<<

pp. LA-7789-MS Informal Report

Calculation of Neutron Cross Sections on of and

co O

CO 5 • .

LOS ALAMOS SCIENTIFIC LABORATORY Rpst Office Bex 1663 Los Alamos. New Mexico 37545 A LA-7789-MS Informal Report UC-34c Issued: April 1979

Calculation of Neutron Cross Sections on Isotopes of Yttrium and Zirconium

E. D. Arthur

- NOTICE- Tim report wt piepited u an account of work sponsored by the United Stales Government. Neither the United States nor the United Statci Department of Energy, nor any of their empioyeet, nor any of their contractor*, subcontractor!, or their employees, nukes any warranty, express or implied, ot astumes any legal liability 01 responsibility foi the accuiacy, completeness or luefulnets of any Information, apparatus, product or piocett ductoied.oi ^presents that iti uie would not infringe privately owned rights. CALCULATION OF NEUTRON CROSS SECTIONS ON ISOTOPES OF YTTRIUM AND ZIRCONIUM

by

E. D. Arthur

ABSTRACT

Multistep Hauser-Feshbach calculations with preequilibrium corrections have been made for neutron-induced reactions on yttrium and zirconium isotopes between 0.001 and 20 MeV. Recent- ly new neutron cross-section data have been measured for unstable isotopes of these elements. These data, along with results from charged-particle simulation of neutron reactions, provide unique opportunities under which to test nuclear-model techniques and parameters in this mass region. We have performed a complete and consistent analysis of varied neutron reaction types using input parameters determined independently from additional neutron and charged-particle data. The overall agreement between our calcula- tions and a wide variety of experimental results available for these nuclei to increased confidence in calculated cross sections made where data are incomplete or lacking.

I. INTRODUCTION Neutron-induced cross sections on yttrium and zirconium isotopes are of in- terest because of their use as dosimetry reactions for various practical appli- cations. In addition to stable data, there now exist experimental meas- urements for 14-15 MeV neutron reactions on certain unstable yttrium and zircon- ium isotopes. The comparison of these data and nuclear-model calculations can provide useful information regarding calculational techniques and input parameter values. Since there is an increasing trend to rely upon nuclear~model calcula- tions to satisfy data needs for neutron-induced reactions in energy regions where measurements are incomplete or lacking, these types of comparisons become even more valuable. In addition, the proximity of these nuclei to the closed neutron shall at N = 50 leads to conditions arising from shell effects, separation ener- gy differences, etc., which provide unique tests of nuclear models and which may allow information to be obtained that otherwise would be obscured. 1 In addition to direct measurements of neutron-induced reactions on unstable nuclei in this mass region, there are experimental data concerning proton-produc- tion cross sections that have recently become available through the use of charged-particle simulation reactions. Generally in medium-mass nuclei where competition between neutron and charged-particle reactions exists, neutron emis- sion dominates, and there is a decreased sensitivity to the charged-particle pa- rameters needed in a statistical calculation of the Hauser-Feshbach type. How- go QQ ever for Y(n,np) and Zr(n,np) reactions, occurs from compound systems where the proton binding energy is considerably lower than that of the 89 90 neutron. For example, in the Y and Zr compound systems, the proton binding energies are, respectively, 4.4 and 3.6 MeV less than those of the neutron. Thus, above the (n,np) threshold there is an energy region in which only proton and gamma rays compete with each other. In these cases, once parameters have been determined to describe gamma-ray emission, one has a unique situation in which to test proton optical parameters, especially their behavior at low-emission energies. We therefore describe calculations of neutron-induced reactions on yttrium and zirconium isotopes made using multistep Hauser-Feshbach techniques with cor- rections applied for nonstatistical effects through use of the exciton preequilib- 2 rium model. Realistic optical parameters were used for , and gamma-ray emission was described with gamma-ray strength functions derived from neutron capture data for A = 80 to 99. Finally, proton optical parameters have been determined using, as a basis, recent results from sub-Coulomb barrier (p,n) 3 data modified somewhat to reproduce in the best possible manner (n,np) data avail- able for yttrium and zirconium isotopes. Calculations are given for capture, total inelastic, (n,p), (n,a +n,an), (n,xn), (n,np + n,pn) and (n,noj) cross sec- 86—92 88—90 tions in the energy range from 0.001 to 20 MeV for the Y and Zr isotopes. In addition, cross sections for reactions leading to isomeric states having life- times greater than a millisecond were calculated. [Exceptions were isomeric cross sections resulting from (n,Y), Cn,a), and (n,not) reactions.]

II. MODEL CALCULATIONS AND PARAMETERS 4 5 The present calculations were made using the COMNUC and GNASH nuclear- model codes, both of which employ Hauser-Feshbach statistical model techniques to determine cross sections. The COMNUC code was used for incident energies up to 4 MeV since it includes width-fluctuation and correlation corrections important at lower energies. The GNASH program was used between 4 and 20 MeV. Tt allows decay of up to ten compound nuclei, with each decaying system permitted to emit gamma rays and up to five additional particles. The program includes preequi- librium emission and a complete treatment of gamma-ray cascades. In order to use these codecs properly, it is necessary to have the best information available concerning various input parameters. The remainder of this section deals with these model parameters and their determination in the most accurate manner possible.

A. Neutron Optical Parameters Neutron-transmission coefficients were calculated using optical parameters based on values determined from fits to neutron total cross sections, elastic- 89 6 scattering angular distributions, and resonance parameters for Y by Lagrange. Two changes were made to the parameters of Ref. 6. The real and imaginary poten- tial depths were modified to include an (N-Z)/A dependence using values similar to those of Delaroche. Secondly, after preliminary Hauser-Feshbach calculations were made, it was felt that better agreement with experimental data [particular- ly (n,2n) cross sections] could be obtained if the total reaction cross section was increased a small amount for neutron energies above 10 MeV. The imaginary potential depth was increased slightly to achieve this with no noticable worsen- ing of the agreement with the total cross section. For zirconium isotopes the 89 real potential depth derived from fits to Y data was modified to improve agree- 90 ment with resonance parameter data while maintaining agreement with the n + Zr total cross section. The present parameters, given in Table I, provide reason- able transmission coefficients over the energy range from 0.010 to 20 MeV. Table II compares calculated and experimental resonance parameter data, while Fig. 1 on QA illustrates the agreement between calculated and experimental Y and Zr total cross sections.

B. Proton Optical Parameters The ability to accurately calculate (n,np) cross sections, especially near threshold, depends strongly on the proton transmission coefficients used, since most of the cross-section results from transitions to discrete levels in the re- sidual nucleus and level-density effects are minimal. In cases where only gamma- ray emission competes, there is an additional sensitivity to the behavior of low- energy proton transmission coefficients. Recently results have been published

3 TABLE I

NEUTRON PARAMETERS USED IN THIS WORK V Isotopes r(fni) a(fm) V (MeV) = 53.21 - 30 (N-Z)/A - 0.28E 1.24 0.62 W (MeV) = 8.96 - 35 (N-Z)/A + C.3E 1.26 0.58 W (Maximum) = 7.0 - 7.5 MeV V = 6.2 MeV 1.12 0.47

Zr Isotopes

90Zr V(MeV) = 49.0 - 0.28E 1.24 0.62 W (MeV) = 3.4 + 0.3E 1.26 0.58 W (Maximum) =7.0 MeV V - = 6.2 MeV 1.12 0.47

88 89 ' Zr 90 Same as for Zr except V = 47.5 - 0.28E. (By making this change, the expected s- and p-wave strength values based on systematics were better reproduced.)

TABLE II

CALCULATED AND EXPERIMENTAL RESONANCE DATA

n + Y Calculation Experimental 0.47 0.28-0.32 S0 3.4 2.6-4.4 Sl R? 6.78 ^ 6.7

n + 9°Zr Calculation Experimental 0.466 0.56-0.62 S0 Sl 3.8 % 3.8 6.71 * 7.1 CROSS SECTION, BARNS CXTO aO 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 so (a r» —OP-1 1_ L ii.. «! H o CROSS SECTION, BARNS fi> 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 OJ 3 1 3 (t> 1 O. rt H« rt>CO o- OM vJ N O ^° U* >-« o H> H rt O

MUT R rt CO . °« *i ID ID H- O X o do 13 rt • z zS- » 3 o rt D> ft> M O s • W c (D (B CO rt C (D M O- rt CO s5 M, H* o r3t*

) by Johnson et al. dealing with optical parameters for sub-Coulomb barrier pro- tons determined from the analysis of low-energy (p,n) reactions. In these analy- ses it was necessary to decrease the surface-derivative imaginary well depth to approximately one third of its usual value as obtained from conventional analyses of proton elastic-scattering data. This decrease qualitatively agreed with re- ft suits of fits to other low-energy proton data. We therefore used the Johnson parameters as a starting point for the determination of proton parameters used in this paper. The Johnson parameters were adjusted to produce agreement between calculated 89 87 and experimental Y(p,n) and Sr(p,n) cross sections when the modified Lagrange parameters of Sec. II. A were employed for the outgoing neutron channel. This differed somewhat from the calculation of Ref. 4, since there the Wilmore-Hodgson 9 neutron parameters were used. (We believe the modified Lagrange parameters to be superior to those of Wilmore-Hodgson, especially for the case of low-energy neutron emission.) Some adjustment was also made on the basis of preliminary an Hauser-Feshbach calculations of the Y(n,np) cross section. Table III lists the proton parameters of the present calculations. A main feature is the relatively small imaginary well depth. As noted before, Johnson and others have found it necessary to reduce the imaginary potential depth from about 13 MeV to about 4 MeV for low-energy protons. The strong energy dependence of the present imaginary potential ensures that for proton energies of 10-15 MeV, the imaginary potential well depth is around 12-14 MeV, in agreement with more conventional proton param- 10 eter sets. Figure 2 compares the reaction cross section calculated with the present parameters (solid curve) with values determined from several other proton parameter sets. The Johnson parameter results are indicated by the dashed line. The reaction cross sections calculated with the present parameters (Table III) agree reasonably with the Johnson results at low energies. At energies around 10-12 MeV, the reaction cross section obtained with the Johnson set does not increase with energy but instead^ s'hgws. a slight 'decrease. This is probably due in part to the fact that these parameters were determined from low-energy • • • data and do not have an imaginary potential energy dependence appropriate to de- scribe higher-energy regions. The tr-iangles and circles result from calculations using the Perey optical parameters and the set of Schulte et al. The Perey parameters are a global set determined from the analysis of proton data in the mass range 30 ** A ^ 100 for energies < 20 MeV. The Schulte parameters were deter- OO OQ Qrt QO mined from fits to elastic scattering data on Sr, Y, Zr, and Mo in the TABLE III PROTON OPTICAL PARAMETERS

r ( fitp a(fm) V (MeV) = 56.4 + 24 (N-Z)/A + O.4Z/A ' - O.32E l\2_ 0.68 6E WSD (^eV) = 3' °' 1.225- .0.4 V =6.4 MeV 1.03 0.63

p + Y 1/3 V (MeV) = 56.4 + 24 (N-Z)/A + 0.4Z/A ' - O.32E 1.2 0.73 5E WSD °* 1.3 0.4 =6.4 MeV 1.03 0.63

in in o o •z.0.01 r o oJ- or 0.001 2 3 4 5 6 7 8 9 10 I! 12 13 14 15 16 PROTON ENERGY (MeV)

Fig. 2. 8g Calculated reaction cross sections for p + Sr. The solid curve results from the parameters of Table III, the dashed curve from the Johnson parameters,3 the triangles from the Perey and the circles are calculated with the Schulte parameters. energy range 8-14 MeV. Figure 2 shows that the parameters of Table III agree with the Johnson results at low energies while also agreeing with the other more con- ventional sets at higher energies. In Fig. 3 we compare (p,n) cross sections calculated using our proton param- D 89 89 eters (Table III) and neutron parameters (Table I) to the Y(p,n) Zr data of 3 Johnson et al. (Resonances have been omitted to facilitate comparison with the present Hauser-Feshbach statistical calculation.) Also indicated by the squares 12 are early (1951) measurements by Blaser et al. 88 89 87 88 For the calculation of ' Y(n,np) * Sr cross sections, experimental in- p "7 QO formation concerning ' Sr(p,n) reactions is of interest to provide a further check on our parameter sets. To our knowledge, the only published data for 87 88 1 9 ' Sr(p,n) reactions are the 1951 measurements of Blaser. Our calculation agrees well with these data as shown in Fig. 4. Even though these data are quite 89 old, the fact that the Blaser measurement for Y(p,n) agrees with the more recent Johnson results increases our confidence in its use for present proton-parameter determinations.

C. Gamma-Ray Emission Parameters Certain portions of our calculated results are sensitive to the description of gamma-ray emission, and therefore an accurate knowledge of the parameters in- volved is a necessity. In most Hauser-Feshbach calculations, the integral of the product of level density and gamma-ray transmission coefficients is normalized to the experimental value of 2u/, where and are the average gamma width and spacing for s-wave neutron resonances. This normalization directly in- fluences the amount of gamma-ray emission occuring, either in the capture reaction or in competition to particle-emission reactions. Experimental data for and are not always reliable (especially where resonance spacings are large), and for compound systems lacking such data, reliance must be placed upon deter- mination of these quantities from systematics. Since the observed spacing can vary drastically between nearby nuclei in closed shell regions, considerable uncertainty can exist concerning the amount of gamma-ray emission to be included in a calculation. 13 An alternate approach has been suggested by Gardner that elimiates many of these problems, leading in turn to more accurate capture cross sections where data is unavailable and to a better treatment of gamma-ray competition. This method is based upon determination of the gamma-ray strength function f(e ) defined by o

PROTON ENERGY (MeV) 3. 89 The calculated Y(p,n) cross section is compared to the data of Johnson^ (circles) and Blasser^ (squares).

3 4 S fi 7 PROTON ENERGY (MeV)

87 Calculation of the Sr(p,n) reaction is compared to the Blasser data.12

where S is the neutron separation energy and p is the level density of the com- pound system. The electric dipole strength function is assumed to have a giant dipole resonance (GDR) form given by

k£ r * ,F. \ = Y GDR m 2 2 2 u; + (£ E )V ' Y " GDR

The strength function can be extracted from the analysis of neutron capture cross sections measured for stable nuclei or through the analysis of spectral data re- sulting from capture. Since the strength function is expected to vary smoothly between nearby nuclei, some of the problems mentioned earlier can be eliminated, and one can use it with increased confidence. Prior to the present calculations, we explored the magnitude and behavior of these strength functions by fitting neutron capture cross sections to obtain 80 99 values for the constant k in Eq. (2) for target nuclei from Se to Tc. We considered only El contributions and took the giant dipole resonance parameters rnm> and Err>D from photonuclear data. The El strength functions for several compound systems are shown in Fig. 5. 85 87 90-92 We concluded from the analysis of ' Rb(n,Y) and Zr(n,Y) data that the strength function was almost identical (within the accuracy of our fit) for 89 91 92 isotopes of the same element. The strength functions for Sr and ' Zr com- 90 pound systems lie very close to the values for Y and, for clarity, have been oo omitted in Fig. 5. Since recent experimental results are available for the Sr, 89 90-92 15—17 Y, and Zr(n,Y) reactions, we believe the extracted strength functions to be particularly reliable for these cases.

D. Level Density Parameters In the present calculations all nuclei are described using a combination of discrete levels and a continuum level-density expression at energies high enough 'where reliable experimental level data do not exist. We used the Gilbert-Cameron * 10 18 19 level density expression along with the Cook values for the pairing terms and level-density parameter, a. The Gilbert-Cameron formalism consists of a Fermi-gas level-density expression along with a constant-temperature expression of the form

(E-E.)/T U (3)

which represents the level density at lower-excitation energies. The Fermi-gas and constant-temperature expressions are then joined smoothly at a matching energy U . These expressions should also be joined smoothly to the cummulative number of discrete levels available from experimental data at lower energies. To do so, we adjusted E_ and T in Eq. (3) and the matching energy U until these conditions were met. At times it was also necessary to adjust the pairing energy used in the Fermi-gas expression from the values given by Cook. For some nuclei we chose values for the level-density constant a, which agreed with results from a more 20 recent and specialized analysis of resonance spacings in this mass region. Table IV lists the level density parameters used in the present calculations.

10 0.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 Gamma-Ray Energy (MeV) Fig. 5. Gamma-ray strength functions determined from fits to neutron capture data are presented for several compound nuclei.

11 TABLE IV LEVEL DENSITY PARAMETERS OF THE PRESENT CALCULATIONS

Nucleus (KeV"1) EQ(MeV) T(MeV) U (MeV) Rb82 12.802 0.29 -0.436 0.629 3.162 Rb83 12.669 1.61 -0.921 0.836 7.694 Rb84 12.313 -0.12 -0.385 0.773 0.163 Rb85 11.591 1.50 -0.262 0.816 6.475 Rb86 10.761 0.04 -0.312 0.663 2.36 Rb87 9.689 0.97 -0.053 0.843 4.927 Rb88 10.083 0.05 -0.945 0.812 3.880 Rb89 10.671 0.66 -0.315 0.773 4.355

Sr84 12.675 2.81 1.09 0.758 7.544 Sr85 12.312 1.08 -0.435 0.753 5.51 Sr86 11.589 2.7 0.987 0.812 7.595 Sr87 10.734 1.24 0.767 0.688 3.854 Sr88 9.00 2.17 1.812 0.921 7.437 Sr89 10.043 1.25 1.095 0.687 3.547 Sr90 10.634 1.86 1.252 0.719 4.809 Sr91 11.662 0.74 0.171 0.659 3.465 Sr92 11.756 2.66 0.975 0.802 7.511

85 y 12.452 1.86 -0.834 0.861 8.253 86 Y 12.078 0.13 -0.854 0.699 3.618 Y87 11.341 1.75 0.643 0.753 5.584 Y88 10.00 0.29 -0.764 0.826 4.253 Y89 9.365 1.22 1.181 0.821 5.303 90 Y 9.759 0.03 -0.262 0.766 3.291 Y91 10.352 0.91 0.338 0.73 3.83 Y92 11.385 -0.21 0.142 0.804 0.088 Y93 11.475 1.71 -0.383 0.873 6.404

Zr87 12.585 0.93 0.763 0.539 2.575 Zr88 11.0 2.55 0.815 0.848 7.597 Zr89 10.965 1.09 0.133 0.753 4.701 Zr90 9.85 2.02 1.157 1.092 2.35 Zr91 10.252 1.10 0.669 0.853 1.46

The quantities above are defined as follows: a = Level density parameter appearing in the Fermi-gas level density expressions. A - Pairing energy. E. and T • Constant temperature expression parameters. See Eq. (3). U » Matching energy at which constant temperature and Fermi-gas expressions are joined.

12 E. Discrete Levels In some cases discrete-level information plays an important role regarding cross sections determined for (n,2n) or (n,np) reactions. For example, the dif- ference in spins populated in the initial compound system and that of the resid- ual nucleus reached through decay via neutron or proton emission can to cross sections dominated by populations of one or a few levels. Near thresholds, the importance of accurate discrete-level information is increased because of the absence or lack of significant population of states in the continuum represented by a level-density expression. We made an effort to include as many levels as possible and to, of course, make the best judgment possible for spin and parity values where such information was incomplete. Information from the latest evalu- 21 ations and compilations appearing in the Nuclear Data Tables formed the basis for the majority of the level schemes used. However, in some cases it was neces- sary to make judgments based on newer experimental data or from systematics. The level schemes used in this report appear in Appendix A.

F. Preequilibrium Formalism and Parameters At higher neutron energies, effects other than those included in the stand- ard Hauser-Feshbach statistical calculation become important. These semi-direct effects result from the reaction proceeding through a series of particle-hole configurations, starting from very simple ones and l'eading to more complex ones until equilibrium is reached. At each successive stage there exists a probabil- ity for particle emission, and the resultant spectra and cross sections can be quite different from those obtained from Hau^rrFeshbach methods. To describe the preequilibrium procesls, we have used the Kalbach exciton model of Ref. 2. Since the expressions used to calculate preequilibrium contri- butions are given in detail there, we will no% repeat them. However in such cal- culations, state densities are used to classify the number of particle-hole de- grees of freedom. Since the excitation energy of the system is redistributed through a series of two-body energy-conserving interactions, expressions describ- ing the rates for creation or destruction of particle-hole pairs are needed. Such rates are directly proportional to the square of the average matrix element W" for the effective, residual two-body interaction. In our present calculations 2 ° 22 we have used a new empirical representation for M developed by Kalbach

13 M2(n,E) = -y- f(e) , (4) A e '

where n is ..he exciton number (n = p + h) and e Is the average excitation energy per exciton, E/n. The function f(e) represents a different energy dependence 2 for M over several ranges of e and appears explicitly in Ref. 22. In Eq. (4) 3 the value of the constant k was determined to be 135 MeV when the state density constant for the composite system g was equal to A/13, where A is the nuclear 3 mass. We obtained better results wich k = 160 MeV when gQ = A/13. However, we chose to represent the state density constant for each residual nucleus g as g 6 = —„ a. where a is the level density constant of Sec. II. D. In this mass re-

gion, shell effects are important, and values of the level-density constant a deviate from values obtained from systematics in regions away from closed shells, namely, a ^ A/8. Since the excitation energies of the residual systems are rela- tively low, we concluded that shell effects may play some role in preequllibrium calculations. However, for the composite systems, the state density constant g. was retained equal to A/13 since at the higher-excitation energies involved, shell effects should be less noticable. Attempts to calculate preequilibrium components when all state density constants (including that of the composite sys- tem) were set equal to —_ a produced unusually high preequilibrium fractions IT for incident-neutron energies between 10 and 20 MeV. Over the same energy range, the preequilibrium fraction calculated using the state density constants described above ranged from 15-30%. We also included pairing effects in the determination of the energy at which the state density was to be evaluated. To include nonstatistical effects occuring in the emission of complex par- ticles (namely, alpha particles), we employed semiempirical expressions developed 3 23 by Kalbach ' to describe knockout and inelastic processes as well as stripping and pickup. These expressions made it unnecessary to use quantities such as "alpha preformation" coefficients, and in general the method worked reasonably well. For alpha emission, the dominate contribution originates from pickup and knockout and not from statistical or purely preequilibrium processes. Finally, since the exciton model used here does not include angular momentum effects, we assumed that the spin distribution of the preequilibrium components would be the same as those determined for the equilibrium components through the usual Hauser-Feshbach techniques.

14 III. CROSS SECTION RESULTS In this section we compare cross sections calculated using the techniques and parameters of Sec. II with available experimental data. Trends in cross sec- tions for different isotopes of yttrium and zirconium will also be illustrated.

Table V lists.t the reactions calculated, their threshold, and the reaction type (MT) numbers as used in the ENDF/B system for evaluated neutron data. For all reactions [except capture and (n,a)], cross sections for production of isomeric levels having lifetimes roughly a millisecond or greater were calculated. In ac- cordance with procedures for the ENDF/B system, we have provided cross sections from the reaction threshold up to 20 MeV. For reactions having positive Q values, cross sections begin at 10 eV and extend to 20 MeV. In these cases, we used the nuclear model calculations over the energy range generally from 1 keV to 2Q MeV. From 10~ eV to 1 keV, cross-section estimates were made based on knowledge of thermal values and expected resonance locations. The method used for esti- mating cross sections below the lower limit for statistical calculations and the complete cross-saction sets appear in Appendices B and C.

A. Yttrium Results and Comparisons to Experimental Data 1. Elastic and (n,n') Cross Sections. Althoush these cross sections are 89 not provided in Appendix C, the calculated results for the Y elastic cross sec- tion and inelastic scattering to specific final states are compared to the data 24 of Perey and Kinney in Figs. 6 and 7. The generally good agreement between the calculations and data is indicative of the applicability of the neutron optical parameters used in the present calculations. 25—29 89 There also exist several measurements of the Y(n,n') reaction leading 89 ^ + to the 16 second isomer in Y (E = 0.909 MeV, J = 9/2 ). These results span the region from 2-18 MeV and are compared to our calculated values in Fig. 8. These data, which cover a wide energy range, provide a useful test of our calcu- lations, particularly with respect to the treatment of gamma-ray cascades instru- mental in the population of this state at higher energies and in the preequilib- rium corrections used. The preequilibrium contributions prevent the calculated cross sections from dropping to zero once thresholds for tertiary reactions occur. 2S Reasonable agreement is obtained with the higher-energy data of Abboud (circles). Another test of preequilibrium cross sctions occurs through the comparison shown in Fig. 9. Here the secondary neutron-energy spectrum measured by Luk'- 30 yanov for an incident energy of 14.36 MeV is compared to our calculated

15 TABLE V Q-VALUES AND THRESHOLDS FOR YTTRIUM AND ZIRCONIUM REACTIONS

Final Q Et MAT MT Reaction Statea (MeV) (Me

3986 4 86Y(n,n')86Y 0 16 86Y(n,2n)85Y 0 16 86Y(n,2n)85mY 1 22 Y(n,na)°^Rb 0 28 86Y(n,np + i,pn)85Sr 0 52 86Y(n,n')86nV 2 86 87 102 Y(n>Y) Y 0 11.82 — 103 Y(n,p)°°Sr 0 6.055 107 Y(n,a + n,an) » Rb 0 5.359 —

87 87 3987 4 Y(n,n') Y 0 - 3.81 0.386 16 87Y(n,2n)8bY 0 -11.82 11.96 16 87Y(n,2n)86mY 2 -12.04 12.17 22 87Y(n,na)83Rb 0 - 6.46 6.535 28 87Y(n,np + n,pn)86Sr 0 -5.764 5.831 51 87Y(n,n')87mY 1 - 3.81 0.386 102 87Y(n,y)88Y 0 9.377 - 103 87Y(n,p)87Sr 0 2.665 103 87Y(n,p)87mSr 1 2.276 ~ 107 87Y(n,a + n,an)84'83Rb 0 2.416 88 88 3988 4 Y(n,nf) Y 0 - 0.232 0.235 88 87 16 Y(n,2n) Y 0 - 9.376 9.484 16 88Y(n,2n)87"V 1 - 9.758 9.87 88 8 h 22 Y(n,na) Rb 0 - 3.73 3.773 88 87 28 Y(n,np + n,pn) Sr 0 - 6.712 6.789 88 87m 28 Y(n,np + n,pn) Sr 1 - 7.1 7.182 52 88Y(n,n')88mlY 2 - 0.393 0.398 53 88Y(n,n')88m2Y 3 - 0.675 0.683 102 88Y(n,y)89Y 0 11.468 103 88Y(n,p)88Sr 0 4.401 16 88 85 84 107 Y(n,a + n,an) ' Rb 0 3.517 3989 / 89Y(n,n')89Y 0 - 0.908 0.918 T 16 89Y(n,2n)88Y 0 -11.468 11.598 16 89Y(n.2n)88mlY 2 -11.86 11.96 16 89Y(n,2n)88m2Y 3 -12.143 12.281 22 89Y(n,na)85Rb 0 - 7.95 8.04 QQ QO 28 0 - 7.07 7.147 Y(n,np + n,pn) Sr 51 1 - 9.08 0.918 89Y(n,n')89mY 102 0 6.86 89 9 Y(n,Y) °Y 102 89Y(n,T)90nV 2 6.178 — 103 89Y(n,p)89Sr 0 - 0.707 0.715 107 Y(n,a + n,an) 0 0.699 —

3990 4 9°Y(n,n.)9°Y 0 - 0.203 0.205 16 9°Y(n,2n)89Y 0 - 6.86 6.937 16 9°Y(n,2n)8% 1 - 7.768 /.855 17 9°Y(n,3n)88Y 0 -18.33 18.53 22 9°Y(n,na)86Rb 0 - 6.16 6.23 QO ftQ 0 7.567 7.652 28 Y(n,np + n,pn) Sr 52 90Y(n,n')90^/ 2 - 0.685 0.693 102 9°Y(n,Y)91Y 0 7.946 — 9 9 103 °Y(n,P) °Sr 0 0.237 107 90Y(n,a + n,an)87'86Rb 0 3.765

3991 4 91Y(n.n')91Y 0 - 0.556 0.562 16 91Y(n,2n)9°Y 0 - 7.946 8.034 16 91Y(n,2n)9(N 2 - 8.63 8.727 17 91Y(n,3n)89Y 0 -14.81 14.97 17 91Y(n,3n)8% 1 -15.71 15.89 22 Y(n,na) Rb 0 - 4.18 4.23 91 , , .90,, 28 Y(n,nTr p + n,pn) Sr 0 - 7.709 7.759 51 91Y(n,n')9^ 1 - 0.556 0.562 102 91Y(n,Y)92Y 0 6.557 — 103 91Y(n,p)91Sr 0 - 1.883 1.903 107 91Y(n,a + n,an)88)87Rb 0 1.902

92 92 3992 - 0.28 0.283 17 3992 16 92Y(n,2n)91mY 1 - 7.113 7.191 17 92Y(n,3n)9°Y 0 -14.5 14.66 17 92Y(n,3n)9OmY 2 -15.19 15.35 „ o "o 22 92Y(n,na)88Rb 0 - 4.655 4.706 28 92Y(n,np + n,pn)91Sr 0 - 8.44 8.532 102 92Y(n,Y) Y1' 0 7.49 103 92Y(n,p)92Sr 0 - 1.13 1.14 ,107 92Y(n,a + n,an)89>88Rb 0 2.52

4088 4 88Zr(n,n')88Zr 0 - 1.058 1.07 16 88Zr(n,2n)87Zr 0 -12.2 12.34 16 88Zr(n,2n)87mZr 2 -12.536 12.68 22 88Zr(n,na)84Sr 0 - 5.397 5.449 28 88Zr(n,np + n,pn)87Y 0 - 7.917 8.01 88 87m 28 Zr(n4np + n,pn) Y 1 - 8.298 8.39 102 88Zr(n,Y)89Zr 0 9.312 103 88Zr(n,p)88Y 0 1.462 103 88Zr(n,p)88mlY 2 1.069 103 88Zr(n,p)88m2Y 3 0.787 107 88Zr(n,a + n,an)85'84Sr 0 3.13 —

4089 4 89Zr(n,n')89Zr 0 - 0.587 0.594 16 89Zr(n,2n)88Zr 0 - 9.311 9.417 22 89Zr(n,na)85Sr 0 - 6.18 6.25 28 89Zr(n,np + n,pn)88Y 0 - 7.853 7.941 28 89Zr(n,np + n,pn)88mlY 2 - 8.245 8.339 89 88m2 28 Zr(n,nP + n,pn) Y 3 - 8.527 8.624 51 89Zr(n,n')89mZr 1 - 0.587 0.594

89 9 102 Zr(n,Y) °Zr 0 11.983 103 89Zr(n,p)89Y 0 3.616 — 103 89Zr(n,p)89mY 1 2.708 107 89Zr(n,a + n,an)86>85Sr 0 5.305 —

4090 4 Zr(n,nf) Zr 0 - 1.76 1.78 on RQ 16 Zr(n,2n) Zr 0 -11.^3 12.117

16 9°Zr(n,2n)89mZr 1 -12.57 12.71

18 90 86 4090 22 Zr(n,n ) Sr 0 - 6.678 6.753 an on 28 Zr(n,np + n.pn) Y 0 . - 8.366 8.46 28 Zr(n,np + n,pn) aY 1 - 9.27 9.38 90, , ,91 Zr(n, ) Zr 0 7.203 — 103 9°Zr(n,p)9°Y 0 - 1.506 1.523 9 9( 103 °Zr(n,P) N 2 - 2.19 2.216 107 Zr(n, + n, n) ' Sr 0 1.75

The convention used here is that for a particular reaction a final state of 0 signifies that the cross section listed is the total cross section for that reaction, not just the amount leading to the ground state. If the final state is not equal to 0, then the cross section listed is that for population of the indicated isomeric stat^.

