An ISO/16O and D/H Study of Tertiary Hydrothermal Systems in the Southern Half of the Idaho Batholith

Total Page:16

File Type:pdf, Size:1020Kb

An ISO/16O and D/H Study of Tertiary Hydrothermal Systems in the Southern Half of the Idaho Batholith An ISO/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith R E CRISS* H P TAYLOR J Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125 l, JR. } ABSTRACT acteristic of deep-level fluid circulation in geothermal systems such as Yellowstone National Park, Wyoming. In such regions, the During Eocene time, 37 to 49 m.y. ago, a series of large major zones of hydrothermal activity seem to be principally asso- hydrothermal systems was developed around a group of epizonal ciated with either (1) the caldera ring zones or (2) the central plu- granite plutons in the Idaho batholith. These systems involved deep tons (resurgent domes). and extensive circulation of fluids derived from low-Sl80 (~-16) and low-SD (— 120) meteoric waters. Water-rock interactions INTRODUCTION occurred at temperatures of 150 to 400 °C, lowering the ,sO/ leO and D/H ratios in the surrounding Mesozoic rocks (tonalite, gra- A variety of geological evidence (Craig, 1963; Taylor, 1968, nodiorite, and granite), such that the feldspar S,80 and biotite SD 1971, 1977; Taylor and Forester, 1971, 1979) and theoretical models values became as low as -8.2 and -176, respectively. These values (Norton and Knight, 1977; Norton and Taylor, 1979) proves that contrast markedly with the primary isotopic compositions of+9.3 ± large-scale circulation of ground waters commonly occurs around 1.5 and -70 ± 5, respectively. Widespread propylitization of the shallow intrusive bodies in the Earth's crust. Stable isotopic studies Mesozoic plutonic rocks accompanied these isotopic exchange have shown that the circulating fluid is dominantly meteoric water effects. Systematic mapping shows that anomalous SD and 6lsO in subaerial regions (Craig and others, 1956) and ocean water in values occur over more than 15,000 km2, indicating the extensive submarine environments (Craig, 1966; Wenner and Taylor, 1973; lateral dimensions of the ancient circulating systems. The former Gregory and Taylor, 1981 ), although fluids of other derivations are zones of intense hydrothermal activity are marked by low-'80 important in some environments (Clayton and others, 1966; White zones, which were mapped in the vicinity of the margins of several and others, 1973). Similar hot fluids are known to be responsible Eocene plutons (for example, at Rocky Bar) and also within a giant for the formation of many ore deposits (O'Neil and Silberman, (5- to 20-km wide, 60- to 40-km diam) ring zone that surrounds the 1974; Taylor, 1973, 1974a; Sheppard and Taylor, 1974; Ohmoto Sawtooth Mountains. The latter anomaly is coincident with the and Rye, 1970, 1974; White, 1974; Bethke and others, 1976). high-permeability ring fracture zone of an Eocene caldera system. Magaritz and Taylor (1976a, 1976b) discovered that, far from Most of the ore deposits in the southern half of the Idaho batholith being limited only to the shallow plutonic environments mentioned are epithermal and mesothermal Au-Ag veins that are located near above, widespread l80 depletions produced by meteoric-hydro- l8 18 the periphery of the low- 0 zones (that is, near the outermost 6 0 thermal activity were common in a number of deeper-seated plu- = 8 isopleth). This association links these deposits with the Tertiary tonic environments within several of the great Mesozoic granitic hydrothermal activity and has great potential as an exploration tool batholiths of the North American Cordillera. Taylor and Magaritz in the heavily forested region. Evidence is presented that the Eocene (1976, 1978) extended these <5,80 and <5D studies to the Idaho ground-water circulation pattern was affected over large lateral dis- batholith and discovered wide zones of strong D and l80 depletion tances (25 to 50 km) and great depths (5 to 7 km). These conclu- produced by hydrothermal circulation systems associated with a sions, together with the indications that large amounts of water group of crosscutting Eocene plutons. Their principal conclusions, 3 (>7,000 km ) were involved in some systems and that the circula- other than demonstrating the existence and large scale 104 km2) tion patterns probably are related to caldera ring structures, may be of the ancient geothermal systems, were that the aqueous solutions of particular importance in geothermal exploration and exploita- were derived from ordinary meteoric waters and that the Eocene tion of analogous modern systems. For example, the "fossil" magmatic activity provided the requisite heat. They also noted that hydrothermal activity mapped in the Idaho batholith may be char- the areas of ancient hydrothermal activity coincided with large Contribution No. 3575, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology. The Appendix of this paper, which includes all of the isotopic data together with sample descriptions and localities, is available from the authors on request. It may also be obtained by ordering GSA supplementary material 83-4 from Documents Secretary, Geological Society of America, 3300 Penrose Place, P.O. Box 9140, Boulder, Colorado 80301. •Present address: U.S. Geological Survey, Menlo Park, California 94025. Geological Society of America Bulletin, v. 94, p. 640-663, 26 figs., 2 tables, May 1983. 