwin,C.Q.Lu,J.Catal.255(2008)279-286. [2] J.A.Moreno,G.Poncelet,Appl.Catal.A:Gen.210(2001)151-164. [3] B.M.Reddy,P.M.Sreekanth,V.R.Reddy,J.Mol.Catal.A:Chem.225(2005)71- 78. [4] D.Fraenkel,Catal.Lett.58(1999)123-125. 177

[5] V.A.Benitez,J.C.Yori,J.A.Grau,C.L.Pieck,C.R.Vera,Energy&Fuels.20 (2006)422-426. [6] J.H.Wang,C.Y.Mou,Micropor.Mesopor.Mater.110(2008)260-270. [7] H.Matsuhashi,H.Nakamura,T.Ishihara,S.Iwamoto,Y.Kamiya,J.Kobayashi,Y. Kubota,T.Yamada,T.Matsuda,K.Matsushita,K.Nakai,H.Nishiguchi,M.Ogura,N. Okazaki,S.Sato,K.Shimizu,T.Shishido,S.Yamazoe,T.Takeguchi,K.Tomishige,H. Yamashita,M.Niwa,N.Katada,Appl.Catal.A:Gen.360(2009)89-97. [8] D.Das,D.K.Chakrabarty,Energy&Fuels.12(1998)109-114. [9] R.Olindo,X.B.Li,J.A.Lercher,ChemieIngenieurTechnik.78(2006)1053-1060. [10] S.Garg,K.Soni,G.M.Kumaran,R.Bal,K.Gora-Marek,J.K.Gupta,L.D.Sharma, G.M.Dhar,Catal.Today.141(2009)125-129. [11] C.L.Chen,S.F.Cheng,H.P.Lin,S.T.Wong,C.Y.Mou,Appl.Catal.A:Gen.215 (2001)21-30. [12] P.Salas,L.F.Chen,J.A.Wang,H.Armendariz,M.L.Guzman,J.A.Montoya,D.R. Acosta,Appl.Surf.Sci.252(2005)1123-1131. [13] L.F.Chen,L.E.Norena,J.Navarrete,J.A.Wang,Mater.Chem.Phys.97(2006) 236-242. [14] P.Salas,J.A.Wang,H.Armendariz,C.Angeles-Chavez,L.F.Chen,Mater.Chem. Phys.114(2009)139-144. [15] L.F.Chen,X.L.Zhou,L.E.Norena,J.A.Wang,J.Navarrete,P.Salas,A.Montoya, P.DelAngel,M.E.Llanos,Appl.Surf.Sci.253(2006)2443-2451. [16] M.T.Bore,R.F.Marzke,T.L.Ward,A.K.Datye,J.Mater.Chem.15(2005)5022- 5028. [17] I.K.Mbaraka,D.R.Radu,V.S.Y.Lin,B.H.Shanks,J.Catal.219(2003)329-336. [18] S.J.Miao,B.H.Shanks,Appl.Catal.A:Gen.359(2009)113-120. [19] Y.C.Du,Y.Y.Sun,Y.Di,L.Zhao,S.Liu,F.S.Xiao,J.PorousMater.13(2006) 163-171. [20] F.S.Xiao,TopicsinCatal.35(2005)9-24. [21] F.X.Li,F.Yu,Y.L.Li,R.F.Li,K.C.Xie,Micropor.Mesopor.Mater.101(2007) 250-255. 178

[22] X.R.Chen,Y.H.Ju,C.Y.Mou,J.Phys.Chem.C.111(2007)18731-18737. [23] C.K.Krishnan,T.Hayashi,M.Ogura,Adv.Mater.20(2008)2131-2136. [24] L.M.Yang,Y.J.Wang,G.S.Luo,Y.Y.Dai,Micropor.Mesopor.Mater.81(2005) 107-114. [25] L.M.Yang,Y.J.Wang,G.S.Luo,Y.Y.Dai,Micropor.Mesopor.Mater.84(2005) 275-282. [26] H.Y.Zhu,B.H.Shanks,T.J.Heindel,Ind.Eng.Chem.Res.47(2008)7881-7887. [27] V.Degirmenci,O.F.Erdem,A.Yilmaz,D.Michel,D.Uner,Catal.Lett.115(2007) 79-85. [28] S.Y.Chen,S.Cheng,Chem.Mater.19(2007)3041-3051. [29] A.G.Denkova,E.Mendes,M.O.Coppens,J.Phys.Chem.B.112(2008)793-801. [30] J.Livage,SolidStateIonics.26(1988)144-144. [31] S.H.Hakim,B.H.Shanks,Chem.Mater.21(2009)2027-2038. [32] K.S.Triantafyllidis,A.G.Vlessidis,L.Nalbandian,N.P.Evmiridis,Micropor. Mesopor.Mater.47(2001)369-388. [33] P.Wu,T.Komatsu,T.Yashima,J.Phys.Chem.99(1995)10923-10931. [34] P.Bodart,J.B.Nagy,G.Debras,Z.Gabelica,P.A.Jacobs,J.Phys.Chem.90(1986)

5183-5190.