10

ELASTIC 10" 1 IO E,'{2.53O*2.5T0*2.63O)HiV

10'

t,-(2.880*2.890) MiV ~ IO2 o H U UJ en to co I0 O ID o o IOZ o 10'

E. •(3.720*3.760+3.860 3.S?0)N«Y

10' O I 23456789 0 I 23456789 NEUTRON ENERGY (MeV) NEUTRON ENERGY {MeV)

Fig. 6. Fig. 7. Calculated elastic and inelastic excita- Further comparison of the calculated tion functions for n + 8^Y are compared yttrium inelastic scattering cross sec- to the data of Perey and Kinney.24 tions to the Perey results.24 19 4 6 8 10 12 14 16 18 20 NEUTRON ENERGY (MeV)

Fig. 8. g. Calculated and experimental cross sections for the production of T through neutron inelastic scattering (the data of Refs. 25-29 are o , V » A > A > and n , respectively).

n *89Y-NEUTRON EMISSION En = 14.36 ±.!5 MeV

•10

o

o o

I01

6 2 4 6 8 10 12 SECONDARY NEUTRON ENERGY (MeV) Fig. 9. The calculated secondary neutron emission spectra at 14.36 MeV is com- pared to the Luk'yanov data.30

20 spectrum. The fact that reasonable agreement is obtained, especially for sec- ondary energies greater than 6 or 7 MeV, indicates the use of a proper fraction

in the preequilibrium correction. c 2. (n,2n) Cross Sections. Various experimental measurements exist for the pQ QQ Y(n,2n) Y reaction. In Fig. 10 we compare our calculations to three of the most recent. The closed circles are the scintillation tank measurements of Frehaut from threshold up to about 15 MeV, while the open circles are the Veeser 32 results (also scintillation tank measurements). The triangles are data of Bay- 33 hurst et al. measured using activation techniques. Good agreement is obtained between calculated and experimental results, even near the threshold. This indi- cates that a proper amount of gamma-ray competition has been included using the strength functions described in Sec. II. C. It also provides an indirect confir- 89 mation that the amount of competition from the Y(n,np) reaction is reasonable for energies less than 13-14 MeV. 34-37 A few experimental results exist for population of the first and second isomeric states in Y(E = 0.393 MeV, J71 = 1+, and E = 0.687, JU = 8+) through the Y(n,2n) reaction. Our results are shown in Fig. 11 with these data (closed symbols art experimental cross sections for production of the first isomeric state, while the open ones are results leading to the second). Our calculations for the first isomer do rather poorly in reproducing the data, while for the second, the scatter in the experimental data prevent a firm conclusion although perhaps the agreement is somewhat better. 38 Recently, experimental measurements of the (n,2n) cross section for neu- 88 trons incident on the unstable Y nucleus have been made. Although these data generally exist at only one energy around 14.7 MeV, they provide a unique test of nuclear-model calculations in regions where one has to rely increasingly on param- eters determined from systematics. Figure 12 shows data for the Y(n,2n) reac- tion, both for the total (n,2n) cross section (open circles) and that (closed 87 + circles) leading to the Y isomeric state at E = 0.381 MeV (J71^ = 9/2 ) alone 88 x with our calculations. The Y(n,2n) cross section is somewhat higher at 14 MeV 89 than that for the Y(n,2n) reaction as a result of a lower threshold and a de- creased competition from charged-particle emission. 3. (n,p) and Proton Production Cross Sections. The proton optical model- parameters we have used represent a departure from values generally employed in Hauser-Feshbach calculations. In Sec. II. C we showed that (p,n) cross sections calculated with these parameters sets agreed with experimental data for Y and 21 12 13 14 15 16 17 18 20 NEUTRON ENERGY(MeV)

89 Fig. 10. The calculated Y(n,2n) cross section is compared to three recent ex- perimental data sets ( • Ref. 31, A Ref. 32, and o Ref. 33).

0.35 • 89Y(n,2n)88lril-m2Y

12 14 16 18 20 NEUTRON ENERGY (MeV)

88 89 Isomeric state yields in Y from the Y(n,2n) reaction. The closed symbols are 89III1Y results while the open symbols are 88m2Y data (AARef. 34,VTRef. 35, • Ref. 36, and o» Ref. 37). 22 10 12 14 16 18 20 NEUTRON ENERGY (MeV)

Fig. 12. „_ Calculated cross sections for the eoY(n,2n) reaction are compared to the data of Ref. 38.

87 Sr(p,n) reactions. Our main interest, however, is knowing to what extent these parameters (along with those developed for neutron and gamma-ray emission) pro- duce cross sections that agree with data for proton production induced by neu- trons on isotopes of yttrium. Until recently, the only available proton emission cross-section data available for yttrium were activation measurements of the 89 .89,, 89 Y(n,p; Sr cross section. Since the Y(n,np + n,pn) reactions lead to the QQ stable Sr nucleus, there have been no data pertaining to this cross section. This situation has changed as a result of recent data from charged- particle reactions that simulate proton production arising from neutron-induced reactions on yttrium isotopes. For example, proton emission resulting from n + Y is simulated through use of the Zr(t,a) reaction, which produces 9°Y in a series of excited, unbound states. By measuring the proton emission probabil- ity and normalizing it with a calculated compound-nucleus formation cross section, the total proton production cross section can be determined for an equivalent neutron energy. Before comparisons are made to this type of data, Fig. 13 shows our calcu- 89 40-44 lated Y(n,p) cross section along with available experimental data. With the proton parameters of Sec. II. C, reasonable agreement is obtained between the calculation and data, especially for energies greater than 14 MeV. The total proton production cross section measured through charged-particle 89 simulation of the n + Y -*• p + X reactions is compared with our calculation [sum of contributions from (n,p) + (n,np) + (n,pn)] in Fig. 14. The experimental data show a rapid rise above 10 MeV, which corresponds to the excitation energy region 89 in the Y compound system where only proton and gamma-ray emission occur. Once neutron emission begins, the proton production cross section drops. In the equiv- 89 alent n + Y calculations, the (n,np) reaction is the major contributor to the peak around 12.5 MeV. Competition from the (n,2n) reaction causes the proton pro- duction to then drop at higher energies. Although all points in the measured data are not reproduced, the calculated values agree well with the main features. on Similar measurements exist for the n + Y •*• p + X reactions and are shown in Fig. 15. Here the calculations fail to reproduce some of the features, partic- ularly the measured rise around a neutron energy of 8 MeV. Even though the thresh- old for the (n,np) reaction is 6.79 MeV, Coulomb barrier effects prevent sizable contributions to the calculated cross section until 10 MeV. Using similar proton parameters as those used in the curve appearing in Fig. 14, the general magnitude of the cross section is reproduced however. 45-54 89 4. The (n,Y) Cross Section. Experimental data exist for the Y(n,Y) cross section over a wide energy range extending from approximately 100 e\> to 15 89 MeV. We fitted the Y(n,Y) experimental data for energies between 0.01 and 0.5 MeV to extract the El gamma-ray strength function for yttrium isotopes, and our calculation is compared to the data in Fig. 16. (Below 7 keV the curve was sim- 45 ply hand-drawn through the data of Bergman for the purpose of providing an eval- uation of this cross section.) Above 7 keV and extending to approximately 10 MeV, the curve results from our Hauser-Feshbach calculation of the capture cross sec- tion. In the region from 10-20 MeV, we calculated the cross section using a semiempirical model to simulate the direct-semidirect processes through which the El giant dipole resonance influences the capture cross section. In this model, the cross section was calculated using a preequilibriutn cascade process with gamma-ray emission probabilities computed at each stage. The calculations ex- hibit a giant dipole resonance effect, and for energies around 14 MeV the cross

sectio n 55is around 1-2 mb in agreement with measured values for a wide range of nuclei-. A . 24 \ 'I •i

O 0.01 UJ c/) in c/> 89Y(n,p)89Sr O a: o

o.ooi 6 8 10 12 14 16 18 20 NEUTRON ENERGY (MeV)

Fig. 13. 89. Calculated and experimental data for the Y(n,p) reaction (A Ref. 40, C Ref. 41, D Ref. 43,V Ref. 44, and • Ref. 45).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 NEUTRON ENERSY(MeV)

Fig. 14. 89 Calculated total proton production cross section for n + TY compared to the results from charged-particle simulation of this reaction.39

25 0.12 i i r i 9°Zr(t,a)8V 88 0.10 (n+ Y-p*x)

-- 0.08 O h O 06

$0 04 O °0.02

J I 0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 NEUTRON ENERGY(MeV)

Fig. 15. 88. Calculated total proton production cross section for n + compared to the results from charged-particle simulation of this reaction.

~1 1 I I I I ll| f 1—I IIII1| 1 1 1 I I I ll| 1 1 I I I I ll|

0.100 89 90 Y(n,y) Y

0.001 -

i i i i i t 111 i i i I i i 111 i i (Mini 0.001 0.01 0.1 1.0 100 NEUTRON ENERGY (MeV)

Fig. 16. Experimental data for the 89Y(n,y) reaction are compared with our calculated (evaluated) results. (Data from Refs. 45-54 are represented by o , • , a , A , • , V , • , A , 0 , and # , re- spectively.)

26 5. (n,q) and Alpha Production Cross Sections• Alpha production cross sec- tions generally are lower in magnitude than most other cross sections calculated here and are, thsrefore, of less interest. We included (n,a) and other alpha-pro- duction cross sections in the calculations, but a thorough investigation of alpha- particle optical parameters was not made. In addition, a large contribution to alpha production arises from nonstatistical effects described in Sec. II. F, and there is a decreased sensitivity to the alpha-particle transmission coefficients used. We chose the parameters of Park determindeterminei d from 20 MeV alpha scattering on yttrium for use throughout these calculations. 89 Adequate agreement was obtained for the calculated Y(n,c) cross section 40-43 cotapared to the experimental data as shown in Fig. 17. Since we did not separate the (n,a) and (n,an) cross sections in the calculation, the solid curve represents the contribution estimated to be largely from the (n,a) reaction, while the dashed portion includes both (n,a) and (n,an) contributions. Other comparisons made to the total alpha-production cross section as measured through 89 charged-particle simulation of n + Y^ot+X reactions also show good agreement.

B. Cross Section Trends for Yttrium Isotopes Here we compare trends in the cross sections determined for selected neutron 86—9? reactions on "Y. Figure 18 illustrates the capture cross sections. All QQ curves are calculated values except for the Y(n,Y) reaction below 7 keV where experimental information indicates the presence of a resonance. For the other yttrium isotopes, resonance effects should occur at lower energies since their 89 resonance spacing is expected to be less than that for the n + Y compound sys- tem (see Appendix B). Thus, Hauser-Feshbach calculations for these isotopes should be applicable for .1 kilovolt (and perhaps lower) incident-neutron energies. As we described in Sec. II. C, all capture calculations relied on use of the gamma- 89 ray strength function determined from Y(n,Y) data to provide a normalization for for the gamma-ray transmission coefficients used. At low energies, the capture 86-88 cross sections for Y are the largest since their neutron separation energies 89-92 are higher (9.4-11.8 MeV) than those for Y (6.6-7.9 MeV). Thus, the integral over the product of the normalized gamma-ray transmission coefficients and the com- pound nucleus level density extends over a larger integration range resulting in a larger capture cross section. At higher energies, the presence of the El giant dipole resonance (GDR) was incorporated in the manner described in Sec. III. A. 4. All capture cross sections have approximately the same magnitude around 15 MeV in

27 ^Ydi.oj^Rb

10 12 14 16 18 20 NEUTRON ENERGY (MeV)

Fig. 17. g9 Calculated and experimental data for the Y(n,a) reaction. The portion of the curve represented by a dashed line also includes the (n,an) contributions. Data are from Ref. 40 t 41 o , 42 • , and 43 V .

1 1 1

92 " Y(n y) 10

O.I NTS 0.01 \ 0.001

1 t . . . 1 0001 0.01 0.1 1.0 NEUTRON ENERGY (MeV) • Fig. 18, 86-92 Trends in calculated neutron capture cross spctions for Y.

28 agreement with expected trends arising from experimental data at this energy. In cases where the capture component resulting from compound-nucleus contributions is large ( Y), the giant dipole resonance shape is distorted on the low-ener- gy side. For the other cases with relatively small compound-nucleus contribu- tions, such effects are minimal. Figure 19 compares cross sections calculated for (n,2n) reactions on these isotopes. Several general characteristics are apparent. The neutron-rich - 90-92 topes Y have larger peak (n,2n) values, partially because of lower (< 8 MeV) 91 92 thresholds and less competition from charged-particle emission. For ' Y, the (n,3n) threshold occurs around 16 MeV, causing a decline in the (n,2n) cross sec- 86 87 tion above this energy. The proton-rich ' Y isotopes have more competition 86 from the (n,np) process therefore lowering the (n,2n) cross section. For Y, the effect is most apparent causing a substantial lowering of the cross section as well as influencing the shape of the excitation function. The calculated (n,p) cross sections are illustrated in Fig. 20. The proton- rich isotopes have positive Q values for this reaction, leading to appreciable 8fi cross sections at low energies. The Y(n,p) reaction has the most positive Q value (6.055 MeV) resulting in the largest (n,p) cross section at low energies and continuing up to 20 MeV. The structure in this cross section around 2-3 MeV occurs from a peaking in the calculated inelastic cross section resulting in a drop in the (n,p) cross section. At 3 MeV, the inelastic cross section begins 89 to drop, caut-lng the (n,p) cross section to rise again. The Y and neutron-rich 90-92 isotopes Y have r i tive Q values resulting in a threshold for this reaction and a smaller peak magnitude. Much of the behavior of the (n,np + n,pn) cross sections of Fig. 21 can be explained in terms of the difference in neutron and proton binding energies of 89 the second compound nucleus involved. As noted earlier for n + Y, the binding QQ energy of the proton in the Y compound system is 4.4 MeV less than that of the neutron leading to a peak around an incident energy of 12 MeV from the (n,np) 88 contribution. This situation occurs for the Y system but to a lesser extent. Here the difference in proton- and neutron-binding energies is approximately 2.7 MeV, and a shoulder occurs in the cross section. Again, the difference is large 86 87 90—9? for ' Y, resulting in a peak. For the Y isotopes, the binding energy of 90-92 the neutron in the Y compound systems is less than that of the proton and there is very little (n,np) contribution. In these cases most of the calculated cross section arises from the (n,pn) reaction. 29 1 1 1 1 1 1 !

1.5} _86-92Y(n2n)

1.25-

1.00-

/ 89/ / o £0.75

en 0.50- - o • H / 0.25- T

10 12 14 16 18 20 NEUTRON ENERGY (MeV)

FiS- 19- 86-92 Calculated (n,2n) cross sections for the Y iisotopes

0.001 0.01 0.1 10 10.0 NEUTRON ENERGY(MeV)

86-92. Fig. 20. Calculated Y(n,p) cross sections from 0.001 to 20 MeV.

30 o I- o LU

o it

001

0001 10 12 14 16 20 NEUTRON ENERGY (MeV)

Fig. 21. Sum of calculated (n,np) and (n,pn) cross sections for 86-92Yf

C. Cross Sections and Comparisons to Data for Zirconium Isotopes In this section we compare calculated and experimental cross sections for selected neutron reactions on zirconium isotopes. As was the case for yttrium, there also exist unstable isotope measurements for zirconium. These data supple- ment the unstable yttrium isotope results and place further constraints on the techniques and parameter values used to calculate theoretical cross sections in this mass region. 1. Inelastic Scattering Cross Sections. In Fig. 22 we compare our calcu- lated cross section for production of the isomeric state (E = 2.319 MeV, J11 = 5 ) 90 x in Zr through inelastic neutron scattering. The calculations lie slightly 57 58 above the experimental data, ' but the agreement is reasonable. Unfortunately, the experimental data extend only to 6 MeV, preventing a test at higher energies as was the case for the Y(n,n') Y reaction. Similar information exists from measurements for production cross sections for discrete gamma-ray lines through 90 59 Zr inelastic neutron scattering. In Fig. 23 the data of Glickstein et al. are shown along with our calculations. All these gamma rays result from 31 8 10 12 14 16 18 20 NEUTRON ENERGY (MeV)

Fig* 22< 90 90m Calculated and experimental cross sections for the Zr(n,n ) Zr reaction (• Ref. 57, and • Ref. 58).

90 Zr(n,n'y) 02:

0.20

015

-~ 0.10

S 0.30

O £0.25 V) in O 0.20 o 0.20

015

0.10

4 5 6 3 4 5 6 NEUTRON ENERGY(MeV)

Fig. 23. Calculated results for discrete gamma rays following inelastic neutron 59 scattering on 90zr are compared with the data of Glickstein et al.

32 + 90 transition between discrete levels lying below the 2 level in Zr at 3.309 MeV. Further detail concerning these transitions can be found in Ref. 59. This com- parison not only tests the population of states directly by inelastic scattering but also the population of levels through gamma-ray cascade processes. 2. (n,2n) Cross Sections. For this reaction a unique situation exists, be- 90 cause in addition to Zr(n,2n) results there are also experimental measurements QO QQ on the unstable ' Zr isotopes. Thus, neutron parameters that provide good 90 results for the Zr(n,2n) reaction can be tested to determine how well they re- produce the (n,2n) cross section on these unstable isotopes. The treatment of charged-particle competition and its influence on these cross sections can also be indirectly tested. Many experimental measurements ' ' of the Zr(n,2n) reaction exist, and six are shown with our calculated curve in Fig. 24. The calculations agree 33 quite well with the data, especially compared to the recent Bayhurst results (denoted by the V symbol). Also, a relative abundance of data ' ' ' for 89 TT — this reaction leading to the Zr isomeric state (E = 0.5M8 MeV, J = 1/2 ) exist. As seen in Fig. 25, the calculations agree well with the experimental data from threshold up to 18 MeV. 89 Comparatively speaking, the unstable Zr nucleus has a wealth of (n,2n) 72 data in that measurements have been made for 3 neutron energies between 14-15 MeV, giving valuable information concerning the shape of the (n,2n) excitation curve. Our calculation agrees extremely well with these data, as seen in Fig. 26. 89 Comparing Figs. 25 and 26, the Zr(n,2n) cross section at 14 MeV is seen to 90 89 be about 33% higher than that for Zr. This results partially because the Zr (n,2n) threshold is about 2.5 MeV lower. For energies around 18-20 MeV, increased 89 90 charged-particle emission reduces the Zr(n,2n) cross section relative to Zr. It should also be noted that according to our calculations, approximately 89 90% of the Zr(n,2n) cross section for incident 14-15 MeV neutrons results from 88 population of discrete final levels in the residual Zr nucleus. This situation again indicates the necessity for accurate level scheme information and, because level-density effects are reduced, provides stringent tests on the neutron trans- mission coefficients used. 88 The calculated Zr(n,2n) cross section is compared in Fig. 27 to the one 38 available data point around 15 MeV. The curve lies around 15% higher than the experimental value, leading to an underprediction in the charged-particle emis- 88 sion cross section calculated for Zr. Considering, however, the difficulties

33 -| i r TT 1.4

1.2

1.0

LU 0.8 00 en 2rr 0.6- 90Zr(n,2n)89Zr o 0.4-

0.2

! . 1 i I I I I 1 l_ J 12 13 14 15 16 17 18 19 20 NEUTRON ENERGY (MeV)

Fig. 24. 9Q 8g Calculated and experimental data for the Zr(n,2n) Zr reaction Ref. 33, O Ref. 40, X Ref. 60, A Ref. 61, D Ref. 62, and • Ref. 63).

0.30

0.25 -

0.20 -

O Ui 0.15 • V) V) O CC O.IO -

O.O5 - Fig. 25. Experimental and calculated yields of the °"zr isomeric state resulting from the 90Zr(n,2n) reaction (A Ref. 34, o 12 14 16 18 20 Ref. 60,A Ref. 61, • Ref. 65,V Ref. 66, NEUTRON ENERGY (MeV) • Ref. 67, O Ref. 68, and # Ref. 71). 34 12 1 1 1 1 1 ^^_

89Zr(n ,2n)88Zr 1.0 — r 08 - / z o 06 - -

SECT I /

04 - CROS S / 02 / -

/ 1 1 10 12 14 16 18 20 NEUTRON ENERGY(MeV)

Fig. 26. Calculated and experimental (Ref. 72) values for the89 Zr(n,2n)88Zr reaction.

1 1 1 1 88 87 Zr(n,2n) Zr ^ ^

0.6 — JQ L / z o / 0.4 - SECT I en /

CRO J 0.2 - /

•/, , 1 12 14 16 18 20 NEUTRON ENERGY(MeV)

Fig. 27. The present calculations are compared to the data of Ref. 38 for the 88 reaction. 35 Involved In both the experiment and calculation, this agreement is still reason- able. 3. (n,p) and Proton-Production Cross Sections. While no total proton- 90 89 production data exist for Zr as was the case for Y, there are data concern- 90 ing the Zr(n,p) reaction and one experimental measurement of the cross section 88 resulting from Zr(n,np + n,pn + n,d) reactions. 90 In Fig. 28 we compare our calculation to the Zr(n,p) experimental results. 40 Our curve lies lower than the excitation function data of Prestwood (1961, 73 closed triangles) and the 1966 data of Carroll. However, at 14-15 MeV, the 74 75 64 more recent measurements of Tikku, Levkovsky, and Qaim (open triangle, closed circle, and open circle, respectively) agree better with our calculated value of approximately 31 millibarns. Also, as shown in Fig. 29, our calcula- tions agree well with the measured values * ' ' for the Zr(n,p) reaction leading to the (E = 0.682 MeV, j" = 7+) isomeric state in 9°Y. QQ X JJQ oy For the Zr nucleus, there exist data for the production of Y through QQ the Zr(n,np + n,pn + n,d) reactions. Information is also available for the production of the isomeric state in Y (E = 0.381 MeV, j" = 9/2+). Our calcu- X lations are compared to these data in Fig. 30. As noted in Sec. III. C. 2, our o o calculation overpredicts the Zr(n,2n) cross section; this in turn leads to the slight underprediction shown in the figure. D. Cross Section Trends for Zirconium Isotopes In this section, as we did in Sec. III. B for yttrium, we compare calculated or evaluated cross sections for the zirconium isotopes studied here. By doing so, one Can obtain an overall view of cross-section magnitudes and their behavior as a function of isotope and incident-neutron energy. 88—90 Figure 31 illustrates the behavior of capture cross sections for the Zr 90 isotopes. For Zr, below 0.1 MeV we have included the average cross-section re- sults of Boldeman since resonance effects are important here. These were joined to Hauser-Feshbach calculations for energies greater than 0.1 MeV. To our 90 knowledge no experimental data exist for the Zr(n,Y) reaction above several hundred kilovolts, and therefore one has to rely on calculational results. For all three isotopes, the effect of the El gianfc-dipole resonance is evident in the 88 89 region between 10-20 MeV. With Zr and Zr, a large compound nucleus contribu- tion results in a distortion of the resonance shape. As was the case for the yttrium calculations, all 2irconium capture cross sections were calculated with 36 - ' ' •• T - 1 r- i i i -• i 1 1 T i i

-

• ^

90Zr(n ,P)9°Y g 0.01 cj / i, l i LU CO / co to o - ca i-Q- i

o 1

/

1 i 1 j i i—i 0001 7 20 6 10 12 14 16 18 NEUTRON ENERGY (MeV)

Fig. 28. Calculated and experimental 902r(n)p) cross-section values (A Ref. 40, O Ref. 64, D Ref. 73, A Ref. 74, and • Ref. 75).

ooi -

z o

en oCO

0001 10 12 14 16 18 20 NEUTRON ENERGY (MeV)

Fig. 29. 90., Calculated and experimental yields for the '"Y isomeric state resulting from the ^^Zr(n,p) re- action (A Ref. 68, • Ref. 69, D Ref. 71, and O Ref. 75).