640 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/94/5/640/3444703/i0016-7606-94-5-640.pdf by guest on 30 September 2021 TERTIARY HYDROTHERMAL SYSTEMS, IDAHO BATHOLITH 641 regions of rocks with anomalously young K-Ar ages, as mapped in reconnaissance by R. L. Armstrong (1974). Following up the reconnaissance studies of Taylor and Maga- ritz (1976, 1978), the goal of the present investigation was to care- fully map the l80/l60 and D/H distributions in the southern one-half (Atlanta Lobe) of the Idaho batholith. A companion study of the K-Ar age relationships (Criss and others, 1980, 1982) was also undertaken to determine whether any detailed correlations exist among these different isotopic variables. For a number of Figure 1. Generalized geologic map of Idaho, modified after King and Beikman (1974), Bond (1978), and Rember and Bennett (1979). EXPLANATION | Cu | upper Cenozoic undifferentiated Tertiary intrusive rocks 1111111 lower Tertiary volcanic and sedimentary rocks Mesozoic intrusive rocks Mesozoic and Paleozoic undifferentiated Precambrian undifferentiated Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/94/5/640/3444703/i0016-7606-94-5-640.pdf by guest on 30 September 2021 642 CR1SS AND TAYLOR geological and logistic reasons, we believed that the Idaho batholith and involve reaction of the silicate with excess fluorine gas in a was one of the best areas in which to make such a detailed study of vacuum line, purification of the released oxygen, combustion of the these types of processes. oxygen to carbon dioxide, and analysis on a double-collecting mass This paper discusses the geographic distribution of the stable spectrometer. Hydrogen extractions from hydrous silicates were isotopic variations, the implications of these data with respect to the performed both at Caltech and in the stable isotope laboratory of geology of the ancient geothermal systems in Idaho, and their bear- the U.S. Geological Survey at Menlo Park, in a manner similar to ing on the genesis and localization of associated economic minerali- that outlined by Friedman (1953) and Godfrey (1962); this tech- zation. Criss and Taylor's (1978) suggestion that a major Eocene nique involves thermal decomposition of the mineral in a vacuum caldera developed in the Sawtooth Mountains region will be exam- line, reduction of the released water to H2 with hot uranium metal, ined in detail, and it will be shown that the present-day Yellowstone and mass spectrometer analysis. All analyses are reported as per mil geothermal area is a close analogue to the Sawtooth hydrothermal deviations from the SMOW standard (Craig, 1961a). More than system. The stable isotopic data from the eroded terrane of the 400 5lsO and 75 <5D measurements are discussed in this text, includ- Idaho batholith provide information on the otherwise inaccessible ing the earlier data of Taylor and Magaritz (1976, 1978), which are deepest levels of modern geothermal systems associated with large incorporated in all figures. Complete data tables, including detailed silicic volcanic centers. Such information currently cannot be descriptions and exact localities for 238 samples, are given in the obtained from modern systems because of the difficulties associated Appendix, which is available on request from the authors and with deep drilling in such hot terranes. which is also stored in the data bank of the Geological Society of America (see footnote on p. 640). GEOLOGIC SETTING ISOTOPIC RELATIONSHIPS IN The Idaho batholith is a large (~40,000-km2) composite mass, THE IDAHO BATHOLITH made up of numerous granitic plutons, located in the northern Rocky Mountains of central Idaho and adjacent portions of Mon- Sl80 and 5D measurements allow "normal" (primary mag- tana (Fig. 1). Most of the batholith consists of rather uniform gran- matic) rocks to be distinguished from their hydrothermally altered ite and granodiorite (Larsen and Schmidt, 1958; Ross, 1963), counterparts; this forms the basis for mapping the ancient geother- although rocks of the western margin are predominantly tonalite mal systems. Moderate-temperature interactions of crustal rocks and quartz-diorite (Moore, 1959; Schmidt, 1964).
Recommended publications
  • Porphyry and Other Molybdenum Deposits of Idaho and Montana
    Porphyry and Other Molybdenum Deposits of Idaho and Montana Joseph E. Worthington Idaho Geological Survey University of Idaho Technical Report 07-3 Moscow, Idaho ISBN 1-55765-515-4 CONTENTS Introduction ................................................................................................ 1 Molybdenum Vein Deposits ...................................................................... 2 Tertiary Molybdenum Deposits ................................................................. 2 Little Falls—1 ............................................................................. 3 CUMO—2 .................................................................................. 3 Red Mountain Prospect—45 ...................................................... 3 Rocky Bar District—43 .............................................................. 3 West Eight Mile—37 .................................................................. 3 Devil’s Creek Prospect—46 ....................................................... 3 Walton—8 .................................................................................. 4 Ima—3 ........................................................................................ 4 Liver Peak (a.k.a. Goat Creek)—4 ............................................. 4 Bald Butte—5 ............................................................................. 5 Big Ben—6 ................................................................................. 6 Emigrant Gulch—7 ...................................................................
    [Show full text]
  • Characterization of Ecoregions of Idaho
    1 0 . C o l u m b i a P l a t e a u 1 3 . C e n t r a l B a s i n a n d R a n g e Ecoregion 10 is an arid grassland and sagebrush steppe that is surrounded by moister, predominantly forested, mountainous ecoregions. It is Ecoregion 13 is internally-drained and composed of north-trending, fault-block ranges and intervening, drier basins. It is vast and includes parts underlain by thick basalt. In the east, where precipitation is greater, deep loess soils have been extensively cultivated for wheat. of Nevada, Utah, California, and Idaho. In Idaho, sagebrush grassland, saltbush–greasewood, mountain brush, and woodland occur; forests are absent unlike in the cooler, wetter, more rugged Ecoregion 19. Grazing is widespread. Cropland is less common than in Ecoregions 12 and 80. Ecoregions of Idaho The unforested hills and plateaus of the Dissected Loess Uplands ecoregion are cut by the canyons of Ecoregion 10l and are disjunct. 10f Pure grasslands dominate lower elevations. Mountain brush grows on higher, moister sites. Grazing and farming have eliminated The arid Shadscale-Dominated Saline Basins ecoregion is nearly flat, internally-drained, and has light-colored alkaline soils that are Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and America into 15 ecological regions. Level II divides the continent into 52 regions Literature Cited: much of the original plant cover. Nevertheless, Ecoregion 10f is not as suited to farming as Ecoregions 10h and 10j because it has thinner soils.