37 0.6 1 I I T 88Zr(n,np + npn) 87Y 0.5

METASTABLE 0.4

O 0.3 LJ to CO

O n, a: 0.2

0.1

1 1 10 12 14 16 18 20 NEUTRON ENERGY ( MeV ) Fig. 30. The calculated yields for 8'Y and 87mY from the 88Zr(n,np + n,pn + n,d) reactions are compared to the data of Ref. 38.

0.001 0.01 0.1 1.0 10.0 NEUTRON ENERGY (MeV)

Fig. 31 88_9Q . Trends in calculated capture cross sections for Zr. The 90zr(n)y) cross section below 100 keV is based on the average capture data of Boldeman.-'-'' 38 90-92 89 the El strength function determined from a fit to Zr(n,y) data. The Zr(n,y) reaction has the highest cross section because its neutron-binding energy of 11.98 MeV is the greatest of the three isotopes, providing the largest integration range for calculation of this cross section. 88—90 89 In Fig. 32H Zr(n,2n) cross-section trends are displayed. The Zr and 90 Zr(n,2n) reactions have thresholds that differ by approximately 2 MeV, but at higher energies the difference in cross sections is less than 10%. On the other 88 hand, for Zr this cross section is quite different, being smaller by almost a factor of two. Here the (n,p) and (n,pn) cross sections are calculated to be quite large, which in turn lowers the fraction of the total reaction cross sec- tion available for the (n,2n) reaction. Competition from the (n,np) reaction also plays a role in lowering this cross section in comparison to those values com- . . 89, . 90, puted for Zr and Zr. 88—90 Cross-section characteristics for Zr(n,p) reactions are shown in Fig. 88 89 33. The unstable ' Zr isotopes have positive Q values for this reaction. The 89 fact that the Zr(n,p) reaction has the largest positive value (3.6 MeV) leads QQ to a substantial contribution at low energies. The Zr(n,p) Q value is less (1.46 MeV), leading to reduced cross sections for energies less than a few hun- dred keV. However, this situation changes above 1 MeV, where substantial cross- section values are predicted. 88—90 The Zr(n,np) + (n,pn) reactions are shown in Fig. 34. The shape of the 90 89 curve shown for Zr is somewhat different than that in Fig. 20 for Y since no 90 bump occurs. This results because in the Zr compound system, the proton neutron 89 binding-energy difference is less than for Y. Also, the proton binding energy 90 in Zr is about 1.3 MeV higher. In this case note that the thresholds for the (n np) + (n,pn) reactions are about the same (7-8 MeV) for all three isotopes. 88 89 Q0 However, the calculated curves for ' Zr lie above that for Zr largely as a result of 30-40% contributions from the (n,pn) reaction.

IV. SUMMARY We have described an extensive series of calculations of neutron-induced reactions on yttrium and zirconium isotopes performed using consistent sets of input parameters and calculational techniques. Calculations made in this mass region around the closed neutron shell lead to the ability to test model parame- ters in somewhat unusual circumstances not always occuring in other regions. These parameters were determined with a variety of techniques from the use of

39 I 2

88-9OZr(n,2n) 10

0.8

88

CO CO O g0.4

02-

I L 8 10 12 14 16 18 20 0 001 O.OI 01 1.0 100 NEUTRON ENERGY(MeV) NEUTRON ENERGY (MeV)

Fig. 32. Fig. 33. The calculated (n.2n) cross sections Calculated °°~"^Zr(n,p) cross sections are compared for °^^° in the energy range from 0.001 to 20 MeV.

o UJ m tn tn O cc o 0 01 -

0.001 10 12 14 16 18 NEUTRON ENERGY (MeV)

Fig. 34. The sum of (n,np + n,pn) cross sections as calculated for the 8o-90zr isotopes.

40 independent neutron data such as total cross-section results to the use of infor- mation from charged-particle reactions. The calculated results were tested rigor- go QQ ously against a,large portion of the available experimental data for Y and Zr isotopes. This comparison was extended to data for unstable isotopes of these nuclei with satisfactory results. The degree of effort involved in these param- eter determinations as well as the fact that most calculated results agree well with experimental data, leads to increased confidence in the ability of these calculations to provide reasonable cross-section results in nearby mass and ener- gy regions lacking in experimental data.

APPENDIX A

DISCRETE LEVELS USED IN THE PRESENT CALCULATIONS

Nucleus Level Energy (MeV) Spin Parity

0. 1.0 0. 000000 5.0

2.5 * • 005000 1.5 4.5 • 390000 1.5 7.5

0. 000000 2.0 3.3 6.3 f

2.5 1.5

,8700130 sis • •i t 37U86 2.0 • 2.0 ,555900 6.0 ,557000 ,780000 s[ a .87J000 5,0 .979000 m 37^*7 • ,386000 is ,873000 1.5 m 41 Nucleus Level Energy (MeV) Spin Parity

3.3 • 1.0 - 1.0 • * 7 »•*<•••>

2.5 •

.7930ii0 2.13

n.4 4 0 .0 4 3 .3 •

«,.5 4 3,.5 4 .5 at 1,.5 » 2,.5 4 1,,5 4 .937000 2..5 - 1.155^^0 1..5 1.22MP0P 3.,5 4 «.,5 • 1.,5 •• 1. 2. 5 4 1. 2. 5 4 1. 2. 5 4

3,000000 n. H • 1.076650 2. 0 + 2. 0 4 0 • 2,229700 a •• 3'. m 6, 0 4 5, 0 * 2. 4 6. 0 + 2.87R000 a. 0 4 8. 0 4 3. 0 . 4. 0 m 3. 3. 0 m

42 Nucleus Level Energy (MeV) Spin Parity 3B087 ^.flPl^fllAF 4.5 • . 5 - 1.5 - 2.5 • 2.5 + 2.5 • S.5 • 2. 2.1 2.237P'iv»i

.•1. A • 2. a • ?.7

2.5 • .5 •

I.93jPi«t» 3[5 t 1.5 • «.5 • 5.5 - .5 - 1.5 + 1.5 - 5.5 • 3.5 •

2.

2..) + 2./1 f 2.H • 3.3 + 2.571P0P 1((f, t 4 . »ii •

1. 3. {"39^0(1 1

43 Nucleus Level Energy (MeV) Spin Parity a,000000 2.5 ,093600 1.5 ,U39000 1.5 * 1,042000 2.5 1,231000 .5

fl.000000 0.0 .815F0P 2.0 1.385000 2.0 1,778000 2.0 2.0*8000 2.3 2,l«1030 4.0 • 2.5?7000 5.0 2.0 P.7P30-3P J. a ?,821000 1.0

0,000000 .5 • ,y2tf0d0 a.5 .2680^0 2.5 • , m 703c 1.5 ,«3b030 1.5 ,639000 1.5 • ,805000 1.5 • ,883000 2.5 • ,936030 .5 m ,96?00F 1.5 m 1.212P00 1.5 m 1,278030 2.5 • 1.37^000 .5 •f 3^86 0.H000U0 4.0 » ,208000 5.0 • .218230 8.0 ,243000 2.0 • ,271030 1.0

0,^00000 .5 * ,381000 0.5 ,792030 2.5 * ,98fe030 1.5 • 1,15^000 2.5 1,180000 1.5 • 1,605000 «'.5 1,848030 1.5 • 2.tf000fl0 3.5 2.^85000 1.5 • 2,150000 2.5 2.2&303F a.5 2,278030 2.5 • ?, 407000 2'. 5 ?.510030 4,5 2,730030 2 5 • Nucleus Level Energy (MeV) Spin Parity

a..? - b. A «•

8. a • .7^7000 2./ - .71S 7.J •

.«13 nfci PI

S.» - 2.^ • 3.

a.yi - 1 . 390B9 .5 -

2, 2.5 • 3.5 t 5.5 • 'J.5 • 2.87J00F 3.5 • 1.5 - 1.5 - 3. 3.1 SBPirfPi .5 • 3.5 • 3. S.b * 5. 3.5 • 3.51 1.5 - .5 - 'J.5 • 2.5 • 3. «.5 + 2.5 • 2.5 - 1.5 - .5 • Nucleus Level Energy (MeV) Spin Parity

2.a 3,0 • 7.0 .77/000 2. * 3.4 l.l 5.0 1. 4.0 1 .215000 0.3 * 1. 6.3 • 1 r.i.a • 1 .41 7000 3'.0 1.S7VHPI00 1.6M0.10 1.0 1.76000P1 J.0 l.fli3PW 3. a .b .5 1.5 2 '.5 1. 3 .5 • to 2 .5 • 1. 1.5 m 1. 3 .5 m 1. 3 .5 + 1. 2 .5 ?. 2 .5 2. 1 .5 • 2. 2:.5 •

0.1 ?;.0 • .280000 3,.0 1* 4,.0 m 1 <. *> m 2,.4 m 1,,3 m 1 3.,* m 1 0.,0 • 1 1.,0 I.U80000 2.,0 1.711000 3.,21 + A. •,5 1. S • 4. 5 2. 5 * 1.130000 2. 5 m 1.29^000 2. 5 m 1.540000 1, 5 m 1,700000 2. 5 • 1.87fc)000 2. 5 • 2,000000 1. 5 m 2,070000 5. b m 46 Nucleus Level Energy (MeV) Spin Parity 40087 «.b + 3.b .5 i.b 5.b 3.b I „ n n 7 s 2.b 1 a.5 + 40088

2.21 •

?,2?bP 8./

.5 - l.b • ?.5 - «.b +

t.5 - 2.5 • l.b - 1,9«3M00 h.S + ?,0«7l*0(?J I.S • 2,lwtf!?^P) 2.5 - b.b • b.b -

47 Nucleus Level Energy (MeV) Spin Parity

& . A *• ft # A • a. A •*• 2.31

Um'A • 3. 4 n 9 CM f ?./i + 3 , 4 '•« & P 3 0 b./ +

1.1

I . c? R .3 f /. M

UtA •

i .i?W5«3t1 .5 +

p.rtflHiJfl 1.5 •

APPENDIX B DETERMINATION OF LOW ENERGY CROSS SECTIONS FOR REACTIONS WITH POSITIVE Q VALUES

In cases involving positive Q-value reactions, we have provided cross sec- tions down to the lower energy limit used in ENDF/B of 10 eV. For the stable 89 90 Y and Zr nuclei resonance parameter and thermal cross-section, information exist that allowed us to determine cross sections in energy regions where Hauser- Feshbach techniques are no longer applicable. For the other nuclei, estimates had to be made of the energy at which resonance effects should become important. Since we used gamma-ray strength functions (Sec. II. C) to normalize our gamma-ray trasnmission coefficients, it was possible to obtain a calculated value of the ratio 2ir/. When assumptions concerning the value of the average gamma-ray width were made, then the average s-wave resonance spacing 48 could be deduced. This in turn provided an estimate of the position of the first resonance occurring in a particular compound system. For yttrium and zirconium isotopes we chose values for of 0.1 and 0.15 eV, respectively. Substituting this in the calculated 27r/ ratio resulted in the values shown in Table B-I. We then used these values to place the 89 location of the first resonance and assumed a shape similar to that of the Y(n,Y) 45 reaction at low energies. (We did not assume the interference dip appearing before the resonance peak in this data.) For the unstable isotopes this resonance peak cross section was joined smoothly to the Hauser-Feshbach results at energies 90 91 around 1 keV. In some cases ( ' Y), experimental thermal cross-section values were available that were then extrapolated using a 1/v dependence and then joined to the lower energy side of the resonance shape. In the other cases a similar procedure was followed, but estimates for thermal cross sections were made on the basis of systematics in this mass region.

TABLE B-I

RESONANCE SPACINGS DEDUCED FROM CALCULATED 2TT/ RATIOS

Target Nucleus (eV) (Deduced) 86 y 5.0 75.0 88 Y 30.0 90 y 353.0 91y 742.0 88 67.0 L 349.0 89Zr 27.0

49 o APPENDIX C ENDF/B REPRESENTATION OF THE YTTRIUM AND ZIRCONIUM CROSS SECTIONS CALCULATED OR EVALUATED IN THE PRESENT WORK

, USl l „ ? A " y39flh fl51 ?. ' * * 0 5^ 1 13Q«6 1 rj51 -1 LASL FVAL-f)Fc78 F.n.ARTH.iR ion. j ^, J 1'lSl 5 USl (,

l IN C T 1 last 7 I?!o!H!: -l!' L !?5!.?^ . ?^ '"JIT FROM A NEW FVALUATION OF 5986 U51 YTTRIUM S* -92 ISOTn*FS MADF USTMG GNASH A*ft CQMNlJC *98* US! I 1 CLtAR Mfl!5F Dntllzllllllir ^ '- CODES. THIS EVALUATION uSES HEW MQDLL 39flfe laSl U " ™' AND SHOUID *F»RESFNT AN TMPHOVFMFNT nvER THE EARLIFR *9«b USl H «FPORTS OF THTS WORK ApPtAR IN |.A-7301-PR(197fl) P.2 39Rfa i«51 li 2 1 fl97fl) P 6 AMD A rA.rhiTJ?! :* * * ' ^TATLFD DFSCRTPTION OF ThF 39^6 J/i5l U N U APPF P T AN ! SpTfr JrJr r a!! * * "»COMING LHS Al AMOS PEPOPT, A 398b ail 15

BRIEF DESCRIPTION. M0WEVER, WTLL «E GIVFM BFLOW. l9flh /?, J C PA| IM3E} VEMFE R PNTS ar^ I "f!"..?!II- ° . - ^TO TNCOPPORATFN AMD NEJTROD NI NOPTICA THE PRFS^NL PARAMETFRT CALCULATIONS AND S iQRf39*6e XaUS*\l )f1l7 D MlN TI N AND JSF F lA« nr? * ° ° PAMMA-PAY STRFNGtK FUNCTIONS IN THlS39ftfe 1

UTR0N I%?5?E!l?f/I!f I|5 CAPTURE PROCESS AND GAMMA.RAY COMPETITION ^86 U55 ?5 8 MA GAMMA 1451 51 1* C,H.JOHNSON tT AL. MLICL, 3986 PHVS. REV LETT. 39, 1^.14 1451 52 e *98fc 1451 ?. CH, LAG"ANGE, NATTOMAI SnVIFT 53 ON NEUTRON PHYSICS 59Rfe 1451 (1975) 54 1<|51 3, D.G. GARDMER AMD M. A. GARDNER, 55 (1977) 1451 4. C. KAIPAQH, Z, PHYS. 5b 3986 1451 57 1451 1 58 53 I'i51 59 I'i51 6,1 16 1 1 1451 61 1b 11 398^ 1451 H 62 14 51 6 5 13 3986 1451 6 a 1? 1451 65 16 1986 1451 66 2? 1451 67 2? 398b 145) IP17 6 8 1451 69 1 * 7:i B.5177F+PJ 71 2151 72 73 •C X> .O X OC CC: a cc

<~ S3 •^ r\j <\i K. G. C &. C C C (V

UJ a.. U.' ILJ a. IOGH)SC ^ E if IS C

(V fv e: s s 1^ r- X • ••• + •f + • UJ UJ uj UJ li.1 s. &. S. e •s E ^5 5; <±.j£ kT IT IT if r IS IT X CC

•£ N

(S S. «. ~t t Ik.' U- Ui LLJ UJ U. UJ U. U. U. L^ U. UJ S (\j (? ao ^ »» S ^ CC S f Si C KIT E X fV> X OC

l/l 3 ^, fV«VIS.

K • ••••••••••••••• + llJUJlUii-UJUjUJLlJUJliJUJu*iU.'lkJ UJ UJ LJ U UJ uj a. uJ U. S. Si !S Ci E C E easssscssss.s.'ssss.'s S S S 1 S S -S i S. KK.KG.S.E G S IT S IT E IT. tS 5 IT G in E IT. 5. IT

—• rw =r ir> f^ oo

w— X« •V E. (5 1 UJ U. U. Uv UJ U^ UJ UJ UJ UJ U,' U. UJ u-r U. UJ k^. U.' U Ul U ul U.' X U.< UJ U. SMISSS-S r^«S

(C O l«| K « K\ rfl — CT> tr (V J)«< *f> 4N lf*53f at >• *^^"^'"*4*~|C' -C PO fVJ — «D »»- II O- E. (V » f^ ^ (\l X I*- ••••••-•••••••••••• + *=: ^1 ru rt; -! IT S s. • f\J K. s. o «

52

C0X'C-C^C00000C£>C0C0C cccc.cc cc cc tree sc cc cc oc cc cc occccccccoKccccococcCAacocacacaccrccsce&acaccccocccccc MMMMM>O(MMMKM>l>(KMM>fr

6. t> E !. E, fV. & &. K IS. S E. K IV S5.SSE&GES (\i SSSSC tL U.' Ui li. LLJ UJ a. U. U-i U. Ul LL.. Ui UJ UJ UJ UJ O1 S; »• S! i«» «S 4S S S £ tf» K> f«- S» ># " C J! E f ^ J C E - K « ^ S f- C* C a <-• r\i =? _ r»- in -o « o- »-< =3 rv. x — (ViTi^iT a s 4 ccnj--»-'Eoc«*-'Cvim o- in in r»i rvj fvj — rt —> f oc ~* ts

S. 3i S SSSSSSS •••*• + + * + + + + UJ l&i UJ LL/ »iu UJ UJ u- u-r uj t. G t C e !S'S5E.CS.6> •S E "S S- Sl R S K » S S G. KRlTSifSlf'Kir K K ITl K IT> IT S IT f. IT If 5; ITSlT SIT s ru •*! in o ir a ir ts S «v r*\

S S S Si G

U.U.U.U.U.U.U. U.UJU.U.U.U.I1.U.U. UJ kl.' UJ UJ UJ siMsifsosss (S0tC.Ct£, E MS (V E IT r. KIT. GO-SffKkfU snisns

IS IT' IT' K * •> M

IT IT

s. src. s is- s s- s e s si s- • •••••••• •••••••••»••• •«••••••••• UJ IXJ U< UJ ti_ Uj U LJ ll; UJ kii IL UiUiUJUi Ui Si K. 6. C s 6 G t C t K S S G « & R Ji Si Si Si S.- £. fv G G. S S ii S E !, K K S S, S S & IT ^ IT g itrsirsir E

— ~« -« —« — IS *o miuru IS E C. C («r. c. K SCKK Ittlttl + + III! 1 P UJ U. UJ Uj UJ UJ U.< U. UJ UJ UJ IJU U_ U. UJ U U.UJUJUJUJUJUJU.UJ U.U. UJ UJ UJ UJ

S IB •< S 9 4>fflA «— VO S

IT or ecir is airirue sctr s ^< 5? ss •<;•

*•*• •++ + •¥ + + + •«••*•+ UiU-I u: U uj UJ HI u^ UJ uJ UJ UJ ui UJ UJ UJ l&J S & R S E: (S <£ IS "S. S. RSS.5.SKSSSK S S Si S S n K !^ S! fs s OC oc \r ts in cs m s K cs mss SIP rvi 3 in ^> ac ^ f> S in

53

»III i UJ U-. UJ U.' UI a. UL UJ UJ Jt U- 'JJ U. UJ UJ JJ UJ lL- liJUJ'aJUJUJUJU.'UJUJUJUJUJUJ

s. x ;» — fic'snif. c«->»-r^X!j"iESfi o&'Vco^itreco-sccr^to i 3S«T5*otKfr(

> • + + + + + .,..,..«..»..(..». + .»..» + + (•*-•*'•«•••••*••«'•»•*'••'•*•••'•*' uj UJ UJ U-i uJLuaJd.UJUJUJiijliJujUiUtiJ>L UJiXjUJLJoJUJi s 6.s.e.e:e-6-&c:e:c;G.Kc:(s KCS^KScr. G& KKK

• i i i tfi»iiti*»a»(* •••-»»»»•••••! Li. u~ a. U. a. U_ UJ U lu U- U. u. U- u. iu 14- U. U- U-U'U.UJu.U.iU.u.U^U.Lk.U^UJ 3S(tt SEEKIfStttECKi-G WSOflSKIS ^KKlSlfS o~ir^— f^ c- a- * c =? »- «c =J •- ^ i'1 r. «r ft)3ftjE.^E»3»i3(DHft

S; S. 13 S. E.SS£.-SBS®fL.SSES /'S C & SiS S S 55 Si & S S

C^. ^^ SA1 tZ ^_ 1^.ff" £ ^ fx. * ••» l^y 1^. * - ^v U^ ^& W-* *..V ^£ ^^. (^ ^^ ^^ ^^-' CV^. ^^ C^-- ^^ ^^ C^* i^_ j- ir IT £ csrssECGipr.if.sir5 mEEesEsssssss

• .••.•.< .•«.•.•.•. ». •.<•.«_••.••• . t. «. i. a. «. a. a. «. a. a. a. a. a.

cccc t c s.K.r. e;e>cr. tFCEBce. s t ECSCCIT. ise. s K E sss • ill • + iii»ttttiit«*t •*••*• +-»-4.-*.t»iiiti»t bi. U.' UJ U. U. U. U.. uu u-' UJ Ui UJ UJ U.; UJ Uu. Uw UJ UJ UJ UJ U.1 U- u. kw U. UJ UJ UJ UJ U« UJ UJ UJ tU

IT- *c >c t*- t^ orfv s-aec — «-fv.fVifufv,ru—«- — «c^o ec»- f^

I. . (^j ^. L*J L*j li; U.' U>« IXJ UJ ti. UJ Ui ilJ Ul kki hkl Ui 4Ju' LAJ UJ LlJ LkJ ULJ UJ Ui 55 s: Si c «•? x- •s.r.c.ssSR.rsKissr-fii.rsss x» ESKBI •5 s; CR ."« K oc a> -t S' (T !i S SfiSSSKSSKinKIPKinS E KS(SiE>

54 <-><-"< (Vi IV

S S K G G SS.K.S.&<5S-&e>&C>.CEC.£:se>E. S&!St.K55i • •••• ••••••it UJ UJ UJ UJ UJ UJUJlL^Uib.a.llia.UjllJtwUJU.iL.'d.Uj4L

~« cc O- » r\J

ev n, o; — -» i •1 •- 5 t a rvj c r~ >c

• • • • • !•••••••••••••••• •••••••• + •••••••• UJ ILI UJ UJ UJ Lu«i.'oJUJUJUJaltLiiJ S G2 E E. E: K. E IT «L IT K (^ rr. rs r r ts r, ir. ^

O Kl M f* l*> ^ IS S. S S> E «.

s H s a s S 'S S S S S- S- E e; c »*• s E c- r* s '. r. •; s s ru ^ •'' cr «i r^ AJ si

—• — K> — r--»-i\r*"5T

• •••••• I *•*••*••*••*••*• UJ UJ Vu UJ UJ .jj E S G&SS K S. S S S S IT Si IT JS, LT G. ITS. «J 3 1/>N IT K in "; in i"; IT. •« <\i in .<; ji K j> «:

M ru rv s s & c c s EsesecEErsEecE f F E t f t I ( I I •+ UJ U~ UJ kli U^ UJ lL.'U.U.illliJiijlk.Uj^.ltiLLL ^J u.

c K" e. r>- r P^I c, K r\« «; ^o ^ r- ^ »^ » r*> S. =• r x r. !«" H^ —. «•

As fVJ AJ «V ^" I oc -c — o- cc »>•

^ ^& Pi3 ^ ^ ^» ff5 • •+••••• • UJ UJ UJ dj UJ UJ UJ j UJ UJ UJ UJ UJ UtJ G3 ^ d ^ E. P3 0C- cs. tn &• i/i K tn s5 M i^l in -O CD O «> t S S S 5S S S S f.

ts -H,-0i»-

55 CC CC CC cfj CO CC ct CC CC «, CC 0C CC, CC ccccccC'CCccaccaccccccccaccccecaccccccKcc ff (^ &* o^ ^ o^ ^^ c^ o* o* ^h t^ ^^ ^^ ^^ cy* ^^ ^^ ^^ ^^ ^^ o* ^^ o-o> o o- & o> & & *O ^i *O ^^ **^ ^ ^ *^ ^ ^^ l^ ^* "O *O ^ ^^ 1^ ^\ 'fi ^7 ^* *** ^^

E- & I C 2* aJ Tf CO X ^jj LJ •—i rv UJ UJ UJ UJ UJ C aJ 2 •— ar •— »— c •— a IT • -: ' a i- rj co a c a LJO-LJ>-a4>— « 3 UJ 4 LJ _i LJ r> a i •-< X' 2 aj 4 ar or a. ar •— a.' G. K. 6. C • 2 2 > S. a C 1 z li Cid-Or 4Xtn IP S IT S IT L.T CC K I— X U.4 U.2 U, T»- 2c^ c •- r^ a 4 toaxty42t- 7 ti > o in "!.«_;•-»- iu-C IL C a. -c 2 4 C

2C~ U. —!U- L a < 2 ^-K4 ttl»-L,- «\) *\J •> »-iC!_j2T>-»— uujz n 4 -F rr LkJU.li.UJU. S. Xu-C UJ LI- 1 «ha > •« U: ~ smisa s »- a. oto or af_»(J> c aj -<• »UJ m< jar i- EKISM5 Or »—t tt < v Q 4 •—< 2 »— 2 >2: tnC1 tncr ~Q es ty -«244<<— 2 UJtUJ>-4 (J>x^- a. >- 5 c a o- »- u. < I(J < v: a u > CO I— •- QUiCo^Oft't<4i/;or>C5uJ4 irir ir _ICi 2 4CLJ«ru»-4OC ULIT J TUli UJ er u^ ~)2 4 a *-"^y /~O"4J.O4»- »-' V. *-> • J«4~_I4U;2_.2UJ_J' C1 T»- K SB K> K: S> CC a. _i uj«nto»- or jOr 2 < < «h So. »c;a5 • * • • • i^ < Qr~UJ2 OC2t-rOr»— LJ LJ or Cul 1245Q.C I-~'—5:I —• Ci «u._l E. S S K & UJ UJ iAU-CCA 4 &2u.»- <: (- C t- U. 4 S EiS,B 3 2 2 C UilJ m 2 *04Ca.O"Qr I— r\ ... • • - :~^ ;.: • c• u. O4 Or »-*%•—'f/LJ CCC4U. < C 2t UJ tt s msirs _» L5 H; ja i j; UJ22UJ »ac">D4 2 4 V. i- u.u. K. IB >HC if ; > u. i r •• u t. t. •. •. «. >• umorr n.4ui •— ~>o 02^^ i-^s:^ UJ u-U.tr u. u- 2 cr c 1- • a c c ir ty »— fld f\t f\l f\J ftj to co a x o •c^»ao>-o'ccr~4»-i^-tr40ujca e s s c es. s c —! r- ccaxrciQotct- »- ? u. t- cn*—Ort!_5^-tn^-4 oJ 4t\l242!-^ >— oJO UJ IL» UJ UJ UJ U.I ICC»- «-• S IT* S a S OlQnlI\eHj2UluJ7 1 Wi-Mflr ^ C UJ •^» K, O- K S. C oO llr^_i(ffNCw_iC>i-Du.i WU.U. - C LlC rs Ki r*> o* co -o U LJ) »- t—t (u K U 3) UJ « ^ a K •• ft> MDCNkuttSt-ttLJI- O5CU.'ICC~ CT ot>22''ft'vn fvf\rr>4 000 *»•— 2 —> * 9 9 in ir tn cc - rvi Zi 4v- I 00 •— X 2»WL.ttXCC O 4 -1 ICO •—< _» >-ru2a«—"Z"*— 22u •- ~» •— x r*l s s s (9 n s CC L» -I O LJft - m «s ir> CB in & s Qr>-4_j_j, LJ UJ 2 !3 cnxu-Uj CJ>-J^LJ t r t-<(runnouifluJ (/>co2o ^ ' ^>ar24oro:uiX4Q:>-.4n:0 nz»2 i IV! i-> wa u a < u & a o- •- >— 4 4 u. 4