    [Show full text]
  • Bonner County
    Bonner County, 117o0231 116o4800 48o5645 Idaho Zdt Qm Qm Kgd Kgd Yp Kgdh Kgd Qa Qm Kgd Qm Kgd Qm Yp Yp 0 5 10 miles Qm Kgd Kgd 0 8 16 kilometers Priest Lake Kgd 1:500,000 Kgdh Priest Ri Kgd 116o0251 Kgdh o Yp 95 Yp Qm 48 3000 v Kgd 2 Qm e r Qm D e Kgdh Qm ta Cretaceous Yp c Ts P h Qm r m i e Kaniksu Qm Ts e Kgdh 57 s Kgd Qa n t t Kgdh R Batholith Qm Yp Qm i v e Kgd r Qm Yp Qm Yp Kgdh Qm Yp YXm 200 Yp Qm Qm Yp Kgd Sandpoint Qm Tgdd Hope Qm Yp Qm Yp Qm S Kgdh ite o f IcYra 95 e DYc Tgdd YXm Kgd Kgd amYc an Yra 2 Wm Cla d Qm r p nd O Yag Qa Yp k a Pe reil F th le R rielle o o YXm iv Kog Qa rk f M 41 er Yra Ymiu isYmil Yag d Path Yc Ymil so la Floo ula ou nt Flo iss e Cocolalla Yra Ymiu ods M Yr a Yc m Yp Yp h Kgd Ymiu Priest Rv c Qmf Qmf a Lake PendYp Orielle Core Complex t Yra e Qmf Yc D Yra Kgd v YXm R Ktq Tcr Kgdh Qmf t Yc s Kgdh Cs e i Cs YXm r Qmf 47o5800 P Ymil Cs Ymil Ymiu Yra 47o5330 o 116 3000 Digital Atlas of Idaho, Sept. 2002 http://imnh.isu.edu/digitalatlas Compiled by Reed Lewis, Idaho Geological Survey http://www.idahogeology.org Bonner County The northern and western parts of the Bonner county, west of Sandpoint contain the Priest River metamorphic core complex, containing highly metamorphosed rocks of Proterozoic age.
    [Show full text]
  • Idaho Batholith and Its Southern Extension
    WILLIAM H. TAUBENECK Department of Geology, Oregon State University, Corvallis, Oregon 97331 Idaho Batholith and Its Southern Extension ABSTRACT for 28 mi in the most westerly exposures of the batholith are about S. 20° E. Southeast trends Distribution of minerals and rock types, em- also occur near South Mountain in pre-Tertiary placement structures, and postconsolidation country rocks west of the southernmost expo- history are more complex within the Idaho sures of the batholith. The southeast trends batholith than most published descriptions sug- within and outside the batholith indicate that a gest. Hornblende occurs in some areas many significant change in structural direction occurs miles within the batholith, and planar structure in southwest Idaho in the region near South also is present in some of its interior regions. Mountain. In the vicinity of the Cascade Reservoir in The locations of the south and southeast con- west-central Idaho, field relationships and mo- tacts of the Idaho batholith are uncertain, but dal data for granitic rocks are inconsistent with some inferences regarding the position of the the conclusion (Schmidt, 1964) that the bed- batholith are possible from isolated occurrences rock systematically and gradationally changes of Ordovician sedimentary rocks south of Twin from schist and gneiss to directionless granitic Falls and from exposures of pre-Tertiary sedi- rock along 35-mi traverses west to east across mentary and igneous rocks near the Idaho- the border and interior of the batholith. Nevada state line. Major fault blocks within the Idaho batholith Northward continuity of the Sierra Nevada invalidate the concept (Hamilton and Myers, batholith to the Nevada-Oregon boundary is 1966) of a resistant mass that defied internal well established.