56 ^|rrrrr » j a cc cc a a t£ a a. cc cccc accccc cc a. a GC< cc ct a; a. i i oc cc cc cc (I(MMM>MMM>H>

to •a X U, X Or LJ z z _; < to UJ o t- D. _J L3 I— —• *-• :o ^ UJ < x _. «a i .-• ^ tn t- »- U_ ii- <* U. > x • L5 »- a o r n «_> a- x o « /y •- »-I-D KUKZUJJ^Z LI or in -* »< w wft! (M'V l w u^iitf. •—c u. <_ju. • x u.: LJ x c Of-aJuj5"u.e> >-~ioeDZz o (JL >»-CC.«ZC«- •'-U.tflf-^ — u. o o z_jujto artoo.»-'»-zuL>to z •^ LJ ff" m a. u. K «; u<^ »-o_ » — z rvj IT -^ z u UJ H u a ui ui o ui ti r» < < ru UJ •. 2.c>— _.•-»- C »-« O' >- »- W. U- I- _l w • c u,1 if < c u) Ni-icn-c'-ir, u Or — er2cz_.2:z«r — zc_; <>-c > UJ UJ K. a.'flOCuj >-acr,^~dt«tK -a a. »^ > c » c to cito«i fr- *- 5. U_ tO •— •- »-U.'<~tt»-uu^~ < CC ~JLQrtO O->-tO »— LJ U< )- < Wl-<-"-U;tfirvu. itii< Z XCX •_)•-'_> <«-irrnj"*-»-iz»-£rO'Z _i>-Qu.>-z& T? w ~i u_ X =» Z jLj>-wr ujMru.J'nu-i'-t-n'O< i wuy-ica;>-U. Or»^ incaaJtfl*) z.?xz< o- z e 1/5 U,»- I < C^KUlU-ChC uJ* i- c 2 s L« u Muiia UJ • • COTU;; k7L.kiCUi C> »- K L1 • u. >->>-»auJXX LJ-lZKit-Ji.TLX I Z »- L» cr » u,tr ic«-or-«-Lj«5»- CXUJUJ»->-»- o »- z Ol3M/lM-JU(fl7l-Minin UJ X in ui< 3* LJ CJ »— UJ «- I C5 Z Z _i or C •< nxzto UJ sin a UJ ! t— aJ >C Ifl U< C Ul T LB CT £E ZUJ *->* o n in en»- UJ to o ry i-i UJ •-> •> -I IS -t UJ « U-. XIJ HB 2 _J» UJkL O u. • a. _I2T>---^XU. C3:O __ _ UJ x a: • a:x_j=? 2ui< u a- in ic MO o «Q Or • x »-< »!^. x i; iu_iuj>-n_nnuj"3 <_> • u> ut > LJ K^IJQ;U DDt— t_>UJ<»-'»-_l in t^ to z UJ t or rf«*u.-J«*<«i e- «LJ >- o- Zu-H-crsozuJl JI-KWBOZKZ • I • — T)OU.^"L."'tL)<<9)Wtt>H(-<|BH — Q. fU ^>

57 f\j f\l f\J f\J

cc ct a. caocacccccctactcLccccccaccf occcctecccccaractcccciccccccirtt'cca. oc cc

K ^ "3 ^j f\j *! f\j *^i S1 *S [i i S .'k ^^ ^"* •"• *^ ^^ ^** "S* ^ ^D ••* *•• ^** S1 S ?S S -X) S '"W ^»l *^

^J ^^ P^> ^^ Ff ^^ fh. fs>. ^^ 5^ ^^ P*h P^ ^^ F-» ^"' ^C^ ^^ t^y j^S>* ^fc. f^. ^^^ \S' ^S' C> i+-»--*-^-*--«--«-ta*ftii ••••*••«•••• tit : .i ^ • ^ %ir tx LkJ LLJ iiJ »li UJ U- *1- LL. \lJ LJ LkJ i*J LlJ LU VJJU ii>* l^i t*J

^. ^ i? ^ ••* •"• O* •"• C^ fO r'l ^' £ I** r** fO O* *^ CC ^* ^ S fO >C iT f** ^* f*" f*" if* P** ^^ ^\J Aj t**> CC IJP ^" iP it* & S ^^ CO f*~ (\i IT «C -' — ^> a — •" •-• S, E is—• SS?5 SSS SSSs • + + •••-•-+ > • ••- ^ ^ 1 (4- It I .j _ ij^ I l

IT t ITS LT K mP^4T> T. in "i IT - fvi 5j tr> f*^. cc s f^ to J5

ru s- is (\i M -< K K S •••••*- • • • UJ UJ UJ

X *-

n. • 5,r. Ci S S S E SJ IS •••••••••••• • •*• • u^ a- u_- UJ UJ UJ Uj ii_ UJ UJ UJ UJ G> S S S S& E S SIT K.IPK IT

— — — rs «s — r^ f\i ru -< c r. c- & s s. r is s. • t I •*- 4- 1 ' UJ U- U. UJ U. Uv UJ U- UJ UJ UJ U. UJ UJ UJ UJ UJ UJ 3 S »-» OD cvj in

oc sn. — CC t u =5 \t •si «;«; S K MS K f) S "5 «:' •: 5 is; ?<; • • » **•»•*•*•*•*•*•*••*••*•*•*••*• • ••••• • ••• + UJ UJ kl_> hU UJ Uu UJ UJ UJ UJ ixi ili Lt_ ui UJ UJ UJ UJ UJ UJ UJ UJ ui S6ESSSSSESSSSS S S (S K K S er' cc- or. cc. *S R K P: S UJ UJ UJ IS o- Si i/> (^i in (s

ES W 3 J1

58 —• f\i

cc cc

cctcvcceccccccccccciECccccccccccccccecccccccccccaxascocirirccccccaococccccxx

E E E s f\j E E E E S E E E E UJ UJ UJ UJ UJ UJ uv UJ u. LU Uj U. UJ UJ UJ U. U. U- U- U-' UJ UJ uj u. UJ <«J E* UK S ^1 S -C S >&~?^ E a. E CC fV 5; S E (\» rxj a cj ^*« f\i CC IT **- a s IT fV X IP — cs IK IT COE mm ^ f^> f^j ^\j ^* * —

IS s. Si S OS S 5: -^S, C2 S S ' s

UJ UJ UJ Uj UJ UJ UJ UJ UJ UJ LU LJJU cL UJ UJ LU Si E E E E 2. E Eit) !L IS C C- G S El S. 53 S EJ E *£ ^ ^ C> •!*• S S G- 5, E- S. f^ ir. IT IT IT S (S IT* *n \f K LT* r- F K ir CC n X '*- in K E jr. JD cc JJ- • a- m m

is s s. s c. is e. UJ uj UJ u_ u. UJ Us u_ u. s. s in ;J S r*. E rv E CC K, cc E E.O.EKIK K S S P5 K. X Kl tr — (\.> ec x tr. r>-

—" •** E — fV; IT r>. tr ec — •- ^» \r

^ 0 7 S K C. C s • UJ UJ li. li.1 u> LiJ 'a. dj Uj U^ UJ BE G K ESS c s. E. s s. e* s s. s. IT S S IT S. If Ci IT E — M -3 i/i K ai K; c K. E r-. «; r. r

i rvi OP •** —. X f\J «« X f\j e. e. K. E E E E E E E d EC F t r r f t t ! • • « K E UJ U. U! UJ UJ UJ UJ UJ UJ k^ UJ U> U« ^ <\j ® fV S K) ^ r** ^ ?*» ^ Ci S S SI -1 S f\j ^ 1 X E .C ^C S CC E CC 'X f^. SXE^EI^-rtXE 'X »*• EEE.WReceir'i or ~+ «-* X ^ ^VJ IS & ^ ^^ «H X X5» X 3 ? •• ^ !\l Xr>- ^"•fccc i^ec»-ecx X Of h" K / or ~o ^ — =3 ceir E ^ o* f^ if* ir ^ •^ iv ro t r^ r- t- K rvj r; ?i • •»• + + • + •••* + UJ UJ UJ n I I. I ii t .t 1 tt I U I I. f UJ UJ aj u_ UJ LU UJ LU UJ U.I -«J CO cr E tr> s IT K Ifl S 'i K S 1/1 r^ en pa

•—• •—i rvj fVI KT K — M 3

59 €>

©

<\jf\j<\jfVj*v»\.i<\if\jr\jfv

cc x i cccca. K'trccorcc a«c ccccaca: ccccaccccocffcccceccccceccccDtcocttcCccttpeccCtt: a- o & r> o- & & & & (>• o o- o- o- o- oo'O'O-cha'ffff'O'O'OffO'ffffO'ffff'acMhO'O'O'O'O

5 S 6. C £ C iT Ct.e.(SKClG(SC.S.eiS.CtStEC.S. IT CKSESKSKK !•••• + + +»••«»••!•••»»»• •-•••••••tl LU U.' LL; UJ UJ li- 'U- UJ U-. U. U.1 UJ U-. LU UJ lu O_> UJ UJ U- UW Ui UJ bJujliJUtUJUJUiUJUJ ISXCE^ c^sssriS.sr^cs.LTE'xjs^ "^f*>c ESBBSSSBS

tk-r^-r^i^r- ^(v^s. — r\j=Jirx>c..cx>c>cf»-^^»^^r^r^ K»-KCS— rvi a in -o -c J) *

• ••• • • • • + • + + ••• + ••• + •• + •••••• + + .». + .». + + .».•+ oi ^iJ LJ a. u. UJu^dUUJuJUJU.'^JuJUj«iJUJilJti>UJUJUj Ui UJ Ui «A> UJ UU LkJ UJ klj IA1

& ti S i S l/l^Cta&Sii.5S&^SESX&SS K.K'SiS>SiSCSilS.K • •*•••• ••••••••••••••••••^.* t-*--*'-*--*'-*'-*-'*--*' LJ Ul k« u, uu o;U.UJii.LJUia.U^LLi lu uJll>ibkiiLiliJUii^UJ klj ill «JU LJ iJL. UJ Ui UJ UJ

tttt * ••••••it* i" s w i ^" •^•(s.ts.iss'^s^'s.msfw'Siassiss ^-o ssssssss? «KKS. SON SKSJttU&lSffKfS^KSKa *O SS&&SKS&i

iV'-'«-— ceo* -MX'-^i.'VKw.-tfl^«,^rt.(\,(\jfv/^^ ccfv ni^ff »(sc m«K

LJ tU UJ UJ UJ kJU UiUJti.aJlL/uJUiiU UJ UJ UJ UJ UJ UJ UJ UJ *Jj UJ UJ Ui hfcl ui UJ Ui ibJ UJ tfci LU I^J

6tLT5iif>K. s. ssr. s,sss5ssssirciirsinsin s KSSSBSEISS

60 Sil S S.SS

ticiusiracircriraara i it < it c oo-o-o-o-a-o-o-o-o-o-o-a-a-o-o-a-o- D- a a a x a O- D- a 3- 3-

IS c. I > t U.UJUJUJUJUJUJUJUJ UJ UJ U- UJ u- UJ U_ uJ L a. u-i U.' a- U-- Cfc- Li- 3 K S S ^ 'S S, *•• OC rv. l? ir

-- — ^-O PL E — <\i ir s. iv x X X s s s. s s si .% ^ + •»•••• + •• •••• UJ LaJ ikS IA) LL) iu *>|J s ^. •;» 5. IT «r ir p. r. r r PB in IS — K> ^ IT "^ iT' • • • • 1*^ oD *^ '^ *^ i (V — — CS S cs —-« O- r- J~ E. «• c: S t 5 S f; !i £ s. c P; t > • il-U.Lk.U-U. U- U. Li. y U. U.' LU u.. U. u u. U- U- U. ssQsssss^sains .cs « ^ M s E S 6 t. S 61 S »V S F, S 3 r. « ISO- &CSS c. J-. c r; x ri is. K" ir

!*'.-:3f\.^»«-«V=J=J:3;J=fK%. r\.f\J— — »-• C e. ^- a r,. *V X X X (SSSSSSSSSK 5. G ^S S- •••••••••••• + + ••• * •• + ••»• + •••• + ••• I • + + n i ^jj %LJ tij uJ UJ LJ ill LLJ UJ KSSSKCCSKS G. C S. C> &SSSS3iS,SS S S i i S ^ li S S f^ (^ ^i ^i Ck- {& ^i ITv ^«t C* t^. Cl- G. tf Cn ifl ^. i/"% IS s s. a.' E. 1 LO ^3 LO ^. ^^ U^ ^^ «^ ^- LO ^» k/ * ^™< f\J ^ CO ^^ CC" ^^ ir •%. in r: . • • *. t. 00 M —i'-

s K • -^- t i UJ UJ u. u. K.F. Q K; X

o- co CO OC IT s IVI it 3 in

"-• ^- r^ cj

61 NJ t , 1 b. 7. 3107 8 3. 1 ». 31*17 9 9. 2,7^PilF-i»3 *.< 1. • a 7 a, 8 y ti ii F - a; 31 0 7 1? •-P3 1". 1 7.i 1. 31P7 11 1. l.1?7ir.i 1. J1 3 7 M • (i 7 1 1. •07 1.R7M9E- 1 S r. 1. •0 7 2.5 la •912 i. 1. 310 15 1.^y i. 31 ^ .t 17

59R7

1S9RB 1451 1. P, pi d 39-Y - 8R I'JSl 3 FVAL-DFC78 fc.n.ARTHjR US1 MST-DFC78 9FV?! a S9B8 1<|51 GFNFRAL DESCRIPTION s 1/J51 b

THE FOULOWI 1US1 SECTIONS RFSjlT FROM A FVALUATION fjF Klbl VTTWIJM 86 "92 TSOTHPFS MA()F US I MR HNASH Ann 3988 STATISTICAL 9 NUCLEAR MnDFL CODES. THIS FvALUATpN NEW lJ< D ri t L 3988 PARAMETERS la AND SHOULD RFPRESFNT AN IMPRn^EMFNT OVFR THE 3988 EVALJATION (b/17/77), H 3988 la51 12 REPORTS OF THIS WORK APPEAR IN L A-7 3i31-P R ( 1978) P.2 3988 1051 13 LA.7aB?.?R U978) P. 6, AND A D£TATLFD DFSCRTPTlON OF THE W M 3988 H51 lu ILL APPFAP IN AN l)PrO ING L^S ALAMOS RfcPORT. A 3988 BRIEF DESCR 3 1051 IS I TION, HOWEVER, WILL PE GJVFN BELO^g. 3988 1«51 1b PRINCIPAL I MffROVEMENTS TNCOPPORATFD lK' THF PRFSFNT CALCULATIONS RESULT FROM 3988 last 17 SETTER PROTON AND NlEjTRON OPTUAL PARAMFTFRS AND 3988 last 18 AND JRE OF GA^MA-RAY STRENGTH FUNCTIONS IN TH 19 PROTON OPTICAL PARAMETERS *F_t|E DETERMINED 3988 20 R-»87, Y-89 (P,N)DATA (PEF.l) AND APE SOMEWHAT 1451 21 ANOAPD PARAMETFp SFTS. NFUTRON PARAMFTERS WERE 3988 22 OF THE LAGPANGt PARAMETERS (REF.2) WHICH 5988 1 asi 23 in TO 20 Mfv. 3988 2a NEUTROM CAPTURE PROCESS AND GAMMA-RAY COMPETITI0N398 Ubl A 8 STUDY WAS MADE OF GAMMA-RAY STRENGTH FUNCTIONS FOR 3988 25 ?b -c

ffl « * «) * » 4) S S I ® CO 1C S t « CO I CO » t I- *

UJ LU (A

•< x u. ia

tr

3 »»«i-ujui> cr* ^waoorx tn a ? »cc < z o x z1*-!*! t-cocao zci-w •- ktoa w i ujxax o on U_JHUftOZWf-It» HH4 O C ZCD»-CO — c u. <_iu< at— UJCZ.it/jco^-ujz 3ox ••SUJ •— or «) a > c in 4 a. iii u. _I»-«J iij_i(/ir « CQ-31IU.—'*- ZZ < Z •« 43 C

• •-OCJCJ >»-cc«zc»— • tf3

ICIU iii i- UJ a iiJ UJ UJCD a. rv

•no. it. C »UJ_ -zjiin- < HU X

K < o IL , rr *s C J >- U-S. - , or. •- 2! Z Or Z luii/Z E • L.-IOIA OIIB<

ran tt *-< _1 Or —IU.K §•• U.- •« _' •>-

tn c *- v> UJ ••» C ^ ir. u. u) C t- c u.» ^- fi z« OT<>t- O2 SOU i-J UUC - II • U_ taiBuiwwtt. IT UJJZ Mit- UJ rr uo x z K j »•» =1 WUIIO t-^r^^o-**- c I a; w i- >• i- uj c- •- tij *^ •V*-»-_JU.IU.- _>c; z z_iar c< IIIOX z w iLj^tcr»!uj«/j>-iij«cc/>o-'2»- n o •< <_i i-\0ft!0»t-uiifl oar H UJ *->:>_j i? < Zuj»--'r> o • r:- r» • x<-*;_r» i- < < -l >s x c5'*u_jiij*-r>!_ie/>uj"-'' o IOIO IL) mu u •—• Q. Oj »-»

63 cc x cc X' cc cc ct. oc co x cc co trffi ac - as CD cc oc tc co oo BD ao * oa cXcc

CS S.

kA.. ki_a.*-UJu->LiJUJl4JLlLlLC UJ llJ UJ lij LkJ LLJ Ui K SO1 5 AS"

JJ •-• X 3i -« •-• CC- •-• fV> *\« IXJ

«-• B. *VI

•-

*/> e. ir- «r tr is in s M n I/I « a> a

S Si S S S S> IS » W I *••*••*••*• LL, kl. U- UJ U. LI. li- ti. la. U- U. U. U- li. Lu U-, UJ to. IJJ U. llj S ITS 9 OfVlCC QC as c

r. •••»••••••••••••»•••• •••• UJ UJ LU llJ

** s

«S.K. SKKKSKS LL, Lt. LkJ It, LU LkJ li. lij UJ LU LLi «1- Lu Ui U>kU 3 fl IT*

SS S + •*- * U.: UJ u; UJ tu 1 iu jj U.' It,' acoc CO Si S S S S IS G OTCC

K)

64 a: a ccxccx.cc rvj rvj r\j rv r\> r\. f\j rv> I\J "VJ rvj

COOCOOcCCOOOcooOCOcoaCCC'CCcCKX'CCcCcCcCCCaccCK'XcOXiXicGX ccccacacococccccccacocaccccccrccocaCGCKcrccccacrccccxcca

S M ri lf*t *J0 3 ^ X" ^. r\i % ^ K^ ^o <\i f\i K. s. • U.' U-i UJ U-1 a. U.' UJ LJ ^^ CS PO *^ y^ ^£ ff^ f". S S S —• •S ti •— "Z. >•*> ^i pf* CE ^7 (S ^W C£ ^** s E o- c" r^i is T: C P^ t IT •S f\) — o> •£, "S. «-i •^ 1* cc ^ o s tr r- ^, r^ CJ- *G l^ ^O Si ^£ ^D CS IT cc f~ x tr cs. c

s s s s • • • • UJ UJ UJ UJ UJ UL. UJ UJ UJ u_i u-i u. s s ts E. i. & r. E. r_ t. c IS •ss S •s (2 j ^ -^.- ^? s •s 7 IT IT K IT. IT IT IT - CC l+\ J\ •o OC O- "*• ir« •-< •** CJ X 1 fy GO * * -~

X ru oj oj 'Vji r\j ai - (S S K S S. (S K s E n ?^ G. t * 1 • 1 1 UJ U/ U- U- u. U-' UJ a. U- U- u. UJ U, U- U. U. ii- UJ U. s <\j s. co K s c s •s. rv S If* ^ S S ff- IT \f\ c* ?^ X- X C^ X ^J X X J* I IT !*? «-t «O a r- i» OC IT * 1--. t^ ts s IT e. i« •c. or. IT O- (S. r- a" — IT cr «V f. LT r^ a e- .- ^. E K. fS X ^5 r- r^ ^ r^ r-. f- r>- 5. •%. t- (3 s cs. » tc s n.' i; 's • • + 4. 4. •• + + •• • • • i, . lii LjJ UJ UJ UJ UJ kl_' UJ UJ UJ UJ UJ Uj U^ dkJ Uj UJ U-' '»' ki UJ U. Ill c. & E c s ts E ir =i if E ^ ir r. if S •"•"> 3 * r>- O1 Xi *- e\t z? in NIC f^ i , • <,. • •. • t. • «^< ~* cc o- — ^ ru

«-« - <5fc- cc ft ^ r>- *** *-* OC- f^ cs. ^ ck ^C X *^I

CO » — OC —I CC CS — fV

ry; X fa « r\s "S! "3 ••••••«>•••• UJ Ui UJ Ui aJ UJ ui UJ UJ 11 * UJ UJ LU ii_ UJ uJ CD 00 cs OL CC s IS

65 «C <£• cc oc f\t r\j i\< f\t

CO CO OC OC X- x «:• «• cc * «• « » to » j)

<\j £•' —" X O* —

— oc

r^ t" r^ ts. •» S. -S "5 •*••*••* •• ••••••••• ••••••• + ••••• uJ UJ ^' UJ UJ UJ LJ UJ UJ'tii U J iXi UJ UJ •s s. s, SBSSSSSSS8SS8 ir r LT f. jit »

r\j AJ AJ rvjrv;rvifvirM SIM- -^ — ^, ^, « _ _ „ ~ <~ r\j rvj E. e K. • i i U. U.' ii- UJUJU-'U. UJ ll-1 Uu IL II' lL U.' lu' ki LJ S^f\iS(\JS£S'l/lSfVlS9'Q t. — K «S fVi =J K> r- 3 »>• 3 (\i m 3 in j rt if ^ s IT OC K. a »-

• •••••••••••••• Ljj Lxi laj ilj LU LAJ ^» i» i nj I^J ^j t±J UJ UJ EX* •*/ »*J ui inj UJ UJ c c SStStSS K & E E S S S S E G S S S K r S. SS S.• s t. 5. Sf S.- n SI 5i. S Si IT E. ir. r r. ir s ir s ir i l>~ Cf s. K K r s B M m ^ « cr » a.

f\i rvi <\j t\i •-< -rK.ssc. er ffd » • » i • tittii 1 mL. iX. U. iiJ UJ I U.> U. a.: U. UJ UJ U. U. U.' U.' 3 ti ITS *x >>^ r*^ i£> ^^ *

_ _ _ f(j ecx I ccxx»i "? »^ •s; (<:. «> «i ?o is «;• rs ^ !"v- 'S • + • + •• + ••••••-• + ••••••• + ••• + ibUjlLllbtLitkilUUJU) UJ UJ uL.' UJ UJ itl UJ UJ UJ UJ UJ UJ UJ UJ U-' UJ UJ UJ UJ E K Si S or: SSS OC 1 or- i*v r^; ijf S' WSBS sssmsinsinsin IT1 t^ CC !«" _ — ~. ru

66 »j SJ

(OOOODeOCDCCOOcCCDtCcOoOoOcOtCcOccaccCaOCCcCcCcC XCC-X30CCGCX cc a * it, e «• X cc * 1 «: oo <£ « cc CICCI a xccoccc x

IT

1 UJ U.' iXs UJ U.' UJ Ui U.' UJ UJ UJ U) U: UJ n.' u- u. U- u. LjJ li_ UJ u. jj

tr r* >o <\i •- «— —

s — r. e. —rvis? ir^xx^x-cr^ E. S S S; 3 ^ S K 'i J S .1 ••&••••• it i ',4^ Lit •» . !« I - \

in " ^ J1 'v ir ^ x *s /> s -

JE- — a r- »v rv ^ fv =r er. «c f^ ir

S. S: Z. Z •••• •••• s; «r c c s r. s r: &. s. s. c: c c. S. If. f• S C» K. F. "i K S K S. Ci. Jl Ti ^ i^ ', 1(1 ^ / 1^ Jl T.

+ + -t-t-t-iitiii UJ U-' UJ lij u. li.'. UJ U- U-' u.:. ID U. U. LL. U. Ui U_ UJ U.' b.L.ll.lt'a.U.U.U-. aJ =»^ s"js^.."5ss'is. vr *- s,SKf,r. stsir

•* a * r. & KI i/i » »- — — ? s ir

K 'B ^Tl fSi K "i "". %. r. "? ^ (S. !^ 1 "•'•-• 'C

UltiJUJUilililJiLitilUJUjUJLLlU/iLLuiiJLijlLJ iiJ oi U-U-'UJ«LJUJUJUJUjlLkJUJUJuJkl-JUJ co s so sscscs-sss'ss.Kst^ ?; ai cc ^. «. ^ r: "5 ^ ^ 1^ .«; ^ r. -; r^ is r s s r; s & r» R. s !i K s i"j s x s

67 00 1 , 18 * 9 ^ 8 19 s 9 p R 1 . 3ii?: 22 3 > , 7 1 8 31.17 U3 rt.S9Rft 31/7 5. •,)2 <\ 1. 1. •«}6 2, 31 fil r*7 2" 3. £b 3f 3 U< 7 1,2i?2E-!*5 a, a. ^6 5. 310 7 1 1. 6. /* 3, 3107 H ?m 7, 9,3; 7. 86 1 . 4107 9 p5 8", 9. 51^7 5.1713F-0I3 1. I. 31*7 8,a^^i?iF«(7i3 T, 1. 31 1*7 1.1B56E-02 1, 1. 3107 13 1. 31*17 la 1. 3107 15 t • 1. 3137 16 1. 31 J7 17 31^7 18 3 ei I » 0 7 7i 13989 1aS J 1 0 t 1, 0 5! ^4989 I'i51 2 0 53 113989 ta51 3 39-Y - 89 LASL EVAL-DEC78 3989 la'al

3989 7 THE FOLLOWING CROSS SECTIONS RESJLT FROM A NEW EVALUATION OF H51 8 YTTRIUM 86 »92 ISOTOPES MAQE USING GNASH AND CO*Nl)C 5989 9 STATISTICAL NUCLEAR MODFL COOES. THIS EVALUATION USES NEW MODEL 3989 U51 U PARAMETERS AND SHOULD *FP«ESFNT AN IMPROVEMENT CVEl? THE 3989 H EVALJATION (6/1T/77). 3989 12 PRELIMINARY REPORTS OF THIS WORK APPEAR JN iA-7301-PR(197P) p g last 13 AND |.A-7«82-?R fl97«) P.6# AND A DETAILF3 DESCRIPTION OF ThF " la CALCJLAUONS WILL AP»FAR IN AN UPCOMING L°S Al AMOS REPORT A BRIEF DESCRIPTION, HOWEVER, WILL BE GTVFN BFLH*. 15 U51 16 PRINCIPAL IH3ROVEMF.NTS INCORPORATED IN THE PRESENT CALCULATIONS la5l 17 RESULT FROM BETTER PROTON ANp NEjTRON OPTICAL PARAMFTFRS AND 3989 M U51 18 THE DETERMINATION AND J<5E OF GA MA-RAY STRENGTH FUNCTIONS IN 1051 19 MASS REGION. NFW PROTQN OPTICAL PARAMETERS *FRF DfcTERMINED 3989 1051 2tf FROM LOW ENERGY SR-87, Y-89 (P,N}DATA (REF.l) AN^ARE S

ctaoLctaocctccactccacfccircc

P. CS.CiCS.t.C.CS.CCKtS£- !•• + -••••-•••••••»••§ uj Itj U.. UJ LkJ U^ UJ Ui ll^ tJJ 4AJ UJ UJ cr. ^) IS NE JioniS'

1 (f u O f\* f~» r^ r** iC — — is. c ^* •—* ^\j r\j »-* •*••••••• UJ i*J *A-' UJ iii UJ UJ uJ UJ UJ **J

in

U- C 2: (V c s. •xi • > (V . U. U_i U-' U. UJ U- UJ UJ u a '-- Si 3X«mtflhOlA 2 < o- 31 -* O rr — UJ u. t^

c. "» + *•+••+•+• + + c UJ u> UJ UJ Lu UJ UJ UJ UJ •< at S S.S.SS.SS.SS.SSSQ

X a |ij UJ UJ UJ ikJ UJ UJ il> UJ UJ iU UJ UJ IM 'V Si nr » IT I?.-

CC* !J> ^K* *^ ?j ^r IT L5 (S •*••*•» it i •.*t oJ uJ aJ iiJ UJ uJ UJ UJ uJ UJ UJ UJ bJ UJ x ^- o • a- a- cr

rvt »-* f\i

70 • o ' C • • O • 0 o- a 0 a o- 0 '?. : a cr cc OC cc or Of CC tt or or cc ff OC cc a ff or ec a cc cc cc x CC OC O cr o- o- 0 CT- (?•

1J» t^ ^**- >C 1^ - ts' s K. cs cs 6. er. — c: K: rv ! O : g • s. tr SMS0C' 25 p sa IT CC CC . CC • er a z. s rv r c 5; =3 -a xi of> ru ru fr • iT» 00 . cc• rv f\1 r~- ^ ^ j, ur, ^ rvii ^ rvj . f" rv IT : ^ •c s> c r^ e. —1 rvi oc —, - — rv. rv rv 1 — rv f - rvirc —

rs. & s s s •s Ci. s. (5 ^ S S.