    [Show full text]
  • Age Determinations of Tee Rocks of the Batholiths of Baja Amd Southern
    Ao. AGE DETERMINATIONS OF TEE ROCKS OF THE BATHOLITHS OF BAJA AMD SOUTHERN CALIFORNIA, SIERRA NEVADA, IDAHO, AND THE COAST RANGE OF WASHINGTON, BRITISH COLUMBIA, AND ALASKA* By Eo S, Larsen, Jr., David Gottfried, H. W. Jaffe, and C. L. Waring Augast 1957 Trace Elements Investigations Report 695 GEOLOGIC^ _ '•$.-'- DENVER *U$ This preliminary report is distributed •without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or *This report concerns work done on "behalf of the Division of Research of the U« S. Atomic Energy Commission. USGS - TEI-695 GEOLOGY mD MINERALOGY Distribution If6. of copies Division of Ifew Materials, Albuquerque 0 <>*«,»,,«.**.««*»»»»*„*.**» 1 DiTision of Raw Materials, Austin .«...»«»...*»*.<,..«.***»*»...*. 1 Division of Raw Materials, Casper *»»,.*»«*.*. 0 ....„,,..«,......... 1 Division of Raw Materials, Denver ».».«,«»»««*.«.................. 1 Division of Raw Materials, Rapid City ..».„...».......*»....,.,.. 1 Division of Raw Materials, Salt Lake City ... , 0 .. o........ e ...... 1 Division of Raw Materials, Spokane .*.. 0 .*..».»*.*».*•»...*»»**.* 1 Division of Raw Materials, Washington ..,.. ..„,„<>. 0 .............. 5 Division of Research, Washington ......<,„..„*.„.„.,.<>,........... 1 Exploration Division, Grand Junction Operations Office .......... 1 Grand Junction Operations Office ......o......... a............... 1 Technical Information Service Extension, Oak Ridge 88 »........... 6 U» S» Geological Survey? Foreign Geology Branch,
    [Show full text]
  • Belt Orogenesis Along the Northern Margin of the Idaho Batholith
    BELT OROGENESIS ALONG THE NORTHERN MARGIN OF TI-IE IDAHO BATI-IOLITI-I Charles S. Hutchison IBMG Open-File Report 81-2 Idaho Bureau of Mines and Geology This report is preliminary Department of Lands and may be modified later. Moscow, Idaho 83843 April 1981 TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METASEDIMENTARY FORMATIONS 7 Burke Formation 7 Revett Formation 12 St. Regis Formation 13 Wallace Formation 16 Wallace Lower Gneiss . 16 Wallace Lower Schist 20 Wallace ·Upper Gneiss 20 INTRUSIVE ROCKS . 22 Foliated Amphibolite Sheets (Purcell Sills?) 22 Idaho Batholith Granitoids 23 Pegmatites .. • 27 Diabase Sills 28 Porphyritic Rhyodacite Sills . 30 Orthogneiss 31 GEOCHEMI STRY 32 SUMMARY OF THE GEOCHRONOLOGY 37 Belt Sedimentation 37 Belt Metamorphism 39 Idaho Batholith and Related Rocks 40 STRUCTURE . 41 OROGENIC EVOLUTION 45 ACKNOWLEDGMENTS 50 REFERENCES SO iii LIST OF TABLES Page Table 1. Chemical analyses and Barth mesonorms of metamorphic rocks 33 Table 2. Chemical analyses and Barth mesonorms of amphibolite and pegmatite . 34 Table 3. Chemical analyses and Barth mesonorms of diabase sill rocks 35 Table 4. Chemical analyses and Barth mesonorms of granitoid rocks . 36 LIST OF FIGURES Figure 1. Principal tectonic elements of the Belt aulacogen 4 Figure 2. Simplified geological map showing the distribution of Beltian metamorphic grades in relation to the Idaho batholith . 6 Figure 3. Geologic map of the study area in the Clearwater National Forest, Idaho . 8-9 Figure 4. Thin-section appearance 10-11 Figure 5. Hand-specimen appearance 14-15 Figure 6. Details of outcrops 18-19 Figure 7. Details of outcrops 21 Figure 8.
    [Show full text]
  • SAWTOOTH, IDAHO F O
    STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS OHIO GEOL06ICM. iUKVtl C/5 C 85' *>j SAWTOOTH, IDAHO f O \ SURVEY BULLETIN 1319-D Mineral Resources of the Sawtooth i Primitive Area, Idaho By THOR H. KILLSGAARD and VAL L. FREEMAN, U.S. GEOLOGICAL SURVEY and by JOSEPH S. COFFMAN, U.S. BUREAU OF MINES STUDIES RELATED TO WILDERNESS-PRIMITIVE AREAS GEOLOGICAL SURVEY BULLETIN 1319-D An evaluation of the mineral potential of the area -tTNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 79-607357 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS In accordance with the provisions of the Wilderness Act (Public Law 88-577, September 3, 1964) and the Conference Report on Senate bill 4, 88th Congress, the U.S. Geological Survey and the U.S. Bureau of Mines are making mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe," when the act was passed were incor­ porated into the National Wilderness Preservation Sys­ tem. Areas classed as "primitive" were not included in the Wilderness System, but the act provides that each primitive area be studied for its suitability for incor­ poration into the Wilderness System. The mineral sur­ veys constitute one aspect of the suitability studies. This bulletin reports the results of a mineral survey in the Sawtooth Primitive Area and vicinity, Idaho. The area discussed in the report includes the primitive area, as defined, and some bordering areas that may come under discussion when the area is considered for wilderness status.
    [Show full text]
  • Synplutonic Dikes of the Idaho Batholith Idaho and Western Montana and Their Relationship to the Generation of the Batholith
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1986 Synplutonic dikes of the Idaho batholith Idaho and western Montana and their relationship to the generation of the batholith David Allen Foster The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Foster, David Allen, "Synplutonic dikes of the Idaho batholith Idaho and western Montana and their relationship to the generation of the batholith" (1986). Graduate Student Theses, Dissertations, & Professional Papers. 7531. https://scholarworks.umt.edu/etd/7531 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 This is an unpublished manuscript in which copyright sub­ s is ts . Any further reprinting of its contents must be approved BY THE a u t h o r . MANSFIELD L ibrary Un iv e r s it y of Montana Date : 1 9 8 A Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SYNPLUTONIC DIKES OF THE IDAHO BATHOLITH, IDAHO AND WESTERN MONTANA, AND THEIR RELATIONSHIP TO THE GENERATION OF THE BATHOLITH By David Allen Foster B.A., SUNY Potsdam Presented in partial fulfillment of the requirements for the degree of Master's of Science University of Montana 1986 Approved by Chairman, Board of Examiners Dean, Graduate School /Ù.
    [Show full text]
  • Petrology of the Alaskites of the Boulder Batholith, Montana Kenneth C
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1977 Petrology of the alaskites of the Boulder batholith, Montana Kenneth C. Malick University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Malick, Kenneth C., "Petrology of the alaskites of the Boulder batholith, Montana" (1977). Theses and Dissertations. 189. https://commons.und.edu/theses/189 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. PETROLOGY OF THE ALA.SKITES OF THE BOULDER BA.THOLITH, MONTAN.A. by Kenneth c. Malick Bachelor of Arts, Millersville State College, 1973 A Thesis Submitted to the Graduate Faoult:, of the University of North Dakota 1n partial fulfillment of the requirements for the degree of Master of Soience Grand Forks, North Dakota Ma:, 1977 This t'1e;;is ::;ubmitte::3 ~;y i:(o:m(Jth c. :falick in partial ful­ filln:ent of the r~quj rements f0::- th3 :J,~gree of ;.'a $ter of Science fro::. the Univer:;ity of North Dako+,::i. is her,lby approved by tha Faculty Advisory Cor1L-ni ttf38 und-Jr whom thH ~vorlc h3.s been done, ~~'~ ue:1_~~)-i)__ ---~ Dean of the Graiuate School Permission T1Ue PETROLOOY OF THE AWKITES OF THE BOULDER BA.THOLITH. MONTANA. Department ____________Ge:.;:.::o_l_oQgY._ ______________________________________ Degree ---------------~Ma__ st~e_r;:....;:o_f~S~ci~e.n~c~e=----------------------------- In presenting this thesis in partial fulf'illm.ent of the requirement for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection.