UJ UJ UJ1 UJ u. ' 11-: aJ ss cs C"5 E r; f% C. G IS tr. f. "S E S 5. s s s s c^- <^ «; r. "o s s IT K IT IT in IT tr IT ts. If c ir • tr u" cs

"S ru «-• s> Si cs s. rv S. S. !>O ~_* "*^ CO *& if• c: "S s cs s

» • • ^> • .Pl l 1 UJ UJ U. u. it- UJ u. u. U- LL. U. Li. ii- U- U- ii. u.- u ao 's CO ft S *S ^» S> «—t Klfiff 9 a o- a IS. 5c K. r. c. ^i< *c n. s. in oo r>- U-k ru "B rv 3 rvj J^ ?S- TI T. #V) o- CS. oc H". •C ^3 ^ — =J c: is OJ 0

— — — rv. — — rv rv. rv — — rv rv. K.K rv i/> rv. •- —

Si S* £to e. s 5. s es 5. d -3 a c •S TL ?» Z.

U~ bJ U* UJ UJ u~ UJ •4J UJ u. UJ UJ a- «^J cs ir- (S t c E; t. s. s. &J -i *^ *> ^ s* ^ ^ ^, 5fc -- — CS.' tf* CS tn s. tf"' IT in IT. IT. m ir r. tr K. m E .iT ru fi in (E rv- r> rv in r- or ^ ?Vi ^

1 s ru ru f*- rv ru X '\> x r-- JI IT Cs E t er r. t «L e e. e. c K ts p. F f? P C IT t rr 1 UJ U. U. UJ UJ u UJ aj UJ U.I Ul U.I UJ UJ u_ U.I u. u.' U. UJ u. U- UJ u. a- 1II ru cc ru (S s. ru •O t* *^ ru r^ s ^ ^> S •** in rv.' cc c* rvi ff^ ^ —* rv c or C^ o- ru ru C3 cc in »o «^ CC tt xi r: ru * n CC — IV 1*1 CC — or •c — rv CC rv — »^ »- hO cc a OC: 6i (5. 1rr < ec — K « O" _ ^ CC •0 ^» rvi rv (V OC ac- C •-» f»* *-• if •^~ 1 • 1 1 9 0 eo r~ r- P^ r- r^ *- x ^* r^- r^ f <- 1**- s - p; ts ra (S —< IS l«i «; .4. 4. + • + • • • • • • • ••• + • 4> ^ 4. + • ••• -•• + • •+ , UJ tit 11.1 fcjt i UJ UJ UJ UJ uJ UJ jj Ul LU UJ Ui UJ UJ UJ UJ a^ UJ UJ jj kj a uj j. , i. o- co s ^s i r' 1Fw 1 s> — 1S !—i flt '"S "^' 0* "; r> s r> • si an &• ffE E5 'cs fQ '[^ on ><; "5 !><; p; or an 1K ' CC ^" K^ ^ ^, •^ ?% Si in s in rs in i s a 1r: 1^1 1W n1 1 ru 1n "v tn ! r> cr in —• m * •*O 1r- i o- >n rt ti 1r«- 1a- a- ru '"i m -c < {> % *ri ,/-, 3 x f>• ^_ cc * — —

71 rcoc K rv rv rv. fv rvi rv ?V rv »V ' s f. ^ s r. ^ •; s •.

CO CC- OT EC OC Ot 0C OLOtXOtECCCcrcC cca'XaCaccacCXCt ffO'O'a a- o- e- u trr>- ,* r\i ^\t — "\.- <\j 'y S.G.&&.&.&SS. G. C &. ?v C£ £ C= IS C- C*. L £». S f- P". C & t C G. 1 UJ LU UJ li.' U.' UJ U.' U-1 UJ U. kJLJ UJ UJ UJ U-' UJ uu laJ UJ OJ U_i (V1SCS -O K. - S w *i ^J QC" *^". fo fj^ r\iCT cs cc cc f\i ci kf rv rv C". t> IT r- ^ »— if x N ^ ^ ^ O* »f r'* rv *~* ^^ ^U — O- — IT ^ — Xf^rrr^r fV IViCK'r'a 3 s s s •s s ^ s s 5 S ••J T, fi S "i «! Si Si *5 Si " • ••4-». + * + • ••••• •••••• + • •• + + • til UJ. UJ 4Jk« Lki aiJ UJ UJ •» 11. if I K W* K e. in IS -» HI ;» x- r>- er IT S IT *", IT S ^irVf^^USaOCT- LTi "- tv P- !T> if- rv r\j ^ *«.«-« r^

T. rvj io»-ii\jf\j(\j s J: •i «. s t ^_ UJ li. UJ U- U: Ik! U. U. U. Li-' tl. UJ U. U^ i*- it- S "3 *S S. li. >D " S N S O1 T. 's s. c F. •- r, a: rv. cs -x K. x s, K. ?: l>- r^ !\j t\i .o r\t cc IS. "r. «-, *^ K. ^ =3 o r- E; rv — G 5J If N CC fr «~ «^ [ ~- rv. rv.

s K tr. x x x x •< SiK.«SK. S if. S If • K If "? \f\ rz ur fi. if> ^irtt^axf^ if. I>v

x>o uf< •» 00 rvf - -c >^ ~ if. X !f HI <\J KE6.ESSCS •ss.ts.ee. e. e:. c 1 Ui U. uu UJ UJ U. UJ U.I U. U. IUU-UJUJII; UJUJUJU:Li.iiJUJUJ u. s R ^3 JJ s in ^ s s &• s j s r\i s. r«» r.- M s "s;. 9 K sacee o«-sr. ssirt. ^ N» •< s in j) X> »^ -s; •s. «; •«; CO (5 cots «D »iTrt5. T- C a |(\rvi^3 9 s m if t ^r r" IT I"1") 1^ »fl 3 ^ rs •si ?; -s; «<: «i 4 1 4. 4 4. 4. + UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ J_' tjj O- UJ kl_ ijj LJ_. UJ lit UJ UJ UJ UJ UJ OJ ix: UJ UJ cr & s R K s s CO ar. "0 s PS >^ !«a ?i S E « s s R K s ssinsirsif.r. K. & S fj K G !>; O" fv f% X> <*& "5 If* •tea ws i/t ^1 CO • r\j ~* *•* f\i f\j

72 r\irv.rv,

15. £ G> G> S £ r» (S^SSSSCCISISKE

1 ( X ii ii. U a.' iiJ U L 1L> a> . 11 ^n i t,, i .| - tt : 1.1 . U-* UJ UJ lU UJ U- tiJ UJ UJ ilJ UJ ill UJ UJ UJ s. s s c t; s. •s. s. "& s. S. IS S J. SSSSSSSS'SSS -O S. -r- J" .T if- ~ -C C i** —

s. rv. s -? •=; s -i -i K ^ 5. rs •• + •••••••••••• + ••»••»••+•-»••••••••••-••••••»• di UJ l&J uJ Lii UJ uJUJhiJUJIiJiiiUJUJ KC& SISSISECSIi&EIS

r> "• i r. ir ins K is

C-trv^!S.CSC>CEF, E Et tC SS

t^tLU. u. li- U. a. u. J. L>- U- U- U. U_ U. tJ- li- LL •satis ^•ss'sr-'S"-s.r-'is"3.3Ss. ^ » r\i IP 3 SlflNft) 3 >! irtlflj) J1H3 —- — c x it p.i»-<\,(Vir^-fVK.mo-rvjec c.

•••••• • •••••••••••••••••• it 1 ^j ^^ ^j u., ixj (X. kiJ Lij ku idj Ixj Ll^ LU UJ fcftjik i fcljiA i

«. «. •. •. 1 <\l re. re. KctKiscKSK6.e5.cEet. se, kL 11 11.' Ill a. U. il. U k. U.' Li li U.I u.' LULU

kjj L»J UJ.' kjw LkJ ilJ CJ t*.1 LtJ IAJ Hi i*J UJ liJ liJ fclJ Lli tiJ Cli LLI IAJ L&J HJ *t*

73 R & £. £. E.&CES&SGG&S • •II Itlltttlltl LL/ li_' LLJ LJ UJ UJ UJ UJ LU •!• UJ UJ UJ tjL* UJ K S. "S S G e •? E c e. !r.- cs "E: a s •-> EffSS 3 ec cr — •-• a if- -*

•••••••• LfcJ LiJ llj *L *

IT K IT 5. if S IT SIT rlrt^ 5

U.U.L1.U.U. L- U-1 kl. U.LL U- ki. U. U_ S S 5 ^ S K f; t S * c. r. c& o- oc

sr. *••• tjj tk. LA-' »A. UJ iju M^ x.tj LL. - uJ LLJ I*- >iJ iiJ i*J Ixl t*J R C S

rs

cc. KISC: &. c c s ttiii ittitiiiitl a- UJ u. W li. U. UJ iL U-i u. ^' u.' UJ U_UJUJ11.;U_UJUJUJUJUJU. r> r. E •- E «O K• «:• ec — is. s K if if if if if » !<; is R tr oco- «c IT 3

•*• UJ UUI iij U U.I if U.1 UJ Li lii dJ lu IL' U.1 u.1 u.' liJ SjJ UlLJUJuJUjUJlll JuliJUJUJUJ a ISiS&S SS SSSSSSS C cr ec

74 K3 «-• f\t GO O" "; -^

IS •a

UJ ar »/; ^* UJ ^ UJUJ I*- t~ _» ^5^3"3'r\. J"~ o.Lj.'rT in" J O ^ O*U.lTJt ~ K 7 i-• C U. • C*— *-'• < h-cccac •_) UJ -^ocr ux oz mi-u. I_J»- OTi.! a. T 3. 3: •- COX ^-' Q _iU-»-a 41- u. t_ Ln'L'7Hi-i)- •-^r ~—: t/^ Q. C Qr CJ U. C-» ^- CK ^ *-^ ^ ~ —•ooor: »•-< I z i> < i *u. <— UJ —f-co *-

2C"r!U. JU U.O.4^: —»-•< a » •- «_•!_•«_: > i— o c • y * jr ^; cO CC LJ »13 to • "^ Qr — •" ^ ^ i-J ^3 I UJ to Or CO l or C ^< •-• r> ^ M ^i i 7 1" •» i« UJ UJ 2r d ^ ar fK 7 u UJ ^- UJ & I »- ii_ UJ K a K »• ir >-3E: co «.;• ir- ty ~CL or IB K S I/~ I C •« n- • CO Q ^ 3T C* Q^ Qr f— U. ^ • LJ ^ to Q (_J C Q £C H- ^T _i Q ^^ *-• Q > to BUCiiiOD' l4C2'lii a. X • 11. lu ^_'»-kC»- ?Or UJ rr r< ft >• "ir ^« ir < 3' a 4 ^- »- . < iv i 7 in ; LT 2»-rr^ci; 2T2rty r^ »*. •« 3Z-c»- u. <»-»-'Su^i/:«—f- co 2 «o < c a » i i—QUJUJC^J 3xa-• • I *-«tt>»—cc/:^> u, 5i»-ku cruu.rcuc u co a : Q4LLJ V-~5O (T3^V.^ *• UJ C lu' U. C U. U. 3 {PC »- « Q C Ctf. »- _: or _ «O Q 3" I

c _«- ecai^arQ'ecct- »-su.>- 5 rsCtt * Jl 1 CO C" ^ tZ. P * •— CT * 21 Of Or ^ t-i O LL. >" C/T' C ^" CO UJ ^- ( >- C II. COU.U, r^LTUjO •CQ-CU.Su.2UJ —l ar co n ftir*C\UjQr3EK[lii.'K C I C U. ^ tr *; CD «~ i •—• i«j »— ^»-,f_ _j «c c s: c •— -von 5v I^ Z kij < kl^ >X LJ —Z Si •-» —I ~1 U. a o < ui o; i »- I * UJ c >- if u o- 4. »->-ioa ir. A o- i- r u. em

75 A FEW MISCELLANEOUS RF^ARKS ABOUT THE PRESENT EVALUATION, la51 39 ALL CROSS SECTIONS LEADING To UNSTABLE RESIOUAL NUCLEI OK META» STABLE STATES WERE CALCULATED FO9 ALL RFACTIONS. (MFTASTARLF 399? STATES HERE NOT GENERALLY CALCULATED FOR (N,GAMMA) AND (N,ALPHA) REACTIONS), THE CONVENTION USED IS IF TH FINAL STATE FLAT, (LFS) US1 E 1«51 IS E3UAL TO ZERO THF.N THE CROSS SECTION GIVEN REPRESENTS THE 3990 last aa CROSS SECTION FOR THAT REACTION. CRO SECTIONS LEADING TO SS laSl Q5 STATE ABE OFVOTEO BY LFS FQUAL TO THE NUMBER OF 3990 <*b STATE, FINALLY THF fN,AL»HA) AND fN,ALPHA,N) CROSS SECTIONS ARE 3990 a7 1 '151 499tf REFERENCES last 3990 1/451 4990 p last 1. C.H.JOHNSON ET *L. NjCL. HYs. M* 7, 2U 1 9*8). AND luSt S2 PHYS, REV, LETT. 39,1M4(1977) I'aSt 2, CH, LAGRANGFf NATIONAL SOVTFT CONFERENCE DM PHYSICS 399i? last (1975) 1 '451 3. D.G, 5ARDMER AND M. A, GARDNE 9, «AP«52 17 last hi 9 1 .'4 S1 by. 11 1 aSt hS 17 last

I '4 51 399/ 1/JSI 69 1 ^ 7/ 7t 72

;39«»> 2lSt n 1. 7a

3 9Ok', 2 7S S 9 9 ? ,1 7b ^3903 s 77 U3399^ 3 1 + + + *+»• ttiiia • »•-••••#•••• *#•••••• a. UJ u; a- UJ uJ a.1 u.' u. u.- a.1 u.1 ^ UJ u_> u.1 UJ u* UJ u.; UJ u. UJ UJ UJ U/ UJ UJ UJ UI

+ + * + + + ++ + + + + + + ••••••••• • ••••*••• LUuJa. UJa.4L'U.'uJuJ»uiiiiiliuUJ LUiuUJaJaiUJiAiUiai UJ l*J UJ UJ UJ UJ UJ UJ CC1CRC tSSC^tiS £.G.!S.C1C&£.^&CS SSSKSSGS

f (** t c^ f ^ ^* ^" ^" ^^ c i/* r^- ^r^ ^* ^^ ^^ ^^ ^^ ^ i^*' ^^ tf** ^^ i?» i^ is 4^ c& (^ ^r *^ |T% ^ if1, *^ i^ *i ^, ^^i r'l 4^ ,^ of J^ lO ^>i ^t ^^ ^O 4^ -O CO C^ *^ Ck" *^ fO d *O ^^ ^^

CJ* •-«•-• ^-# «-t «-» «-^ «—« r^w co •-*

"i> ^ f\i ^ ^

p* i 1 et

S. f. *> S i S S T* S1 *- 5' S Si S C&^CE.SSS'SE' QGS)G>S5>SiCS) 4.>4.^«.4.4--f4-4-'*--«--^4- ••••••••• ••••••••

r\j -» f\j ^« if t~- an

EK R C CEKCGirG IS*? E K & K E- C C*

u-s UL^ UJ U. U-i U.' ai U- U. U.* UJ u.' U, UJ UJ U>' UJ UJ U~: U. U- U-» UJ U-' UJ UJ Ui UJ UJ UJ U.1 UJ UJ UJ {*zi '•3 ^y >*r f\t j^ ^^ IJTJ f^ ^ ^^ 3^ 1^ ^j ^^ J5? ^S ^^ Cv *"^ ^S' ^^ C9 ^^ C» U^* ^^ i*» ^J CD ^O ^B fO- ^^ F, IT* & CC *C l^1 f* C*. ^* K O1 K. •>£> ?& ^ C5« K f\l €\m kf^ ^m CV *G S« "5T f^- CO IS ^* C5> ^ ^£ ^) ^K*

^.' I/*' C^ ^ ^i 1** f <*C •''i ^* ^ ^; O" ^* & OC ^ ^ ^* ^^ •" ^ ^ *y *^ ^ ^" ^ '^ ^^ *^* ^* ^* ^^

'+ + + + + .*. + -fr + + -t»V + + + -•• •••••••••• • -«^-4.^-^.^^^. aJ ai UJ UJ Ui tii ^ IL» kii bJ UJ ill dJ UJ UJ UJ tUlkJUJuJuJUJUJUJ UJ UJ UJ UJ kli UJ UJ UJ I*J Ui UJ IS S (S ft S ^>: (S ^ SH rsi i^*1 ?*. K 5* ?S tS S S* 25 X- KJ S" Ci Si US & Cv ^& ^ft S fS (5 (5 Bft IS

77 — rv< •*> ./"< "i —« M 1/1 •<) CO (T *i —

& & Si & 5- G K. c a o o c c a O- O* O" ©* & O" C* S ^ Si (V — 6L C E E C 1 u- a. U! UJ UJ a. UJ Ul uuiujuwkuu J> S •O s. Si ts a SSNSSSOSl E CC r a PC E iT E Xi a IT S «~* X iff S X •s. c ct ~- a E E E rv \r un o CC — rv X ^ - =3 rv; - rv.

•S —• ^" E .-. r r-» E —< E t^ r»- f- rs •*; s: K. (Si • ^. ^> • • + •*• • • • -•• + UJ UJ UJ • • . U. 111 u* aJ UJ Ui UJ «lj UJ Ui Ui Ul Ui r. 5; E E c (r. Si css&ss.es IS ^, «j s. r^j x^ GSSSSSSS IT w IT 2^ IT ^. IT. E IT c: IT IT ru IT. CC X CC

1 Si E S? t E S E - Si sv s; 1 U. •!. U, U IL L. u. u. U.< u. u. UJ u. UJ UJ iliUJ UJ u. Si IM -S CC. T; r\j s r>- s K s. x es- E sic s s ?s rt a r-- *s X |r. IT IT* =f O- kT rv X c rv x rv. f rv. oc rvj rv (V — X rv r E rvj «T fVj — r. r- r E r^ r- « G iS K s S. S) S 51 • • • -»• • ••• UJ UJ UJ Ui UJ UJ UJ UJ UJ UJ UJ U. UJ UJ U.i UJ Ui UJ UJ Ui E E t E s. E OS S S> IT 4T IT. -c or

— — »^- rvj CD -o un in =r •rtiT. rvj s S 9 K ^ F rvj a a — cm in e « s « — er-x- 8 o- a- (VI S S K S R 8 N (S o- Kin s m N m •<

78 f

m in in in m in 1*1 K> Kl f> K» r*> •*» I

b ij* ^^ ^^ ^^ ^^ ^^ 3* ^y* *^^ ^^ f^ ^^ j^ r^ ^^ ^^ ^^ c^* ^^ ^y* ^^* ^^ 2^ ^^ ^^ c^ Q" ^^ ^r* ^j* j^^ •W rw ru s. E S c • ••itiftiiiitTiiii " i i i i • "• T i UJ UJ UJ l«J us UJ liJ It.' UJ UJ UJ Li«• iL. a.- U. UJ UJ il.f U-' UJ l*C U-- il-; U. iL.' U-' LL, U.' U.'- U- CD S s

K> in r~ p 1 s S3 fS S- S f5 (^ S I^I ^ ^ s ."> *^2 £* ^S "^ S^i £?u Si Si ^ ^! S 1 fv ?i *^*

• ra

i*-' tu IAJ IAJ il.1 U~' k/L. UJ U. Lrw U.- iL- 11. UJ U. U. «X' Liv. U. U- U-> LL U. ii. il.- U. U~ I*- LLU.II. 33 i^ S i^ S S ^ 3 *& S S (^ ^5 T^ 3 S 3 CC* 2iw I* ^ ••* 3 ^ Ti ^> ^ ^ *C H*1 'Xi

1 tf^ S & ^^ tf^ •^t 5J 5 ^^ *-^ ^^ E. ^^ l^ ^*" ^^ iJ^ &~ ^^ *^* ^^ ^™ L^ '"VJ ^*- ^^ ^" ^. C" ^T "^^

1 ^f ^^ U** ^^* ^J 5^ |^* ^H ^~ «^- ^ f^, a^ ^ ^_ >^ ^_ aj^B ay f^| f\, «^> «^H f ^ P*" a^— •!_ a^~ f'*"

^* ^i Ck tS* ^i ij^ G* CS» CTa" S G> tit ^! C3 S S- K' ^J>- ^Si Si J^ *»/ G" S-' ^S- C> "!i Ci^ ^* Sp ^ ^* S'

^» K> €•> t Sir C» ^^ C& S C* (^ ^^ t> ^S & C C C« K t* ^£ t» CZ F* S S 2- 2i &. C* C« C* S S !i K S SSSSSSSiSSSSLVl^rS-SEiSiT*;^ 'L.I* ^SrSli.*^LS.?>

rvi IT •-^ •*• IJ" (V S- 15 • •lilt ++ 4-llllllllllftltllll • + r a. U.- UJ U." ^ a.- •s in IT KT oI>f s. CC *Z a; >^?' •c •c o- ^* ^" ^* lO ^ 5j CD ^" ^.* •" 51* IXJ lf^ I\I «JJ^ ^* A/ IT1 0" *~ *^* ^J f\i w^ •*•*• CC OC f\j ^> 'S CT oC AJ

1 1 UJ Lu U_i LU UJ kxl UJ Hi U: li.1 UJ U.' UJ LJ til U) u. uJ UJ *L' Ui U.: kJ x dJ Lu a.- ^ UJ uJ aJ Kl CJ C2 K' IS K Si S S IS G' C5 S R *S S Si ^ C- *S. ?v ?5 ^J S K S S S' r* S' *S CEPCPSTC^X O* R *! P* G !i "Si ^, *i ^ (^ .^i "\ ^1 ^- *?• "i i^ "t O ^S^,1^!^

79 X O- :-3 —

J~i IT"

tr o o o- tr c c- o o- o- o- o- o- o r\i ru ru rvi rvi esses

UJ Ui UJ u. UJi UJ llJ U- UJ a. a- uJ U-, & s cs «VJ s £ vr CC S —S(ViSi(VESS(\ • ;» C CI

- »VJ - -s E. rv, — — IT — xar^tr »- ^ »- —, C 2 S. K. Si SSSSSSSS5SS5SS • •••••••••••••••••••••• + UJ UJ UJ UJ UJ. L|l 1^1 t»l L>l i^l ill kll iLi 111 .1.1 '.ii ^A.i UJ HI s s s & KESSE-SCSSSeK-CC" s •s s s S >• ^ ^ > IT- s G tr K E C: C U.' 3 C C. ro ir» -o CD o •-« •1 X C ~ u. rsj rtJtv S -S "£, IS «s. nr UJ u. UJ u. u. 5 X U d 9 s s a. C£ G cs IT SSS4SJSK &lf >-• 3M a: P9 < or IK1OD o tn •-• •- «VJ —• •- IS • u. LU u or C -12" «ff r~ r^ r^ •» »^ r. «/: t-. . E S C S IS oc a- ajifi ifi >- nr^lu? UJ UJ Ui tU UJ - e- •-• 3E _J ft «. •. •. t. •» • K u. U. uiflnrf u. u. c rvi<\jAif\tfvinj H D u. c ir-a.sc c _ I • t I I • • • ur>»- ar z; UJ UJ UJ klJ UJ UJ UJ UJ Ul iL 111 UJ ill UJ U. U> U.I «n c <« c OWkJI ins »s G,E KIWI or •- _i cn •-• ru r>^ r\j o- rvj *-> ~B <_> o |/> ^^ G> G G _l Or • • •!/> n C"> O 2 ^ •->«\l«V»-i«— CCKI O- •- E -a f\j 2*1 < —I tY • ••••• • • C- * _I •-• UJ UJ Ul UJ Ul UJ UJ UA UJ UJ Ui UJ Ul UJ W ui uj Ul uJ UJ UJ UJ aJ i. i «•* _l Z *- •—' EBfiBSS S B K S S S. S 5 S S 5 S S C IS K — • s C = Cfl ii_ SSBISSfS) O- ESSKNKSSSSSSRKS U- ^ •-< T" ^ i*"r or f- « UJ»— <* (y O- I •

r^ K Ki ro _J

8Q fcVALjAUON (b/17/77>, q, HS1 1? PRELIMINARY •iF.POHTS r)F THIS wH«K A3PE1AR JN I A-73p1-PRf197P) P , <> 5991 p,^ 1J AND LA-7ae?-»i? fl97P) *.b, AND A DETAILED DFSCRJPHON f)F THE iqP) 11 I/45I 1*> PRINCIPAL IMaR0VE.Mfc.NT8 TNCOPPORATFO IN THE PRESENT C ALCULAT TOMS *99j p^t i7 !?fSJLT FROM BETTER PROTnN AMp NFjT!?n\ OPftCAL PA3AMPTERS A\H 4Q91 {{,51 tR THF DETERMINATION AMD J«?E OF GAMMA-PAY STRENGTH FUNCTIONS IN THTS49«M Pibl 19 MASS SEGION, NFW PRDTON OPTICAL, OftRAMtTfRs wf^p nETt"MTNf;D 49^1 laSi ?3 M r F«D LO^J ENERGY S"-R7» Y-*9 (P#N)r>ATA (»E .1) AMD APE SnufwHAT 59^1 1/45! ?j DIFFERENT F*0M STANDARD sAWAMETFt? SETS. MFUT^PN P&RAMETF^S WFRL 399^ j/j^t 2g 1 BASE ) 0* A MODIFICATION OF THE LAf3«ANGE sAWAMETF«S f«?FF,2) WHICH »99J \,i^^ £ t, ARE APPLICABLE FROM 1 GAMMA»RAY COMP^TITIONi^oJ 1/45l ps A SYSTEMATIC STUDY WAS MADt OF GAMMA-»AY STRENGTH FUNCTIONS f 0% 499l j /j 51 ?(, As85*l^?» AS SUGGESTS IN PEP.^. THESE GAM^A-RAY STRENGTH .sgOj j ^51 ?7 FUNCTIONS C*^ »E DETERMINED FBOM CAPTURE DATA ON STABLE MJCLfc I >99l U51 ?8 AN^ THEN BE JSED TO GTVF PEALlS^IC CAPTURE C«OSS SETTTONS ON *99j 1,451 ?9 JNSTABLE NUCLEI. AS WEIL AS To PROVIDE AM ACCJOATE DESCRIPTION 5991 j ^51 3 JJ OF GAMMA EMISSION WHERE IT 1$ AN IMPORTANT COMPETING REACTION, 599) loSl i\ FINALLY A NE« PREECJilR IR9 TUM MOD^L BASfeP ON THE KALRACH RESULTS SWl ta51 ^2 («EF.4) ^As JSEH TO DESCRIBE MONSTAT 1ST TCAL EFFECTS IN THE PANGF i99i lat,l 53 1M-2? MEv, (OTHER PARAMFTERS RELATING TO LEVEL DENSITIES AND THf- A99i ia5l In FORM OF TH£ GAMMA-RAY EMISSION MoDEL WERE SIMILAR TO THOSE "SED >99l j/j^i 35 IN THE 6/17/77 EVALUATION) THE MET RESULTS OF THESE IMPROVEMENTS 599J I45I 3b WE^E A CONSISTENT PARAMETER SETS WHICH REPRODUCED NEUTRON AND 5991 }«5J 37 CHARGED "ARTICLE DATA FOR Y ANO ZP ISOTOPES. 399i laii 38 A FlM MISCELLANEOUS PEMARKS ABOUT THE P^ENT gVAlUATlON, 3991 lfl51 39 ALL CROSS SECTIONS LEA3TNG TO UNSTABLE PESIDJAL NUCLEI OR META» 499I \I^\ UJI STABLE STATES "ERE CALCULATED F09. ALL REACTIONS, (METASTARLE i91 I/15I aa 2 ttnCR08S SECTIflN Fn* THAT REACTION, CROSS SECTIONS LEADING TO 491 l«5l a7 INCUJOED TOGETHER, 5q 4': 4. C C •£

IT .r ./" if /• /• Ji r*\ «^ *f\ «^i rrf^ p/> •*! tf\ tf\ **\ t^\

o e- e o-

*3 C C— C> (S Ci* &> C» C* C& CS ^* C& »••••*>+•<«•••*•••• LAJ 1J- 4Lt kAi LAJ l^iJ IXJ 4/JJJ IAJ UJ ilJ y,i ^ Qj fD ^1 K.' ff1 C» ^ S 'W C3f

Or •••••••

O- KStE.SK

K1 u.' O l_> O « »v •-•-•-»-• (V M IT *. T- a «v • U-.U-UJU.UJll. Lk U. U. UI II. u-} 'XJ ^^ u «/) r- Gfff» 3 — 4 C N E. KI z a r>- c < & CJ a~ — i- n — r, s <«; K. > C » ••••••••• UJ UJ hjLi UJ U^ 41^ Uj U^ UJ

*i C tn « •- XT «** 1/^ f\i ^r CS S IS 5D (£ *^ «** v4 «^ «*^ « <• D • ••• **•*•*••*••»•»»»$ n an e UJlft. UJLJiLIUtL'U.'UJLLJUJlL l_J

M .O •« IVI M • u G IT •- -Z UJ X _J or C «J o- ts f\j cr

UJ UJ UJ UJ UJ U) UJ UJ X *-^ O • • c_> in • o co »>- o >- o- X • — • • Kl rO ^H ' a f\t -** r** =r

82 IT :. - \ ^ ./• -r

-D -C XI -O -C C -C -C -C r. -C

otxo&oocroo&o-o-coopooco-o ir o (? s» o c a 11 1 a a- c- rr &" CT" CJ" O* & ^^ ^ O" O" iT" ^ (7 ^ *y O" CJ*1 O O* (^ ff o*CJ- CJ" ?