    [Show full text]
  • Idaho Batholith Near Pierce and Bungalow Clearwater County, Idaho
    Idaho Batholith Near Pierce and Bungalow Clearwater County, Idaho GEOLOGICAL SURVEY PROFESSIONAL PAPER 344-D Idaho Batholith Near Pierce and Bungalow Clearwater County, Idaho By ANNA HIETANEN METAMORPHIC AND IGNEOUS ROCKS ALONG THE NORTHWEST BORDER ZONE OF THE IDAHO BATHOI~ITH GEOLOGICAL SURVEY PROFESSIONAL PAPER 344-D Petrologic study of igneous rocks in the northwestern corner of the Idaho batholith UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Plutonic rocks-Continued Abstract __________________________________________ _ D1 Petrographic description-Continued Page Introduction ______________________________________ _ 1 Quartz monzonite and related rocks ___ -------- D14 Locality and specimen numbers _________________ _ 2 Stock at Beaver Creek _________________ _ 14 Major geologic units _______________________________ _ 2 Coarse-grained quartz monzonite and mon- Anorthosite, its country rocks, and the Orofino series of zotonalite ___________________________ _ 20 Anderson (1930)---------------------------------- 4 Granite ___________________________________ _ 23 Belt series ________________________________________ _ 4 Pegmatites ______ -- _____ ---_-- -------------- 25 Distribution ___________________________________ _ 4 Plagioclase pegmatite __________ --_------ 25 Lithology and correlation _______________________
    [Show full text]
  • Gem County, Idaho
    Gem County, Idaho Kog o Tcr 44 3000 Kog Kog Kog KtqKtg Qs TcrTcr Qs Qs KtqKtg Qa 43o1000 Qa Tcr Crk 0 5 10 miles Tcr 0 8 16 kilometers Qa Tps Squaw QTs Ktq QTs Ktg Tcr Qm Tcr Qa Qm Tps Sweet Tcr Qa Qs Qm Tps Qs Ts PayetteQs Black CanyonQTs Qs 52 Ts Dam Qs 52 Qa R. Tgdd Emmett Kgd Qs Tcr Tgdd Tps Qa Ts Tcr o 16 Qm 43 5000 Tgdd Kgd 116o4000 Tps 116o2000 Digital Atlas of Idaho, Nov. 2002 http://imnh.isu.edu/digitalatlas Compiled by Paul K. Link, Idaho State University, Geosciences Dept. http://www.isu.edu/departments/geology/ Gem County Gem County covers a small area on the northern border of the Snake River Plain, including the drainage of Squaw Creek and the main channel of the Payette Rvier. On the southwest are outcrops of Miocene to Recent lake and fluvial beds in bluffs above the Payette River. Much of the northern panhandle of the county is underlain by Miocene (17 Ma) Columbia River basalt. North-trending fault zones parallel Squaw Creek and control the linear topography of the northern county. On the eastern edge of the county are several outcrops of Cretaceous tonalite, orthogneiss and granodiorite of the Idaho batholith complex. Cenozoic Geologic History of Gem and Payette Counties The Cenozoic geologic history of Gem and Payette Counties is similar to many areas in southwestern Idaho. Volcanism resulted mainly from the faulting and initiation of the Western Snake River Plain in the Miocene. Miocene sedimentation occurred within the many lakes interconnected at times by a river system that was present in the newly formed rift environment.
    [Show full text]
  • Spangle Lakes: an Investigation of Late Archaic Human Land
    SPANGLE LAKES: AN INVESTIGATION OF LATE ARCHAIC HUMAN LAND- USE WITHIN THE SAWTOOTH MOUNTAINS by Kaitlyn Mansfield A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Anthropology Boise State University May 2017 2017 Kaitlyn Mansfield ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Kaitlyn Mansfield Thesis Title: Spangle Lakes: An Investigation of Late Archaic Human Land-Use Within the Sawtooth Mountains Date of Final Oral Examination: 03 March 2017 The following individuals read and discussed the thesis submitted by student Kaitlyn Mansfield, and they evaluated her presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Pei-lin Yu, Ph.D. Chair, Supervisory Committee Mark G. Plew, Ph.D. Member, Supervisory Committee Samantha H. Blatt, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Pei-lin Yu, Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. ACKNOWLEDGMENTS I wish to give a special thanks to my committee chair, Dr. Pei-lin Yu, and members, Dr. Mark Plew and Dr. Samantha Blatt who provided me leadership and guidance. I would also like to thank my family and friends for encouraging and supporting me now, and throughout the future, in my education. iv ABSTRACT Recent high altitude archaeological research has provided evidence for seasonal utilization of high mountain landscapes during the Late Archaic era. Sites in the Western United States display varying patterns of land use suggesting that during the Late Archaic, mountain landscapes were used differently based upon unique environmental conditions.
    [Show full text]