«V r\. t t f. r. s i t. t •- £. «. c. c r r c • •••••• • i t i t • I I i »••• • • i UJ UJ Uj UJ UJ UJ U. U. a. a. UJ a. UJ U-' ii a* i^.UJti.u.< S -5^-5^' ^' S» Aj W~ It ^, D '^ r^ r- -v K irc.fv.'T;^''^!" =? >«. s> r. CC "i'-X.^f^^fifi X".J^^- J* •-. -, C CT ^^ P» O ^ ^* ^» ff ^^ Oj L'^ fcf x: 3 x

^- r^ r- r^ f»- r» r- K i % r; ri ^ r.

••••••• ••••••»•• • • • • •» •» UJ UJ uJ tiJ E i. '» S. E E. ff. ^. r. » p. c K •*; "^ "^ -s. -^ s: "^ •J. K- :. 5. sr. irMrp;ifr 4f r. if ". if r — (V 3 m r^ et "Si j^ — rv -3 in r- xi (^ •T or • • • • o-

— r\l •% ^ % i. w-i rvj « i 6. t. c s c. r, s • • • ••••*••••• • 1 • I I UJ ll. U. UJ U. U. u.. U. tJJW ^iti JJjJ^ ^U i^-tf i* 1^ ^j^ u u. u. S; -C "** 35 "-i 'VJ ?ii G*" S. f«- -S c. rvi E a

1 1 CC f ^ K <& ^JC f' ' ^* ^^ ^J '. n if ifi r K> or V • • • CC Of M f 3 If If . l/> 3 «V 5f fV) If tT r^ A. »- »«- ^^ Pi f^» P» ^T ^" ^" ^*- ^* ^*- ^« ^- r-- r^ r-.

• •» • ••••••• •••••• (jj u. UJ UJ UJ UJ UJ u. LI^ a- r. r c s s. s es ir> K IT fi •/" t& i/~' r. ir S e; ri O tf"!? • . *. • • •. « •

ru — «« G c r. • ••••• i •••• tiiiii* ••- + • it LJ UJ U. LU U. a, u. U.U. JL k. ^ L, UJ li, Li.' U. a. UJ tkJ 5s in c^ co ^i '^ *s ^^ s< c TJ ii ^r E — r; rvi — i^, "N ro xi '-•oo s ir^ ^fl ^^ ^J ?y "J ^^ ^?^ ^^. ^^ ^i (V. a - * o f «: =r !^ If- («• 4J If • ox s^io^irifira t f rvj •a -s -= •?• • ••••••••»• + • -•• 4- UJ Ui .it .* i 111 ^^ ^^ . i . . t *. it i . 11 uJ ui UJ Si S sss^Siirs — "»K";s.i*iS'"j'"j •-* -» rs K is r^ ^ ^; r? s ifi Si ifi "S If- i*5 Ifi ."1 s CVI^tf'CliUOf^lft^i tS a -s in r: it sir 00 O- ^*^ C^ *"^ ^^^ ^F *^) ^^ ^^ ijT* if »*• OC: CO S

83 •- t, n- •, •-

r. r. *.-

c c ^ a c •'•'*•. r» c tr - s. !. r.

fi• !V S1 "^ !V % S) "i "i. ^ T-i ^ "i- t ^ .-J %1 ". %. «i »>. "i "» t. ". « "i "i

tiiaiUJUJLiJaJUJLiJ aJti-UJ*i^tiJuJU.UJ a.'^ua^hUa.uijkUu^L^vA.'UJUJ s. s K -j «E s is K ss^Sf;\?;t. % *. --. rv ^. r* T ^. r. ^ -. s. s r. IT r. if f: if «: r «i ir r. IT- P. IT r. r. f' r. ?; r. r F ir r IT r. /•

rvj {»•»<—<•-<>-••-•—irvi —• ru a to

s 5, s !i i 3 '. •-•. rvj ru ro —.^', ru — —— — — — — — — — c. r» c. r: s. r. s. s «?. ssccr:^-^ ll. Ill U. (L lU II' it b.- U.u,U.d>liU.tl

«r — rvi o ^ -c ot r IT iT ft. ^ K-, K; IT Kirrvir^ —

;jir — *«-i' if* r~*»- — ir — f\.f r^ — f a if ir an -- a •( *^-t>-t»^r-f^r^ CKJ^ -cr»-r*r~r-r>.r>-^ ^.KKif'^xi^^CsCXi^r-r^r^ sssss^s^ c o ri SJ c. c c c r> u 3, c e- s E. C rrj.- T -S. •••'»'•••»-•»•»«' +••• + •••» •*•••••••••••••• «Ai UJ k&i ixl \Uk iki LXr IAJ l*J *A* ll-i kAJ «i.J LLJ kl« Lki U- t*J hi* I4J bl. »^- Lk. tU h^^ .AJ iU sG.&K&s,c:e. c & & & S' s & c KSIJ&CSF. S&&C SS&SGGSS S\S\S^tiCv K.S.'iS^i.'S.-'. "SiS-i-S s.ifisirre:ifiSir K x Mf s if• e. if Pitssssr. fiirsir

i^. B5- Vf- C« 0^ C C* CS> C ^£ ff* Pu ^ S t Cs ^^ K ?^ & C • •+ • i » t • * • •» + itiitii > <-

5» *X) '^ 2& iO Si ^& ® S Si ^> f^ CS NO S »•• ^ ft P5 ^ •%)

• t 1

+ • •*•-».••••••••••»• 4- • + + ••»•••• + • • •»• + • + • + ••••»••••• I4J ill liJ Ui UJUJhljiUJLkJUJ UJ UJLJUjLUUJuJLJLU UJ UJUiUiLUuJUJU)ii>UJUiUjlL

eg (5 KI s in R ins v> s s msinsir^irs r^a MSKSBSsinKirtir

84 :.'.?> ^ E % i s; s

e o C V C

U UJ ^.' U.» Ui U-> U- «A- •*- •*.' **- tt' UJ U- U- UJ U. LLJ LJJ u» UJ UJ UJ UJ II- UJ U^ S * "J 1 5; 9 Gk fVJ C5t 'X) S ^^ -X) S. P^ S ^* CD zy & ^ ^) f\i

tr *i -HO a — =ja — ^ — — — r. \ p. •- "- v '. -s; -i r-- :± *. -5 r. s

-s. s '. e; s «D S %. ^ K x J> r: IT- *: f

"? •». "U 5. — s c: ts s.

U. u- L- L«. k. U. U U. ^.U-'U. U.U.U.U.LJU.U. lu UJ i»- UJ k^. UJ u; Li_. lu u.

r > (^ -^ j* —* •*. r\t cr <"~- o •v1r> ^-»-«-'»-'»< — ei p; SSSS&5SSSSS »••••••••••••••••• • •••••••••• r UJ UJ UJ UJ LL UJU.*A. U^LUU-J UJ 1&.' ilj UJ Iki iij kL* UJ UJ UJ UJ 4U Ui 4kJ 111 4iJ UJ U,

« r-. •. • •. «. «. • — « ^ (V r. c Gtec-ceeF. cere?RRS5e. cc s-e K i n u. u. I* i I.I UJ UJ iLt UJ UJ UJ UJ UJ UJ UJ UJ *^^j ^^j C^^^ ^^^ ^^^9 ^^v ^^^3 f'^^v ^^^J ^^^B ^^kJ 1^^^ ^^^v

o- — t IT »v c E "?• IS! ^ • • I •• ••• •••••• ••• ••»••••••••••••• UJ UJ UJ u/uJLJ UJ UJ UJ UJ UJ UJ U^ UJ UJ UJ UJ UJ iSS SEGSSiSSKSSSBii — SKSKSSSSSSSS "IRSKRSSISSSISS «v in SRSSK SinKlAISUlS

85 oo 3, 95*9 \F 31 M7 1 1 3107 37 i 0 3107 3 2. b. 3107 a «. <*• 31 H 7 b 5. b. 3i:*7 b 6. r. 7. iiF7 7 9. S. 31(^7 8 1. 1, 31^7 1 • 9 1. P, 51 ^7 1.1 1. 3, -P3*99i 3107 1 1 1. '4.'4t«Pi^F-( 12 >. 13 1. 31^7 l a n p.. + i,i 7 1.9Sl^F+i*7 8,387SF-"J 31P7 IS 3. Is

J99j * ^

1*992 i/jsi I, 03992 t aS1 53 - 92 11399^ 1^51 3 labl a U51

last 7 FOLLOWING CROSS SF.CTtONS RESjLT FROM OF 1'J51 8 YTTRIUM 96 -92 ISOTnPES MADE USTNG GNASH AND CQMNDC L N ClE R M0DEL C DFS THIS 9 2IJII?IJSI . !! * ° * EVALUATION USES NEW MQDEI 1992 lasi la fPPEStN!T EVALUATION t™*i™yi°?/775 * AN IMPROVEMENT OVf« THE EARLIER 399* last H 1 asi 12 1) P. ^992 1051 13 D DESCRIPTION OF THE 3992 l«5t la 3992 f HOWEVER wI ""COMING L"S AtAHOS REPOPT. A 1051 15 5I« EN TNC0RPO » LL BE GIVEN 8FL0w. ' 1b J S??«» IS, «^ED IN THE PRESENT CALCULATES 17 W8UL IRIIS\ R°T0N *ND NE^TI»0N OPTICAL PARAMETERS ANO .4 9£ URE F GAM 9 U51 16 I* i"° ° MA-PAY STRENGTH FUNCTIONS IN THIS3992 last 19 NEW P*OTOM OPTICAL PARAMETERS WERE DETERNINFD 1451 z IC UJ o <-• ar x u. i »-ac«-»»-o Z Z _J< lOuj 4kJ I «-»U. X 3 3 ' »- _»2CC7:QrCr3I2 2T _j «* X •-« U- (/) > 3 dJIfl UOMHiO i aJ< hCCZ X U! CO >r-< O. Z 3 K K a. U < UJ > a JL ar ru s: o / w« unri w> o z c tii • o •-» x z +* < i-wciro o 40 it- cot-u. UI-KUJCIWI jjiaa: CTCJ C UJ UJ 00 jHoaoz MKI t- or ujJCtr >-ZZ- •-•0 Ql •« «— «3IU<- ku (O UJ Xl- Ztf>»-Ui u. X U.' U<_iTC

z»- ^Z< CttXIU.—/^- < V. CJ OUJ u.c •- -jets ? z o Ot I »- C U U >»- CC • Z C «-••-• U. V. *~ t- C 2 £>•-<< O Z _I uJ tO u,>« Z I-C J > — Z rv.' IP ui7o UJ c5 ry- •< - O UJ u •< i- r n ~> — u. a «_' u- rC u. C Jui •-• to s: UJ»-« S" U-y r>, ij 3 »C4 ^ r- • a c a ^ _i Dr _J U. < »~ ^1 u. <_) •< z c » • >c •- • > r» --Iff < Or UJ UJ Z U. UJ Z _i — •- i' X < rr •< a c ¥- UJ »- 3 X ~ < «r~ < i- C-; UJ> u. or «- < » <• t z < O H 3 O a nr tc ~ Z Z X o- z c *- UJ _» a -«ir) co ft »- «o UJ >- • -t c- u. U' c »- C u.' * I- K* C» •- «-l z a UJ ui a <> »- o z nr ta nail a aj •. z • «c u» r> CS UJC « COr C u. TUJ Z UiII, C UJ *-*-*- U.' * U. >- •-« aJ »-L9 mUJ •-»•-• auiir Ui -J ^ t— UJ nr ei •*! I in z »-- cs nr » urc X « (ffWtf) »• oz •-« c T a.- u. *- v •- u> a »- r" u.: X t— r3 < ¥~ or O O ~> _• toTC -st r> isMnw z to to _j UJ u to UJ •a Z O «j •< u. «-- v •-> *-_J CJ ? -t or z li- UJ •-•co <_> «j-»-' Z OT JLJr^ co ar_J Ik to o < c UJ X U c • •-•V O Q-LJ •- UJ - ^» r u. z o o •< U I LU JS o UJ UJ _I X UJ co •-> — O • C UIO 4 J U Z1U.UJ UJ CO I Ou. W ul cm 7 ui i tr rtr«* CO »-«arsozuJX

87 — ~ ts <

<\j r\j f\j

a o ac eo

«i. e. s 1 i. JL Ui W ^' 111 Ui U- liJ U> ui

ct ^* cr. •-- c; | 1 • • + •*. • • • •• • • * • + •+ c e. •s, s. E IS. S ll p- p. IT a. IT 5L If r. r" ^" k/^ 43 DO

•s r. p; -s Pi r. c e, r I I • U U. u.

f^ 43 ^ f « —

fi 9v s fv e. s s -s r. i- -s -s n ^ G • ••••••«••••••••• + •••

(i R S, -a rr> cr- •"sin."; r- cr »-•

c t -*-4--«--l--f-l-llf t • U U. U.1 lu li^ LU L. u. 11. (VS. «C- ^^ ^^ O" «O f!s v? *^ • t 3 a If *^f ^^j ^^^ ^C ^C ^C ^C* ^C ^C ^^ ^^ ^^ f^^ ^^ ^*^ ^^ ^3" ^f*^ ^p ^^ ^^ ^£ ^T *^' ^^ l?v ^5 |^? ^5 ^3 ^. f^ ^ti ^£ P>J ^V (Si" ^, ^i *?N* T2 "^f •f • • -» ••••••»• + + •*•••••• + • •» • • • ^^ \*^ tl* 1*1 If I ^L? I > t t^ I ^1 It I liti ^^[ jl.l ^| t ^j f ii| i 1^ t lj I l[fl i UJ kii hi.' ^^ 55 vS* SJ CW C? ^3 ^3 S^ S. ff. & ^i S» '^ ^0 C^- ^5 15* r\i rv <^ fVJ r*5' "5 S ^ *t CSs 51 I^ "^ *\"* *SS ^ ^? (^ fT1 ^L Ct s> s

i co rvj »- i\» o in i

88 *- cc o- "•» —» »•« <\J ^ —

rvj «\j r\j I\J

rv.f\j'\)'V'V'\if\.rvj<\i'\.rv.»\irvj'\,<\jf\)'\,f\jf\if\j o&oo-c&oo-e-tro&co-B-o-oo-fTO- tro-o-oo-o-o-o-o-oo- r. -s. ri. i- *; — I\J ^ <\J —« ~- — IS SilM<->n S (O (S « :. c c c s z. cc.'i.er:^(sc» •-K&C. CS. »• 6. • • • • • • • •»• ••• li.iUJU.UJ UJ UJ UJ •£, I\I S. -O r*i St "Si est s, G- — »~ f~ rv. IT <£ -~ •c s IT s r^ K -c i C rn "Vi (VI fO *i o- JS ^ tr — (V i IT — — .- ~- — « «r. •»"I 3 f x r>> x w s rv. •*-. — ft «K N r~ ^ r~ r~ si —• «a r» "SIS -i 5. n ?t, SMS • ••••••••• •••••• • • • • UJ it* t*J UJ uj UJ tu aj U., z. c E E r r. r. ^ E & E & C E G. G E S. S 9 '- ^. -i -i "v -s CO -S S Si K, S Si S IT K If K If 5 r, IT r if r. if F »r r> IT* «. •v• •*» «r JE a" (T lf»MBS • • • • 3D ^t ^< •-• rvj 1 S fVt (V »< •" M S \ M M >H E C is T. c r. r. r. K E T K E E Ei C S. E • • • t • • • • lit u. u. U-' u. ki. U. UJ U. U_ U. U, U.' UJ U. UV' UJ U. UJ U. o- u. J^ ^ « % rvj rs -f *z s SC S a •r rv. r, K- \ E t K- *r, es, if, E ff & S) W rv^.j X> i*i^itfiifiec"iiriN *^i *-^ 1 o- rt. ro B » s o- M r^ K — GC sir«3 niniw 1 GC ?. rcamx-cr^xiriK .

^- r*- K S S N'l^- K FJ SEEK s s s s S- • • • • • • • • • • • • • vtl •X, a. U.- UJ UJ UJ UJ UJ UJ U> UJ UJ Cv «S E e. RISEGSCSSt S E SI & S. K. K E. «: ^. s :•& r. '_. ^ s. s s s. SB !2 ^S 3 Si ^ S s W IT K.1TKIT IS l/> K. s J3 ««^ in vs OD o- (VI rvi

x> o 3 »>•* 9 - •- K. IV A- IT 1TR te «s e. «:

IS ^ ^! + +• • + • • • Uj U,* ui UJ L^. UJ uj UJ UJ ut UJ ui E K S> rvi ssss ru s Ki P. ra P: in es in «s s. I/1NICS (OS •*> vt^i^t^H K| C3 xriHlVI rO«SS

89 rt •; —• r- or cr ~-

r. a

m O O O O (f O & i o- ro •••# •J. '—J *±. W. .A. &A- li-> *±. kX.' k^. il.> u.U'UJiA.

r. r '-. -. '- .-. i i r; .<; •- •s s n c« *i r; sfSi*i'rvr5«(S

S (\1 IP Jl 3 t c >i ff r. r^ «•» c, p> K i e. s. e. 5 1 u U. u. a. b. U. lu u. U UJ U' IU li. U — *j -S. !!»• -^i •j (V| v ""- T3 i r. K t ir s i e- 9 f J) r -ti — LT — fV => a: •- — =f ^> •- ft. —• KI ir vO^-r^f^^r^ G> 6. ;. s K s & ^ s •ssin-ssiS'SCiiascs • • • • • • ••••••••••••••••••••• fcL »A- t^^ U' ll- l^i fcij i4.l fcAj tkJ IAJ l^J iA} l*J LLJ U- CIJ Li^ Ubi IA« 4A« LftJ M« »*J 1 S C C t t 6.EGS,ss.tc.KKCc;eKso;ecs C S fi. i -. %**»*"» *s nr. T» E- "•- c "i cs s, % n. 'i -s s x r» c& •s s. z. s. s ir f. if K IT »v ir re J- c ir. i^ J~~ n a~ o- w >o .r * a: (?•

r. 5. 5. c r c e s r. e. F e. r c c • ill ^i- o^ ^i* ^^ ^?» S1 ^^' ^J s^ 1 Si *V E C K ft. O- CSi* K - & •-• 6» Aj -^- A. Ct c sr. cr. IS ^ ^ ^ •-* *^* ^ ^ K

if r'-IV? ^ N-, ct, ^- — ftj — t if -< • •••+ • ••••••• •» •^^ ^^j ^^~ Kki ^ 11 ^ ii. '^^ [^^ i fc^rf ^^J ^^i ^^i 4^^ s s s R K r\j K; is i^ s K « C> 4/^ 5» ^i

CS

90 F; s.

'. ,i r. si s "v •. "s. K i r, ri • •••••••••• • • + •••• + + + • + LAl 111 1*1 I.I 1.1 .•. I.I 1.1 lil til .. • iU UJ UJ it kiid^UiUJiiJWXlUJ f- C C C. K. Z. C C. C. Pi E C. (i s •s s is '. \ %?; i »-. ••. K r. r. tf r r r r, KKI/-. F IT F IT *. K1 MO^lffST, MKlJ1 -C

C fi. ?i 5.

•!i "-• S; -O i> ; S S '^ liMf f. (TO 4T> SI r\j

in is ins «yi •? ti"> *. 1/1 *Z J> ^ •—t *^• ^ f\i ^T L*l T*~ CC ^"^ *"^ ^*+ **^ f\i ^5 9 O" "^ 1*0 >^ *O f\j f\t f\j f\j 9 *£

i » • i i •• i i i UJUJUJLDkJu-U.LUU-ll^fcu bJ U-. U. U u. Uj u. a. UJ U. U U.1 ^3 ^ S P"" ^ ^ S ^* *S (\J C^ Ci "^ 5 »•* & cj & f* G Q £ ^ S fV f\. S IT ^ fv iT 1 6 — CO — 4f• C OC^-^-** ^-l/>

S ."; S ^ it r

1 llJ Lki Uu- 4LJ kL,' L^i L&J li. t±j l^J liJ t*J LiJ ^1 Si Ct- Si t^y. ffjr yi. ^| B? E; (^ f& ^J1 ^^ K» ^Ei ?C ^C "Tv ^5 (t ?* ^t ^1 ^i O' ^T ^\- !Sl Cv P3 ^y ^^ 53 ^^ 5J 4^ ^^ p|j s r?: ii w -^ s •*^ ?s iO <^» ij)O ^*^ ^i ^f LO ^* oc ^^ ^h

5i —. —. LO X OC O-

91 O ho «.a 1. I aS 1 2 53 1'iSi >-z*. S8 LASL F.f).' ust a LA- ,74K? RF vfc» I 'IS 1 DFST- WiSl h

last 7 THE FOLL0WJN5 C9CSS SFCTJONS RESji.T FR[)M A NEW F.vAU'ATjnN laSl B Z» 89 - 90 USTNG HMASH AND laSI 9 STATISTICAL THIS F iSLS 1 /i c: 1 1 i L 1 '1* I 11 PA3AMETF-?S A\D SHOUl ; last EVALJATTON (6/17/77). 'V s 8 last 1u? 1 PRELIMINARY ^F.OORTS OF THIS JM | A-7 ?,! 1-P9 f \ Q7R) P,2 1 7 i a J i I 3 AND LA-7ae?«3>? (197P) P.h, ^ DFS^«TPTI^^ CJP THF l'jSl t a CALCULATIONS «ILL APPFAO IN AN ING L°S Al A'«OS PfPfiRT, A la51 15 B«IEF DFSCRI^TION, MQrfEVER, *U GIVFM BFLO*. laSl 1b PRINCIPAL IMPROVEMENTS TNCCIPPORATED JIM THF P5FSFNT CAl CULAT IONS laSl 17 FROM 3FTTER PROTON ANp NEjTRO' OPTICAL 3A9AMFTF.HS AND last lH JFTE^MINATION AMD JSE OF ST»LMGTM FUNCTTONS 1^ last 19 MASS REGION, NF*i PPOTON OPTICAL t '4 5 1 ?a LOW ENF*GY SR-*7, Y-B9 (P,N)0ATA (P£.F,1) last ?.\ FROM STANDARD °ARAMETE9 SETS, last ?i 8ASFD ON A MODIFICATION OF THE LAGRANGE (^Ef-,2) laSl ?i ARE APPLICAPLF FROM j KFV TO ?/ *FV. 2a TO DESCRIBE THE NEUTRON CAPTjRE PROCESS AND GAM^A-RAY IT last ?b A SYSTEMATIC STUDY WAS MAH£ OF GAMMA.RAY STPE*£TH FUNCTIONS FO 2b R laSl A = 85-lH^ AS SUGGESTED IN f-.F.*. THESfc GAMMA-RAY STRENGTH 1/lSt ?7 FUNCTIONS CAM 3E OETE»MTNFO fRnM CAPTUHF DATA OM STABLE laSl ?e AND THEN BE JSED TO GTVF REALISTIC CAPTURE T^PSS SECTIONS 1'iSi ?9 UNSTABLE NuCLF-t,AS NELL AS To PROVIDE AN ACCURATE la51 30 OF GAMMA EMISSION WHERE IT Is AN IMPORTANT COMBFTING A NEW PRERQiiIl.lnRTtjM MnOF.L RASEO ON TME KALPACH RESULTS WAS JSED TO DFSCRIBE NON$TATISTICAL EFFECTS IN THE RANGE 12*20 MEV, (OTHFR PARAMFTFRS RELATING TO LEVEl DENSITIES AND THF FORM OF THE GAMMA-RAY EMISSION MQDEI WERE SIMILAR TO THOSE useo IN THE b/17/7? EVALUATION) THE N|rT RESULTS OF THESE IMPROVEMENTS last WERE A CONSISTENT PARAMfTER SETS WHICH REPRODUCED NEUTRON AND 37 CHARGED "ARTICLE DATA FOR Y AND Z* ISOTOPFS. 38 A FEW MISCELLANEOUS REMARKS ABOUT THE PRESENT EVALUATION, 39 —• rv **•. a in -e r»

S 'S S is s s •? rv

< x u. x or ts •- < cr z -i < z •-• u. ui >- a> »ui-c c z i rr <7 < •« o n

t- •< c z io C or z. *-»"»- a *~ «*; z «_, c rO — C >-•»- z u. > en z rvj orua i »_> r i a • ar 3 »> z an. rv u. u. O • UJ _) u* cr —• h »- WUJI- Jw in or •< *~ a) i-> •- or ZO_J •* >- C >• u. Ml K Du. = OIAUirZ X 2 uujwar « Q 0-* > C » »- UJ •« IDft • - u.' <- a f*- U Of v « a «/ O. (SE.

ZOtUU MUXa 7i-ts ir « ir a »>OXujUJ»->l- uiui -Jts zz—' ec. E rv «ot-tu»otoo-«O •«•<_> a a IT 0IKUIV) OKTM o x or

KUIIOOZt-Z

93 rs -O nj rvj IM SAlSN on S. S A! S 6. s e> m »+ + + •*••*••*•**»*** w wa. UJ UJ UJ I*.' UJ lij kL.'. UJ \±> ii. tAj UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ u. UJ UJ s s m s s a s s e « a «v «-* K a in S ^ S ty »• s s. •c ru s r\j - (V —

c •- 1^ r- Gk ^** 65 ^*-r- s •Si OB • •••»•-*++ + -»- + +•• • • • • • bui • UJ UJUJUJaJUJiuUJUJujUJUJUJuJ a- UJ Hi UJ UJ >JU! UJ UJ C s. 5J s IS (^ {a5i s. s s &• IS IS IS s S s rs s s K S E I F. KClTKlTTlT't. IT IT tr IT IT. IT IT IT

eKss©ss.CESC-str S. e? S s s •!••• U.U;ltUjallJi^ll.L.U.U:UU.' UJ U- u. u.- UJ UJ U IL' 1L.< 111 u. tti tb ESS e»f-«-« ^aac<— a c G' & IT EGSCK in XI s ins AN X S9S • •••••••••••a •••••• LT~ — ~ — -~«-—c-irK\»vrv r ifl ci a a s s s s • + ••-•••••»• + • + +-»•+ • • + UJ ^i (4l UJ CE SSB S S s SiSS IT c IT sines • . •. .« • •

B K B EECSE CC EC •*••*••*• + + + +»»*» + + • I UJ a. UJ u.< UJ UL. U. UJ U.1 UJ U. UJ Lu UJ UJ UJ UJ UJ U. UJ U. UJ UJ U> UJ U. U. U.' Uf a (v "-c B a? R a s N •; i/^s- s&o-si-css ins R H-, K. ^5 K ITK> K « S ^ C r K esco CD «S J K -+ & «s 0 s ^ r» ru sir

»• IB —» (SJ ) S C3 KS ^ S ••• ••••••••• ••»•••-»• •«• • ii,^ LJ aJ lit UJ a< UJ al ii.' UJ UJ UJ UJ UJ 41J UJ UJ Ui- UJ UJ UJ UJ 111 UJ S C K • S R Sr S SS SS G CD SS a K s. K, s s OCP6«S-K:(SIS ec pa «s * s:" s in s eam

a is. »«^«»H»,,«

94 c tr cr ru <\i

cccxsci cc x

s s. rv 6 l\j ft • •V 1 UJ Ul U.' UJ UJ ui UJ u. UJ UJ Oi ii.' OJ U,' X' U. a. u. U. UJ U. iJj LkJ UJ S9 *o G •/\ s s •s s s s s« s s- s CC C (E CC «S K IT- C (?: S S 5 s (S & *P »a uJ UJ ui tii OJ aJ ii> s (9 s es & S S. S> IS E. S S (S B' S fc. as s S s ts ts S s SS3 S ? ^B & IT s IT IT IT «r. IT IT If EIT-R if F tT l/> >o CC a S. ro tr> •° O- IS S " IS " 5 K e s e s s s c & •*-»-«-tftii UJ U. 41. It) U. u. li. U. k> k Ul u. L U. Li, U. U. UJ s •«» s> 3» o- Si S S C «Sr "i S S -C s s s — E. c «: C e. s .o cc % ni 2i S< » J\I r«. r^ — ^

s s. IT s s s s Gt *& s S S S 5 S S S • • • • • • • • • •• + + •• • •• + UJUI Ulti. uJ U-i i±i U.' UJ tU U-' lu tu u, u. e s <5 & 6itj. & s ts £ C K S C K- 5 ssss S &&SSSSS irsirs s tr R IT E IT K Li & r. 5f « r«. o- en 0* (5-

M — — — ~ — -• — t\) ^* CS Ci C* C C* E C ff F £ 5 S f £ t f t • t » I +• + • ••• +••+!• I » UJU.UJU.-Ui UJ U. L.' Ul It IU iu Ik U. UJ UJ Uj u. U.' LU UJ UJ U-- U.> UJ UJ U. U. U.' UJ U. CS 9 CB ^^- C5 uf^ PS 4T» &> S>«6S5lf 15 IT«C 15- 0£ K UC ^i ^ G C flT ff E G (T. IS t#* OD *•• 5B »H *i (\J — U-l ^ O- CD 3 K» ^ * a •- CC- IT CC^«** ^"•^". •- (\ ^ C ^ f. *C> >£•

cc oc I ^1 S IBS R + ••»+ + + •-••••••••»•• ujj UJ ui UJ UJ UJ IJJ tt/U J ui UJ UJ UJ UJ CC S5SS5SSS cc s sss s CC IB S KJ S K fv K S 00 S R S^ 6) "5 S S Si 62 1/1 G& LO CSI s 9ini»io s 9 «£ • ru • rv

95 0SXOCXCCGC&CCCDXXG22CXa)O cccrsc a a. oc xcca cc a ccccocaccc c cc a cc a « oc c a SSlS •£ S> 9 9 9 ir es. & s stc. s. ••• l U-' UJ ii. u.' UJUJUJu.U.UJuJUJ'ii£U. LutiJUJ«k>UJU>MuUl UJ UJ UJ 5

1 S S & S, S S S •»•*- + • U-*

sr sins

C&F. SSS u. u. a. u. u. u. u. u.

rv.^ or ^- •- rvj rv. >\j »\J •- •— cc iv.

S E S r. & S -S ^ K. E. tS. 5iSKSSSSSSS5SSSSSS8S (9SS + + •-••-»•»•• + ••-»• iUhi.t^UJ U 41^14^ ajU ^ UJ uu Ui LU ilJ UJ ili S C C sss nss tr> -o ir> . ». •. •.

» ^ Ai <» t/> 9

itttitistit * •*• iiitfii ti •*•• • • • Iki k&. a^ Uj U^ UJ «jv U.> li.> UJ UJ at ILJ u\. u.< *i- *!.' UJ U\. UJ LI b^ UJ ll»* UJ UJ UJ bJ UJ f s. «r K « s s K r e ^ ir»v t t R R s r; K i< r r s s— »-5iiJ ars;5;.rru^" :ru .— ^> rviMsn?:i9i S Kl I » E. (V K1 * S 9 « h-3 M

»» •- «C

in S S O •*• %+•*•*•*••*••*••*• + *•*•*••*••*•+••*• + + + • f •» • ilJ U UJ UJ a.: Id UJ u.' U.I UJ li.1 UJUJUJUJiUUJUJUJUiiXtUJUJuJU^UJUJUJUiUJ Ui UJtJjUi 'S a. SCSSSSSKSKSSSSSSSSS oo seas R err ^cirtcsS'SSRKi'sssiQsisesseB oo sss ir rs sssssS'SssGSsuisirtsirsifi BS SCSCB in "3 w in

96 » o i « M

COlOCClDftCCXO(DCXIKCCKXtC3>tXltDO«CK£t(Ct. Kcocreoecorerccxeratcccccorccttacccectacc xa s or cc cc n. a a s er ct a ccctcr S

ITi Ui UJ UJ UJ UJ UJ UJ UJ U.'' UJ UJ '«U UJ UJ UJ a; a.' UJ 'a; UJ U. UJ u. u. I*.1 u. sssssnsNS sac setts:

X' es- s — — rv.. »> ^ « f w ivrt 5 3. »•* K « S '> S S K i « S K S S 3 •? •! ^ 1 s • •*•••••••••••••• • ••••••••••••••••••• UJ H* UJ UJ UJ I&J ftli UJ iij *U llj Uhi ilj iki tAj «S.SKSSKSKSr. G S. S C K C. C I- ITS, »r F

(no9\jiMxVvM

UJ •*. UJ U. UJ U. Ui U. U. u. U.' u. U. S23»

•-if. rv — — n. y rr i\i

SSSSSBBSS&SSSGSS • ••••••••••••••••»-* • +•••• + •••••••-•••••••••••• ifcJ tU hii Ui UJ tli kJj Ili UJ UJ UJ (&.- UJ UJ UJ u« .1-L.iU-UJUiUJUlLJuJUia.LIUjaJUJIj.U.il.UJ StSSCGSSSSSS'C G. S. C (S SSSSHSSQSSSSESKS SSSSSSRSSSSeSSSSSSS SGKSSSSCGSITSITSir. S I*". & 5. & S. Z»: & & S.ESSSlMHTSiTt>

^i ^ N iu rt v)

• I • + ti UJ UJ II: (^ Ui UJ UJ UJ UJ UJ UJ U^ UJ UJ UJ u.' u. U.' UJ U' U. UJ U. LU U.' ixi U. u.. UL< UJ u. Ix: U-' UJ S(>5 CEi St Ifr S: SK^CS—K.— S O> ^ (Vi 5 rt

oxnujHtniKHiire^s *•*

• + ••-*.•••••••••»••• + ••••• • » • • UJ UJ UJ iii UJ hi! UJ UJ UJ UJ UJ UJ UJ. UJ UJ UJ UJ BSBSSSSSS55SSSSS O>

97 oo 3107 1 31H7 2 31*7 2 3 31 «7 '4 I 5 b 7 7' R 9 8' 9, 31 07 la 3107 H 3H7 t? 51 !?I7 13 3107 la 3107 3107 1. 5,98"53E« 17 3< t". 16 "088 3

l. 1 0, 2 SI 3 L*SL FVAL-0K78 u last 5 b

0M 7 .,..„,. •-• - F" * NEW EVALUATION OF s JSEO TO DESCRIBF NnNSTATIST TC*L EFFFCTS IN THE RANGE 1451 3i 10-20 MEV, (OTHER PARAMFTFRS RELATING TO LEVEL DF_N niES AND THE S 1451 34 FORM OF THfe GAMMA-HAY EMISSION M DEL WER SIMILAR TO THOSE USED 0 E 1451 IN THE 6/17/77 EVALUATION) THE NET RESULTS OF THESE IMPROVEMENTS 35 WERE A CONSISTENT PARAMFTFR sfTS HHTCH REPRODUCE!) NFUTRON AND 1451 36 CHARGED PARTICLE DATA FOR Y AND 7» ISOTOPFS. 1451 37 A FE* MISCELLANEOUS RfMARKS ABOUT THE PRESENT EVALUATION. 1451 3d ALL CROSS SFCTIONS I.EAOTNG Tn UMsTABLF RESIDJAL NUCLEI OR MFTA* 1451 39 40 STABLE STATES «FRE CALCULATED FOR Al L RF.ACTTONS. (METASTABIF 1451 1451 «1 STATES WE»t NOT GF.NFRALI V CALCULATED FU» (l^GAMMA) AND (N, ALPHA) /i ^ REACTIONS), THE CONVENTION USED T«? TF TH£ FTNAL STATE FLAG fLFS) 1 tt^ X '* c IS E3UAI TO IZln THFN THE CRUSS SFCTION GlVFN RFPPp.SfNTS THE 1451 43 1451 4 4 T T CR0RS SFCTIfiN F0<) THAT 2 ttn FACTION. r^OSS SECTIONS LADING TO 1451 4 5 AN ISOME9IC STATE APE 5FNOTED HV |_FS E.'JUAl TO THE NUMBfP OF THE 1451 4 6 STATE, FINALLY THE fN,A|.PHA) AMO (N, ALPHA, Nl CROSS 145! 47 H51 4 3 1451 49 RFF 1451 «•*

T 1451 51 ? AL. NJCL. 1451 52 . «EV, LETT. ^9,16^111( 1451 53 (197S)" Ur'94WrJF' NATTQ^4L PHYSICS 1451 "^ 5, D,G, GARDNJF.R AND M. A. O 1451 55 ?9<)3 f1977) 1451 Sb «. C KAtHACH, I, PHYS. 1451 57 VO 1451 58 1451 59 iHu"iiflininiPifiijr*intr|iA m m m m ******** »as»W5r9?j=»5?aa _ .. _ _

(C c Ci(r. EEC l\> & • ••*- + <*--«--t-4-t|*«» » U.UtU;u;kJU.UIUJUU.iUv'bJdJ a. SM^ECNSSKSSffK IT. s-^i^csci'i'ONir. 3O o c* is. ir. iirxiri^O'Nir'irc ir

•»•••+•••••• + + + >••••••• • uJiliUJUIa.iiJUJUUiUJUJiua.' UJ &SEKSE.SG5. SESt C KFKKKSK^C ir^kTS IT t;irSir?»1n(s^hri53r>Of^O' rs • «•••••••.«•*•» •

9^JfUCCB!0O«-««\i'W'V*<%^ SSSiO •SSE.»*»«>iS-S!SSKK>K.»",—>***-** ^ S: •%. f\i — niMiuivirsKsc CKKSSCKKEC ssss c Ul UJ U. U. U. 'a.. U, U. UJ a. UJ U.' U. U. U^

sio — -- — ^—. — ^43=sr\jrv— —

+ • + ••- + + •• + • + + •+ * Ut U> UJ aJ U; ii.' Ul Ui U) u.1 >L' u: u W u^

*. •. •. •.. • •. • •. •. i. < « ij)aca-***~**'~<~'**r\i ** «- ^ ** w> r\i wssssstts------—• « rvi c c K E. e. E e c e r. F. C n E e c e s • s •4- • •• t+ + + + + ++t*t»t •• UJUJ UJ U^ UJ U. U> UJ U.- LL U.< •!- Lk. UJ UJ UJ UJ s» 9B b C E It 9 C, CK^K^. Kt«- =f —

CC CDtC K.r^OJDkTVX'ir'I^K-. (C— I^OC CC»^

9^ir> sj —Cf>-f>-K^t»-t^r>- 9 m -c • •• • + + + + + + -T+ + + + 4. + + * ^. UJ UltUlUUi^ibUlkiU.'UJ>bUiUIUI UJ UJ CT«D «T' WNRNfl'I'IKK'SKWRSK CO »»• ss& s> 3KKSssKin&insirsin s *- • ••• • • ••••>••»•*»•••« • * • 99 — ea 9G. in — "*&-ot^&-*****-*****-* 9s o-

100 'V rvi

«r a cc oc cr a a cc cc ff a or cc cc or tc ec

C 5 & S E G ftj *Vl (3 »•!••• U, UJ oJ UJ aj a.1 UJ a. 'UJ lu U til ut u U u; UJ UJ Ui UJ ID lu U) Si s « s tc r: ir> s E 5> 8 S K 9 NS nts>*sMi i * E W K IT s •s s S S. 3 C M - ff (C EMS KOlfr C .C 1^ <\i -« iT. =3 S IT K:

S: SB S s • •••*• •• 4 •*• • • •+••••• • • •• • • • • UJ it- uJ iiJ UJ UJ UJ UJ UJ UJ UJ «jj UJ UJ UJ UJ UJ UJ UJUJ UJ UJ UJ UJ 55 S E t S K K S S S K E, n s ^ -: s r. cs s S3 IS & GIT KIT Rio tr r ir ir s IP E «r K in IT cs IT s «r IS IT

m K t F. S f. E SSSSSSS s> CS Bi- Si »»»**••*• !•••••• UJU.U-U.UJU.UJ UJ u. b. UJ tu ta.' u. u. IU u u' u; 5 S S S S •• S u.' u. iu u; u. u; 3 5 a 'S N Si 6 E C K K <\j (S SMSSSSS s f»"i s s s >n K rs <» op —• t>- -o m | K. IT »« «C- F •« s | ••a co •-•'

s s s i. K s E ••• •• •••••«•• + •••• UJ u.- UJ fc^fU J UJ u* kL« UJ UJ UJ bJ UJ I&J 111 m S S S- S E C S &GSSSSS Si S^ S S 1 :S S. IS S S S a Si S SC3SSSSS in s ac jr. s if r. ir B & r stff s m s > a. a. a. a. *. •.

iM EC Ef BF 6E E t5iC; 5E5ESS • I I I • •» 4- • ••• •!•••§• •••••• UJUJUJti.UJU.Ui UJU.' U* tu U. U. a. UJ U- U. s ^ s a E. * ^ in -s sasms^s tnes siPSMSiicts s c K ? IT « * 9«» e a s IT K •• s ani

S« ~* a. — CC«D **.-^ tti ~C —'•-< — >-^ KID S !>••<• 9 O M «4 t » (9 f3 S 15 T> i«S ^ T5- 5S •*•»•-•••••-•••»•+ + « 4 « 4 « UJ Uf ^li UJ W lii ilk UJ UJ UJ LJ UJ UJ UJ UJ UJ UJ UJ UJ> UJ Uj UJ UJ UJ UJ UJ laj IfcJ tij t&t 111 |aj} S !5 S S IT S S O- S&SSSSBS BSGSSSBIS "i P5 «: ?i r% ^: ^ or. to SS ESSSB B s in s in s r s &

101 sssssssss

CT-fftr^otc-0'OiO'0{rot?0ff3 «• er ec a a oc ct

(V C t &. 6. UJ U! UJ. u. ki_- Uj UJ UJ U.' tkl UJ UJ UJ it.' U> UJ »Xi alrf U* Ui UJ UJ UJ rs ts S S5MQKIS J)S Sl^xG SSSSSS a A* 5" oc G. IV ESS—•E'O'K.sSKE.SM'K. G K IS K E> E OC OC - a

l\t OC fV * a ^s «v< E& l^* ^* V^- X^~- f*» f**1 f*^" C *^ (S' >O *C' *f ^C ^C' »C ^* ^* ^^ ^* ^^ ^*" ^s Ck ^U ^5 6« ^^ Af ^? i^ ^& 1 ?5 s. "S & ^i S»> ^D 35 C^* SJ 55 ^S ^5 ^5 S> S3 St CSt ^r ^B ^Q ^£ 55 + ••••••••• + •• + ••• •••••••• UJ JJ Ja UJ UJ -d u. E E. R. C CSv Cta ^^ ^^L 5^ Ci ^> CS "^S ^S* *^^-' C^ ^S* ^& ^S CSh ^S^ ^S< ^Si !S "S S. fi sc s W' p; IT M r\i f> at G^ kf^ ^^S^ t^^ C& l^^ ?^^ ^*4 ^^^ ^^ ^C ^^*~ C^* ^*4 Pw ff^ %^^ \^^ v& !"•- o- • •••••••««••«• ••••••. «-« «-«r\j 9 m r*» oo *^ ^* ^< ^* ^* •* «•* ^ »* f\i in AJ OJ »* • ^U; kt> ^^ kL* S ^ ^k* kjj ' *"* fD *JD S *O S *** S C^ C!S* "O S1 S & Cb Si S G3i 6. Si E. oc

— l» « rv

s s Si • • + • • • UJ u. UJ UJ UJ •X, U. ^-t .j|i \^ 1 ^ l jj^j l^f JjJ. JJJ 4^J t^ % m UlM |^f ft 1 ^44 ly J|J |^J |/jy ss e> E- ^i Si s 1 ft in e> e. ^5* &• ^- l^> ^E C£ ffc. (5 ^^ C£ ifi ^J; J^ ^p p^ ^J {5 J^- C& I^I

*•* cr-

(VJ """^ £ ^O V1^ ^\* fVi fVi ^VJ ^W (Xl ^™* ^O ^V) ^J ^"^ ^"— ••* ^^ *"* ^^ "*^ ^W fW rtJ ^J ^1 ^^ ^^ J^ ^t ^"^ •** ^^ «*4 «•• C- fft& ?CffCK.FC(5E E K. C CS- C£ K S l£ & IS & Gk> E Gb C Cu £ &. C* C- K1 ©v CS K K t +<+ ttttiii ^4- tvtttttstttti + ••• •••••+•• UJ UJ UJ U.1 LLJ UJ ku UJ k*- Lu UJ U- It- UJ UJ UJ UJ UJ U.1 U.! UJ \U UJ UJ UJ U- UJ UJ UJ UJ UJ fcfci U.'

( vi C^ ^? l^^ ^S '1^^ ^£' JI^D C^ V*^* ^& ^y C& ^^.' ^^ ^j i^^» ^^* ^S ^v Gb> f^^ ^5. ^ ^S* P^ ^y flC fll^ ^^ ff^^ 7 ^& ^SS<

^- CC' OC G ^^ ^ ^ ^> 0s CC t**- CD tP & f • •

1 1 C5 Pw ^O 5* ^> Si CO (5 CI^J Pw f% ^w 9 55 5) *S ^5 ISi fS IS) KJ ^5* fit ^9 £5> CS {9 ?i) **^ ff?6 S Si CS* ^& Q

n i t| i ^t i it i it ^ in ,| t Li f V > \^i 4XJ UJ tXt tXi UJ kLt uJ kiJ 4JJ UJ LO LLI UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ

G& ^* ^J i*w t/"*- 5* ^\ Ci- if) Ps» ^3 ^7 Si ff5'S i S^ S> C5».' 1^^ Si tfi G& ^O CS3 iO ^£ t^i {5 Cfi ffp ^^ i^ft

^^ s*F ff£ OC ^"* *™* ^^ ^™* *^M| ^™ (\J ^T Si ^0 •"• ^O ^X ^D (^ ^^ **^ *^ ••* ^^ ••• ^** *^ ^y ^V" ^™* ^J ••# »^ 4^ 4^

102 OJ (Vi At ssssss sss&s

if*

UJ Ui 111 U> Us 111 111 M1 ^r« 'i* «•' ^< U) SSIUS4SSSSSSS s p^ s ir is s s s s s SM9SNSIOSIPSSS s -a s oc rs x s »• iTP S KSKr^'Vt S «->Cir KK iP W It «. rvj

-c £> ~c< a s?5 sss^s s s • +•••••••••• ••••• •••••••••••••••••• U) Hi 111 Ui iiJ UJ I&J Ui Ui «1) iU U) ssssessscsisss SCBCBSSSSSrSSSSl s s a s ® R Si s K P. ti if K If. K IT K

f\,!\it\lf\lf\ir\i'\2'\i -. s s —

U.llltL.kilLllUU. IbU.LL U-UIUUiLlLUIlLiiLUlJ. il^ U.' tl. U. U. U. O.. U. s s 3 s s> w s 3. s nt s r\> s a -s sc s J^- n s erdSsECtSKKEf^E I^E^JSaE^E E NNCSMaM^lOinK fUCDOCl^O>LT»^^ rv *v if. •- r«- ec- ft 6. r^ f\j •»> Kt o K F^^fti — ^r •-

SS5SSSSSSSSKE ••••••••••••• ••••• C> 6> Cl fi K R. t E & E (i E; f. tSiTSlflilf IT. »-«»f'^r"JirtB:ift?i»c^3 if> •— >\i af 1/1 r^ cc nt ft if ^o ao o- E 4. 4- • UJ iij UJ &1.1 Ui ll: li; iu UJ LJ UJ tk UJ U.' UJ U.' U. U. UJ tl. Ul LU U.' U. U. U UJ u. in S3 E "S ' If. 'S -S KC;(S(VK»- Sv-SSCK'. C.CT 3 «C- 5E — Si iT et N «-<

CCKV -»« — a**** MI. S •C IT »••••••••• I Ui Ui iAJ iLi Ui a E K si

103 .n -o r- oc o- ?5 — M « « M an o* •« •< f\j x> r~ se

C e ••* SESSSSSK'E^S.K'SQ'SSESl

S»-£>ji=j-iES5GiSiC»&.&.S; 9 E E IS S C I. t- S. S £. E 5L £.

1 U* UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ U. U.- UJ UJ U U a> UJ Ui

  • » — (V, i S KK *fV'f^CK>i>O fVi

    «*••

    ••••+ + + + ••• + •«• + + + • + + + + ••••••••••••••••• til tf t i>i i l |^J ^j 4^j n3iklLUUJUiUJ IU ^J Ui UJ UJUJa-liJLLJUJLLiuJUJ fc CE.ec*:s;s.5.c;t. S S S S S S E. S S EK&Sf.

    s, s &> ffv F> ^i C>' S & ^£ C£

    U. U< UJ U; b- kJL 4l- UjUJU.IUJUJUJU-li.iU.lLJU.1 f% ^£ ^* ^^ CE & C^ ^i- t&

    • •••••»•• + •• + ••••-»•••-••• + • UJ UI 111 Ul kLt UJ Ui UiUiUiUIUJUiUJUJUIUj UI i uJ UJ U) U« Ui UJ «u E CS. K. a S S S G S & S G S S G S'S S

    . •. «. •- •. •. «. •- •• «. •- ". •- •- «. •• «. •. • rvi — «\j 3 »r> i^ cc

    KiKi«--r\if\iojcvi'\if\if\ji\iru(\)f\!rvj!\irvjrvi — xi rvi AJ fw rv E e s c K s e e s. e s c c• «r e ir e E C K • -fitiiiittiiittii* -*•'«• UiUiU.'UiUiUJU/UJUjUJUJUJUJiL>UJU.UJUJ UJ UJ UJ U- il. UJ UJ U. U.I U.' Lu u. U^ sssssssasMssisssrtSff ins u. ps^^cr^:— in—r«s ss«a

    »+••••••••«••••••»•• faj Ui UJ Ui UJ UI UJ uJ Ui IAJ Ui ui Ui Ul ixi Ui Ui UJ Ui Ui UJuuuibJWuJUJUJUJuJ Ui M '- * i t»t SSSGSSSSSSSSGSSSS5 O- S S S S S 5- >Si (S K (S SS.ES S Si l55GSStSSSSMGSSKRRSI9 OC B inl/ ts rs fu ro oo o- • ru

    104 «. 1. fl PJSI i 53 Utf-Z*» 9d LASL 1051 3 FVAL-DEC7B E.P.ARTHjR H51 L*-7i"l#7<»e? DlST-nEC7S a GENERAL b 1«51 7 THE FOLLOWING CROSS SFCMONS RESjLT FROM A NEW EVALUATION OF 1«51 B ZR 89 - Pfl ISOTOPES MADT USING GNASH AND COMNIJC U51 9 STATISTICAL NUCLEAR MODFL CODES. T«IR EVALUATION USES fJEw Monfcl PARAMETFRS AND SHOUl D RFPRESfcNT AN iMPtfOvFMFNT HvfR TH£ EARLIER last 11 EVALJATION (6/17/77). 1'lSl 1? PRELIMINARY REPORTS OF THIS wORK APPEAR IN LA-7^M1-PR(1978) P,£ 13 AND LA»7afl2-PR (197«) ».b, AND A DETAIIF!) DFSCRTPTIPN OF THE M f f1 \a CALCJLATIONS WILL APPF.AP IN AN 'JpCO I JG L S At A^OS REPORT, A 1/151 15 BRIEF DESCRIPTION, HOWEVER, wtLL RE GIVFN fiFLOw, 1«51 16 PRINCIPAL IMPRQVEME-.MT5 INCORPORATED IN THE PRFSFNT CALCULATIONS last 17 RESULT FROM SETTER PROTnN AMD NEUTRON OPTICAL PARAMETERS AND 1051 18 THE DETERMINATION AND JSE OF GAMMA-RAY STRENGTH FUNCTIONS IN THTS<«090 U51 19 MASS REGION, NPW PROTON OPTICAL PARAMETERS WF.RF nfTE»MINK) 1'451 Pa FRO* LOW ENERGY SR-«7. Y-P9 (P,N)DATA (REF.l) AMD ARE SOMEWHAT labl 21 DIFFERENT FROM1 9TANRARD PARAMETER SETS, ViFUTRON PARAMETERS WfRE ?i BASED ON A MODIFICATION OF THE UGRANGE SARAMETFRS (RFF.2) WHICH 25 ARE APPLICABLE FROM i «pv TO ?0 MEV. l'45l ?a TO DESCRIBE THE NEUTRON CAPTURE PROCESS AND GAMMA-RAY COMPfcTIT 1(151 25 A SYSTEMATIC STUDY WAS MADF QF GAMMA-RAY STRENGTH FUNCTIONS FOR l a5l 2b ASS5-10? AS SUGGESTED IN RfcF.J, THESE GAMMA-RAY STRENGTH U51 ?7 FUNCTIONS CAN BE DETERMINED FROM CAPTURF DATA ON STABLE NUCLfc I U51 28 AND TH£N BE JSED TO GTVE REALISTIC CAPTURE CROSS SECTIOMS ON ?9 UNSTABLE NJCLEI.AS WELL AS To PROVIDE AM ACCURATE DESCRIPTION OF GAMMA EMISSION WHERE IT IS AN IMPORTANT COMPETING REACTION, 1U51 31 FINALLY A NEW °REEQUILIRRIUM MQDEL BASED ON THE KALBACH RESULTS 32 (REF.a) WAS JSED TO DESCRIBE NONJTATISTTCAL EFFECTS IN THE RANGF. last 35 10»2!L MEV, (OTHER PARAMETERS RELATING TO LEVEL DENSITIES AND THE H51 3a FORM OF THE GAMMA-RAY EMISSION MODEL WERE SIMILAR TO THOSE USED U51 35 IN THE 6/17/77 EVALUATION) THE NET RESULTS OF THESE IMPROVEMENTS 36 WERE A CONSISTENT PARAMETER SETS WHICH REPRODUCED NEUTRON AND «0 43 «— ru ra •*

    IT:

    £. SSSSSSSSSSSiS SS

    SR c (— UJ IO u. X a l_j u* UJ ui _j 1 ^_ •< f^ sss «^ • u. 2- c/> e: « »* X a. - {^, X < C5 a eni aj u. UJ »T ^. or LJ c J1 S S B UJ | I O Or cr. < u. a t— UJ CO' % z o- a. n T c i. • 0r k_ 7! • < _^ cr t- O

    U. «r #- u.- c > z o tr •- C -• •- If UJ 13 ^! tr • •— tt UJ ru S90S a. • < u> a z LJ Uu ^ • <_) a: CC UJ (_ 1 V. LJ- CO »— Or v> aJ X t-t z ess.es SCS.CS. UJ tt • > C •

    a 1- UJ ^> S SSS X c X LJ' — SS& g UJ

    k— t— tr n c c • i—, • > uJ ? u. UJ _i ** »— T > u. a ^^ GTE Cs x z o- O- •*>• C c U.1 * # UJ l_J x rr UJ •SI X u.< UJ < >- »- UJ cr •- z UJ T O- t/y < LJ tfi Ui

    C«< 99IT sO NO •£ ss s ISI u • -f l Z-iflck.u.. C u. • o in IS CD K- Bl •* •— ^ LJ UIWO7 •- Z — a nj w

    106 3-3

    S&G6GE55S i £< 6, S E. ••< C>. !i t. •*-4-4-4-4-«»tt »»+•*•+ il* u~c lli UJ UJ UJ UJ li^ UJ uJ tAJ> a- uJ «&i UJ uJ lu Lu ILJ U. .». .eo »»• '•» »* IS s. o> •£. s. s 9 5; K. s K> •" AJ Ci E IT ts 9 O- .£ f- •-• S. Si *3 c E if • s •* N e; r*> s •-• t\i IT tr CVS- «-• rxiE ^ s »< w »< LT .^ «v

    tS S> S S S IS I- "5 S 1^. -S "i "I •• •• • • • • • • + ••• •*• ••• •••••• i^j U tii UJ UJ UJ Iki a.' uJ jjj . s. s s ts &> ts &•& c' B s rs e s C s• K K. S. S. 5. sssssss-ss s s s s & c c. . s s s s. r: ci ssKirsirefG 1 ««:• ur IT «=• *r rr in

    S E K £ E. ts" c JS. E E. 6 C f: •*••••»'-»- U. UJ IL ILi b< U) Ul U. LL li_ U. U: a- U. UJ i^ 11. a. U. U. u- LU u. SSSO'SIMSiSS s- s 9 i S S S. S 1ft 1 . s- »n r: rs • s. c- A.- *\. if M r\i.f>- ^ «-< — E a - rv nj. fv.c; ^ g •- a e «s. tr. S« 5. S S t • ••••••••• •«•••••• 1 UJUJUikijUJuJUIU'ttJU' UJa-UJu^Ui UJ •>.' - UJ lu UJ U. H. UL GGS5SGGS5& K 5 d fSKCCSK GSSSSKKSSS .S S S S S ' t 51 S r>- S IS SK&SITElf. &IT& •"" E: If. K. IT. r. IT

    00

    e s C. c. e. s e I I + + • s s- s ? s rvj 5,lTKft.t K"

    s W r«. r— •« K R (S KS S ^ *C (\) •• + •»•• + + Ui kXi UJ UJ Ifci I&J Ui tki UJ UJ UJ U« lij lU iL U> li.' «*J OJ UJ U UJ UJ UJ UJ S S E S S S S S KS.SEJRi'5 Si l«. S ••& S. <&• C »»w is s s; 5: E s s in s in s in s i/t is N R pa j> 1 s x- s in in c ifi s R 1/1 R R ru f) in A o O w MO N ma ITNIC ^

    107

    Si S — e; s E »v E x a IT iT l\i tV; a ^ S 33 t E cc ** =r ru o- e. «- tr rssssss/sm •

    E. s. S. 3i K s 5j 5S + UJ aJ UJ OJ «k UJ UJ UJ 4JL) UJ UJ UJ UJ S C. G E E E s & E E E s E S ?;. "3 •2 ^ S; s. S Si' S s • ••••••••••• IT E. IT it IT r IT E IT IT. IP e: IT »r ~\ IT CC O- Ki (V -C CO • ru l».| || Ifci.1 »>j . ^j yj i^j |^j |J^J tk| (V IT Si S K (S (5 S (A S IA IT i~ CS Si &^ l\l rv. Mm «o ^4 >} 0Drtl tr t *•• f^ 1^" f\l t^ E s. c s, S s s Si a. UJ u_ UJ u. u. LJ a. u. UJ U.' UJ u. U.- u^ UJ K j^ s •0 E •«. S' E E ESSSSSSSSS K XI Ifl PC S1 — K —' «c • • *

    KRf:nMi 3 IVISGSSBSGSSS ••»•-»••••• •^.^.^.^.^.^.^.^.^ UJ U.' UJ Ui UJ 41.' i*j UJ UJ UJ UJ UJ UJ UJ UJ 41i UJ ll£ UJ tlJ lii u. ir" S(BSSSiSSK&K i> ^ 5. Si E "i i E SSCSSSSSSSS in *AGSSSSSSSS s in r; i/i s ir s I msniTNisssins a. a. a. a. ». a. •. a. a. a. K CI < M 3 CD Al Ift H rt *V ru ru ru E E S 5 E E EE EEISEEEKEEE • * U^ U. ujiuuJUJUJ L&IUJ U^U.UJ UJ UJ UJ UJ UJ UJ bu U^ UJ> UJ UJ iki llJ UJ liJ kxi s (V33 sr«s ivs SM s JI E N s srvis^-s.r»s ws & c G » s tn K *<-•<•> SSSGSSISSSS «W SS Hi SSS.S>MGI&4D<*DG'

    E *o «j^4 ec • PS «5 rs •* "a .*. + 4- •» • •*• •¥ • •*••*••*• + + + •*•+ * a«.«.4.«.4.4>««.«. UJ ixj UJ UJ Oj UJ UJ UJ UJ UJ UJ UJ iu ui UJ UJ Ui UJ UJ Ui UJ liJ klJ UJ UJ UJ laj UJ UJ iAi !5i S E E s> s SKSiSSiSSS SSSSSSSSS'S !>t rs. TS> IS K F5 n BE o StSSGSI98ISBB X> Si IT ir> 5. «• cs o is in is m R IT s KSSSSSSSBB i>a 5» f\l P^ p; KI »<<\I a insic S ssisRsnininiQio

    108 1 r~S4 S O S

    UJ uJ Ui UJ Ui Ui UJ t^i ill l&J UJ kiJ l&J OJ uj uJ UJ lx> ol oi Ul U UJ GSSSSE5SSS5 E s s 5 r> •: s. s s KSKSKlTSITKIfK SEESRKIfEITSlTP E f. R R If R IT F. IT'

    to ifi i> co a « •<»< « ^ ^ M

    1 IL ill Ul k'^ u. I1. UJ it U. U. lu IL UJ u.' U. U. U. U. U^ u. u. U. UJ U. S&SS

    s. s -< ^ p.

    4>4'4--*'4--*--*.-l>-*'-*--» 44 + » lli Ui tij kli UJ UJ Ui UJ Ui UJ UJ Ui Ixi ki« Ui «U UJ '*ii UJ u-i UJ UJ Ui u. UJ u^ UJ UJ U« BiSSCSSSCCECS SCSCSSS. SSC.S.S- SSSSGSSSSSS KESSiiTSlOKtrSIP If) 4 CO 9 tlf «, •. •» «.

    • •••tttttll -t- • i»»»»lt»tl# • + UJUJUiUJUJUvUiUiUJUJUJ UJ UJ U^U-'UMUiiuUkLiUJlLUjb) U- a- U.U.U;Uiu.U. S

    f> S v< (U ^ IT S

    KM es — ••ir^

    •••»•«••••••••• • UJuiUJUiUJUJUJiUUJUJUJ UJ uJiiiUJUJUiu-iUJUJUJUJUJkii uJ UJbJuJWUJtLluJiiJiu SSSCSSGSSSRB ^ C1SK s ts

    109 G S S SSS3SSS55SSr5SSS

    333393333333333339333

    • i itttitriiiit L| I int 4^. \±'t if { ||, ^f. ||j t|i j^ 4^j 44.. J^» i^J

    if* O* ^V S CS £*> •*• S- ^" C JD »^ ^ S

    3E GP ^ C» tiki S ^t Si ^ S S S1 ^S ££

    t^ IT C Rf rStSinKITBifR QC' ^^ l^ ?3 ^fi PW ^O ••* ^U 5J li^ ^^* CO ^5'

    w* ^ ^5» rO LTI ^O QC (J* ^* «•« «^ v^ ^"* •** f\j

    t * ••••!•• tl*t"t

    •»• • •••••••••-». + •••

    C'W ?#• ^,\ ^j^ SS» CS C« €^ C5 ^& Cdt C^ ^S" G&

    ITS. R S E C 5 If S If. 6 /• K IT

    cr, r CE. et^c. ceecccc iti • • iiti(tt»»»> L> t It I It I .• !• fcj^ ijj l^i J^J 4^» |^J l^ %±- ^J i^. QJ •^S" ^B C* AJ 55i S «.^ ^' QD £ ^ Si ^ flE ^w ^» K G Ct P^ IS !& O S ^ S X ^C S C 9 S

    • •• •• >*>«••••••••

    • • • • lij aim a.' ^ jjy J^J ^|j J^J ^jj ^j |^j jy QJ SSE S S S S t£ K' *• S- B> B, CS Ki 5 ISR 5. & SlPK 5B

    •-a •-• f\| s. —

    110 REFERENCES

    1. W. Hauser and H. Feshbach, "The Inelastic Scattering of Neutrons," Phys. Rev. 87_, 366 (1952).

    2. C. Kalbach, "The Griffin Model, Complex Particles and Direct Nuclear Reac- tions," %. Phys. A283, 401 (1977).

    3. C. H. Johnson, A. Galonsky, and R. L. Kernell, "Anomalous Optical Model Po- tential for Sub-Coulomb Protons for 89 < A < 130," Phys. Rev. Lett. ^39, 1604 (1977); and C. H. Johnson, R. L. Kernell, and S. Ramavataram, "The 89 89 Y(p,n) Zr Cross Section Near the First Two Analogue Resonances," Nucl. Phys. A107, 21 (1968). 4. C. L. Dunford, "A Unified Model for Analysis of Compound Nucleus Reactions" Atomics International report AI-AEC-12931 (July 1970).

    5. P. G. Young and E. D. Arthur, "GNASH: A Preequilibrium Statistical Nuclear- Model Code for Calculation of Cross Sections and Emission Spectra," Los Ala- mos Scientific Laboratory report LA-6947 (Nov. 1977).

    6. Ch. Lagrange, "Optical Model Parameterization between 10 keV and 20 MeV - 89 93 Application to the Y and Nb Spherical Nuclei," presented at the National Soviet Conference on Neutron Physics (1975).

    7. J. P. Delaroche, "Study of Neutron Strength Functions and the Optical Model at Very Low Energies," Thesis, University of Paris, FRNC-TH-450 (1972).

    8. E. A. Romanovski, E. I. Sirotinin, T. I. Spasskaya, K. S. Shishkin, V. B. Gubin, and A. S. Rudnev, "Measurement and Analysis of the Elastic Proton 89 93 Cross Section of Y and in the Energy Range Between 5 and 6 MeV," Akad. Nauk. SSR. Ser. Fiz. j!9_, 87 (1974).

    9. D. Wilmore and P. E. Hodgson, "The Calculation of Neutron Cross Sections from Optical Models," Nucl. Phys. 55, 673 (1964).

    10. F. G. Perey, "Optical Model Analysis of Proton Elastic Scattering in the Range of 9 to 22 MeV," Phys. Rev. 131, 745 (1962).

    11. K. Schulte, G. Berg, P. Von Brentano, and H. Paetz gen. Schieck, "Optical Model Analysis of Proton Elastic Scattering Excitation Functions Around A - 90," Nucl. Phys. A241, 272 (1975).

    12. J. Blaser, F. Boehm, P. Marmier, and P. Scherer, "Anregungsfunktionen und Wirkungsquerschnitte der (p,n) Reaktion," Helv. Phys. Acta ^4_, 441 (1951).

    13. D. G. Gardner and M. A. Gardner, "Gamma-Ray Strength Functions in the Mass 90 Region," Bull. Am. Phys. Soc. 22_, 993 (1977).

    14. E. G. Fuller, H. M. Gerstenberg, H. Vander Molen, and T. C. Dunn, "Photonu- clear Reaction Data, 1973," National Bureau of Standards Special Publication 380 (1973),

    111 15. J. W. Boldeman, B. J. Allen, A. R. de L. Musgrove, and R. L. Macklin, "Va- 88 lence Neutron Capture in Sr," Nucl. Phys. A269, 397 (1976).

    16. J. W. Boldeman, B. J. Allen, A. R. de L. Musgrove, and R. L. Mackin, "Neutron Capture Cross Section of Yttrium 89," Nucl. Sci. Eng. j64_, 744 (1977).

    17. J. W. Boldeman, B. J. Allen, A. R. de L. Musgrove, and R. L. Macklin, "Va- 90 lence Component in the Neutron Capture Cross Section of Zr," Nucl. Phys. A246, 1 (1975).

    18. A. Gilbert and A. G. W. Cameron, "A Composite Nuclear-Level Density Formula with Shell Corrections," Can. J. Phys. 4_3, 1446 (1965).

    19. J. L. Cook, H. Ferguson, and A. R. de L. Musgrove, "Nuclear Level Densities in Intermediate and Heavy Nuclei," Aust. J. Phys. JW, 477 (1967).

    20. E. D. Arthur, "Phenomenological Fit to Experimentally Determined Level Den- sity Parameters," in Los Alamos Scientific Laboratory report, "Applied Nu- clear Data Research and Development October 1-December 31, 1976," p. 2, (March 1977).

    21. J. W. Tepel, "Nuclear Data Sheets for A = 86," Nucl. Data Sheets 25, 553 (1978).

    R. L. Bunting and J. J. Kraushaar, "Nuclear Data Sheets for A = 88," Nucl. Data Sheets 18, 87 (1976).

    D. C. Kocher, "Nuclear Data Sheets for A = 89," Nucl. Data Sheets jL§, 445 (1975).

    D. C. Kocher, "Nuclear Data Sheets for A « 90," Nucl. Data Sheets J£, 55 (1975).

    22. C. Kalbach, "Exciton Number Dependence of the Griffin Model Two-Body Matrix Element," Z. Phys. A287, 319 (1978).

    23. C. Kalbach, Duke University, personal communication (1977).

    24. F. G. Perey and W. E. Kinney, "Neutron Elastic- and Inelastic-Scattering Cross Sections for Yttrium in the Energy Range 4.19 to 8.56 MeV," Oak Ridge National Laboratory report ORNL-4552 (1970).

    25. A. Abboud, P. Decowski, W. Grochulski, A. Marinkowski, K. Siwek, I. Turkie- wicz, and Z. Wilhelmi, "Cross Sections for the Y(n,n') Y and Y(n,2n Reactions," Acta Phys. Pol. B2_, 527 (1971). OQ QAfn 26. C* G. Hudson and W. L. Alford, "Neutron Cross Sections for Y(n,n') Y and 115In(n,nT)115min at 15.2 MeV,11 Bull. Am. Phys. Soc. _n, 188 (1976). 27. E. Rurarz, J. Chwaszczewska, Z. Haratym, M. Pietrzykowski, and A. Sulik, "Excitation of Isomeric Activities in Rb, Y, Pd, Gd, W, 0s, and Pb Using 14.8 MeV Neutrons," Acta Phys. Pol. B2_, 553 (1971).

    112 28. K. G. Broadhead and D. E. Shanks, "The Application of 2.8 MeV (D,d) Neutrona to Activation Analysis," Int. J. Appl. Rad. Isotopes JL8_, 279 (1967).

    29. P. Bornemisza-Pauspertl and P. Hille, "Measurement of Some (n.n'Y) Cross Sections and Their Connection with the (n,2n) Reaction Mechanism," Atomki Kozlemenyek 9, 277 (1967).

    30. A. A. Luk'yanov, 0. A. Sal'nikov, and E. M. Saprykin, "Analysis of the Spec- tra of Inelastically Scattered Neutrons with Account of Direct Interactions," Sov. J. Nucl. Phys. 21, 35 (1975).

    31. J. Frehaut and G. Mosinski, "Measurement of (n,2n) and (n,3n) Cross Sections Between 6 and 15 MeV," National Bureau of Standards Special Publication 425, p. 855 (1975).

    32. L. R. Veeser, E. D. Arthur, and P. G. Young, "Cross Sections for (n,2n) and (n,3n) Reactions Above 14 MeV," Phys. Rev. Cl£, 1792 (1977).

    33. B. P. Bayhurst, J. S. Gilmore, R. J. Prestwood, J. B. Wilhelmy, Nelson Jarmie, B. H. Erkkila, and R. A. Hardekopf, "Cross Sections for (n,xn) Reactions Be- tween 7.5 and 28 MeV," Phys. Rev. C12, 451 (1975).

    34. P. K. Eapen and G. N. Salaita, "Isomeric Cross-Section Ratios for (n,2n) Reactions at 14.8 MeV," J. Inorg. Nucl. Chem. 3J_, 1121 (1975).

    35. A. Golanski, "Contribution to Activation Analysis with 14 MeV Neutrons in the Case of Radioelements Having A Half-Life Less Thab One Second," Centre d'Etudes Nucleaire de Grenoble report CEA-R-3694 (1969).

    36. F. S. Dietrich, M. C. Gregory, and J. D. Anderson, "Gamma Production Cross 89 Sections from 14-MeV Neutron Bombardment of Y," Phys. Rev. C9, 973 (1974).

    37. Don Barr, Los Alamos Scientific Laboratory, personal communication (1977).

    38. D. R. Nethaway, N. L. Smith, J. H. Rego, R. J. Prestwood, "Cross Section 88 88 Measurements for the Radioactive Targets Y and Zr," to be published in Phys/ Rev.

    39. J. R. Wilhelmy, Los Alamos Scientific Laboratory, personal communication (1978).

    40. B. P. Bayhurst and R. J. Prestwood, "(n,2n), (n,p), and (n,a) Excitation Functions of Several Nuclei from 7.0 to 19.8 MeV, "Los Alamos Scientific Labatory report LA-2493 (1961).

    41. H. A. Tewes, A. A. Caretto, A. E. Miller, and D. R. Nethaway, "Excitation Functions of Neutron-Induced Reactions," Lawrence Livermore Laboratory re- port UCRL-6028-T (1960).

    42. V. Levkovskij, G. E. Kovel'skaya, G. P. Vinitskaya, V. M. Stepanov, and V. V. Sokol'skij, "Cross Sections of the (n,p) and (n,a) Reactions at 14.8 MeV," Sov. J. Nucl. Phys. .8, 4 (1969).

    113 43. J. Csikai and S. Nagy, "Some (n,p) Reaction Cross Sections for 14.7 MeV Neutrons," Nucl. Phys. A?_l, 222 (1967).

    44. Peter Hille, "Systematic von (n,a), (n,p), und (n,2n) Wirkungsquerschnitten Mittelschwere Kerne fur 14.5 MeV Neutronen," Akad. der Wissen, Vienna, 177 463 (1969).

    45. A. A. Bergman, A. I. Isakov, M. V. Kazarnovskii, Yu Popov, F. L. Shapiro, 89 "Neutron Capture on Y," Jad-Fiz. Issledovanija 2» 9 (1966).

    46. R. L. Macklin, J. H. Gibbons, and T. Inada, "Neutron Capture Cross Sections Near 30 keV Using a Moxon-Rae Detector," Nucl. Phys. 43^, 353 (1963).

    47. Rex Booth, William P. Ball, and Malcolm H. MacGregor, "Neutron Activation Cross Sections at 25 keV," Phys. Rev. 112_, 226 (1958).

    48. D. C. Stupegia, Marcia Schmidt, C. R. Keedy, and A. A. Madson, "Neutron Cap- ture between 5 keV and 3 MeV," J. Nucl.Energy ,22, 267 (1968).

    49. R. L. Macklin and J. H. Gibbons, "Capture-Cross Section Studies for 30-200 keV Neutrons Using a New Technique," Phys. Rev. 159, 1007 (1907).

    50. J. H. Gibbons, R. L. Macklin, P. D. Miller, and J. H. Neiler, "Average Radiative Capture Cross Sections for 7- to 170-keV Neutrons," Phys. Rev. 122, 182 (1961).

    51. V. A. Tolstikov, V. P. Koroleva, V. E. Kolesov, and A. G. Dovbenko, "Radi- 89 ative Capture of Fast Neutrons by Y," At. Energy (Sov. J. At. Energy) (English Translation) 21, 1213 (1966).

    52. H. A. Grench, K. L. Coop, H. 0. Menlove, and F. J. Vaughn, "A Study of the Spin Dependence of the Nuclear Level Density by Means of the Y(n,Y) "Sr Reactions with Fast Neutrons," Nucl. Phys. A94, 157 (1967).

    53. G. Peto, Z. Miligy, and I. Hunyadi, "Radiative Capture Cross Sections for 3 MeV Neutrons," J. Nucl. Energy _21, 797 (1967).

    54. I. Bergquist, B. Palsson, L. Nilsson, A. Lindholm, D. M,. Drake, E. Arthur, D. K. McDaniels, and P. Varghese, "Radiative Capture of Fast Neutrons by 89Y and 14°Ce," Nucl. Phys. A295, 256 (1978).

    55. D. Drake, I. Bergquist, and D. K. McDaniels, "Dependence of 14 MeV Radiative Neutron Capture on Mass Number," Phys. Lett. 36B, 557 (1971).

    56. Yong Sook Park, H. D. Jones, and D. E. Bainum, "Distorted-Wave Born-Approximatior 90 88 88 3 38 Analysis of the Zr(d,a) Y and Y( He.cx) Y Reactions," Phys. Rev. C4, 788 (1971). ~~

    57. Robert T. Wagner, E. R. Shunk, and Robert B. Day, "Reaction Zr90(n,nf)Zr90m," Phys. Rev. 130, 1926 (1963).

    114 58. A. B. Tucker, J. T. Wells, and W. E. Meyerhof, "Inelastic Neutron Scattering Near Threshold," Phys. Rev. 137B, 1184 (1965).

    59. S. S. Glickstein, G. Tessler, and M. Goldsmith, "Neutron Inelastic Scattering 90 from Zr," Phys. Rev. C4, 1818 (1971).

    •s 60. A. Abboud, P. Decowski, W. Grochulski, A. Marcinkowski, J. Piotrowski, K. Siwek, and Z. Wilhelmi, "Isomeric Cross-Section Ratios and Total Cross Sec- tions for the 74Se(n,2n)73g'mSe, 9°Zr(n,2n)89g'mZr and 92Mo(n,2n)91g>inMo Reactions," Nucl. Phys. A139, 42 (1969).

    61. Y. Kanda, "The Excitation Functions and Isomer Ratios for Neutron-Induced 92 90 Reactions on Mo and Zr," Nucl. Phys. A185, 177 (1972).

    62. D. R. Nethaway, "Cross Sections for Several (n,2n) Reactions at 14 MeV," Nucl. Phys. A190, 635 (1972).

    63. R. Reider, "(n,2n) Wirkungsquerschnitte Einiger Nuklide mit Neutronenzahlen Nake der Magischen Zahl 50 bei Neutronenenergien um 14 MeV," Akad. der Wissen, Vienna, 175, 53 (1966).

    64. S. M. Qaim, R. Wolfle, and G. Stocklin, "Nuclear Data for Fusion Reactors," Atomki Kozlemenyek 18.* 335 (1976).

    65. B. Minetti and A. Pasquarelli, "Isomeric Cross Section Ratio for (n,2n) Reac- tions Induced by 14.7 MeV Neutrons," Nucl. Phys. A118, 449 (1968).

    66. J. Karolyi, J. Csikai, and G. Peto, "Isomeric Cross-Section Ratios for (n,2n) Reactions," Nucl. Phys. A122, 234 (1968).

    67. J. Araminowicz and J. Dresler, "Investigation of the (n,2n) Reaction with 14.6 MeV Neutrons," in Progress Report on Nuclear Data Research in Poland 1972-1973, INR-1464, p. 12 (1973).

    68. R. A. Sigg and P. K. Kuroda, "14.8 MeV Neutron-Induced (n,2n), (n,p), and (n,a) Cross Sections for Some Closed Shell Nuclides," J. Inorg. Nucl. Chem. 3J_, 631 (1975).

    69. Wen-Den Lu, N. Ranakumar, and R. W. Fink, "Activation Cross Sections for (n,2n) Reactions at 14.4 MeV in the Region Z = 40-60: Precision Measure- ments and Systematics," Phys. Rev. Cl^, 350 (1970).

    70. S. K. Mangal and P. S. Gill, "Isomeric Cross Section Ratios for (n,2n) Reac- tions at 14 MeV," Nucl. Phys. 49_, 510 (1963).

    71. L. Husain, A. Bari, and P. K. Kuroda, "Neutron Activation Cross Sections at 14 MeV for , , Zirconium, and ," Phys. Rev. £L, 1233 (1970).

    72. A. Delucchi, Lawrence Livermore Laboratory, personal communication (1978).

    115 73. Edward E. Carroll and Robert W. Stooksberry, "Zirconium (n,p) Cross Section Measurements," Nucl. Sci. Eng. 25_, 285 (1966).

    74. V. K. Tikku, "Nuclear Activation Cross Sections, Tsomeric Ratios, and Sys- tematics of (n,p) Reactions at 14.7 MeV," Proc. of the Nuclear Physics and Solid State Physics Symposium, Chandigarh, p. 115 (1972).

    75. V. N. Levkovskij, G. P. Vinitskaya, G. E. Kovel'skaya, and V. M. Stepanov, "Cross Sections for (n,p) and (n,a) Reactions with 14.8 MeV Neutrons," Sov. J. Nucl. Phys. _10, 25 (1969).

    -CtUS. Government Printing Office: 1979 - 677-013/74