Curriculum Vitae Carlos Alberto Vargas Jimenez

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vitae Carlos Alberto Vargas Jimenez Curriculum Vitae ORCID: 0000-0002-5027-9519 Carlos Alberto Vargas Jimenez Universidad Nacional de Colombia, Departamento de Geociencias Carrera 30 # 45 – 03, Edificio Manuel Ancizar, Bogotá, Colombia Celular: (57) 300 2146420, Correo: [email protected] FORMACIÓN ACADÉMICA: 2000 – 2003: Doctor por la Universidad Politécnica de Catalunya (UPC), Barcelona, España 1999 – 2000: Master Ingeniería, Universidad Politécnica de Catalunya (UPC), Barcelona, España 1993 – 1995: MSc Inst. Física, Universidad Tecnológica de Pereira (UTP), Pereira, Colombia 1988 – 1993: Geólogo, Universidad de Caldas, Manizales, Colombia OTRAS POSICIONES ACADÉMCIAS: 2009- 2010: Posdoctoral Fellow Researcher. Institute for Geophysics, University of Texas, Austin, USA Profesor Visitante: - FAU Erlangen-Nürnberg, Lehrstuhl für Geologie, Germany, 2019 - Durham University, Department of Earth Sciences, 2017 - University of Houston, Department of Earth and Atmospheric Sciences, 2012 - University of Stavanger, Institutt for petroleumsteknologi, 2011 - Technical University of Catalonya, Dep. Earthquake Engineering, 2008 - Universidad Nacional Autónoma de México, Institute of Engineering, 2006 REGISTRO PROFESIONAL: Departamento de Geociencias, Universidad Nacional de Colombia, Sede Bogotá – Colombia, 2001- Hoy Ultimo Cargo: Profesor Titular Other positions: 1. Coordinador del Programa de Doctorado en Geociencias, 2014 - 2017 2. Director del Grupo de Geofísica, 2004 – Hoy 3. Director del Departamento de Geociencias, 2006 Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2009 – Hoy. Ultimo Cargo: VICEPRESIDENTE (2016 - 2019) Agencia Nacional de Hidrocarburos, Bogotá – Colombia, 2006 - 2009 Ultimo Cargo: Director Técnico Otros Cargos: - Asesor de Dirección General en Planeación Estratégica de Proyectos de E&P - Gerente de Proyectos de Exploración Regional - Jefe de Geólogos Observatorio Vulcanológico y Sismológico de Manizales - INGEOMINAS, 1996-2001 Ultimo Cargo: Investigador (Técnico-Científico) Red Sismológica del Eje Cafetero - INGEOMINAS, Manizales – Colombia, 1994 - 1996 Ultimo Cargo: Asistente de Investigación Otras experiencias, 1993-2006 Ultimo Cargo: Profesor Asociado Universidad de Manizales Experiencias como Par Académico Editor de la revista Earth Sciences Research Journal, 2007 - 2017 Miembro del Comité Editorial del Boletín de Ciencias Geológicas de México, 2009 – Hoy Miembro del Comité Editorial de la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2014-Hoy Revisor Par: National Science Foundation (USA), Netherlands Organization for Scientific Research, COLCIENCIAS, Agencia Argentina de Promoción Científica y Técnica ANCPyT, CONCYTEC (Peru), Ministerio de Eduación de Colombia. Revisor en varias revistas, e.g. Journal of Seismology, Tectonophysics, J. South Am. Earth Sciences, Geophysical Journal Internationsl, Tectonics, Bulletin of the Seismological Society of America, Natural Hazards, Seismological Research Letters, Journal of Geophysical Research, Computers and Geosciences, Seismological Research Letters, Geodesy and Geodynamics, entre otras. ASESOR Y MIEMBRO DE CONSEJOS DIRECTIVOS UNESCO, 2018-2022, Programa Internacional de Geociencias y Geoparques, Miembro del Consejo Científico Sociedad Colombiana de Geología, 2013 – 2015, Presidente. Comisión Latinoamericana y del Caribe – IASPEI, 2012-2014, Presidente. Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2009- Hoy, Miembro de Número COLCIENCIAS (Colombia), 2009 - 2019, Consejero programas de Ciencias Básicas y Geociencias Ministerio de Transporte de Colombia, 2005 – 2010 – Asesor del Ministro de Transporte PUBLICACIONES (Recientes y seleccionadas en Castellano e Inglés): 1. VARGAS, C.A., GUTIÉRREZ, G. & SARMIENTO, G. (2020). Subduction of an extinct rift and its role in the formation of submarine landslides in NW South America. From: Georgiopoulou, A., Amy, L. A., Benetti, S., Chaytor, J. D., Clare, M. A., Gamboa, D., Haughton, P. D. W., Moernaut, J. and Mountjoy, J. J. (eds) 2020. Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments. Geological Society, London, Special Publications, 500, https://doi.org/10.1144/SP500-2019-189. 2. GOMEZ-ALBA, S., VARGAS, C.A., ZANG, A. (2020). Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, DOI: 10.1093/gji/ggz433. 3. PINZÓN, N. & VARGAS, C.A. (2019). Variations of young oceanic intraplate seismic energy released with relation to lithosphere age. Implications in the East Pacific Rise and its convergence with the Rivera subduction zone. Marine Geophysical Research. https://doi.org/10.1007/s11001-019-09395-5 4. VARGAS, C.A., BECK, S.l., PROTTI, M., CAMPOS, J. (2019). Preface to the Focus Section on Subduction Zone Processes in the Americas. Seismological Research Letters, 90 (5), 1723-1725. https://doi.org/10.1785/0220190173. 5. VARGAS, C.A., OCHOA, L.H., CANEVA, A. (2019). Estimation of the Thermal Structure Beneath the Volcanic Arc of the Northern Andes by Coda Wave Attenuation Tomography. Frontiers in Earth Science, 7 (208), 1-13. https://doi.org/10.3389/feart.2019.00208. 6. OCHOA, L.H., NIÑO, L.F., VARGAS, C.A. (2019). Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques. Earth Sciences Research Journal, 23 (2), 103-109. https://doi.org/10.15446/esrj.v23n2.70581. 7. OCHOA, L.H., NIÑO, L.F., VARGAS, C.A. (2019). Support vector machines applied to fast determination of the geographical coordinates of earthquakes. The case of El Rosal seismological station, Bogotá -Colombia. Dyna, 86, 230-237. https://doi.org/10.15446/dyna.v86n209.75444. 8. CORTÉS, J.E., MEJÍA-MOLINA, A., MORTON, A., VARGAS, C.A., CORTÉS, S.I. (2019). Provenance, tectonic setting, and weathering of sediments in Tumaco-1 ST-P well, Tumaco forearc basin, Colombia: Insights from petrography, heavy minerals, X-ray diffraction, and whole-rock chemostratigraphy. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2019.102219. 9. IDÁRRAGA-GARCÍA, J., MASSON, D G., LEON, H., VARGAS, C.A. (2019). Architecture and development of the Magdalena Submarine Fan (southwestern Caribbean). Marine Geology 414, 18-33. https://doi.org/10.1016/j.margeo.2019.05.005. 10. CORTES, J., MEJIA-MOLINA, A., VARGAS, C.A., CORTES, S.I (2019). High‑resolution molecular stratigraphy of Oligocene–Miocene sequence of Tumaco‑1‑ST‑P well, Tumaco forearc Basin, Colombia. Journal of Petroleum Exploration and Production Technology, https://doi.org/10.1007/s13202-019-0660-7. 11. GARCIA, M.A., VARGAS, C.A. & KOULAKOV, I.Y. (2019). Local Earthquake Tomography of the Nevado del Huila Volcanic Complex (Colombia): Magmatic and Tectonic Interactions in a Volcanic‐Glacier Complex System. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2018JB016324. 12. OSPINA, D. L. & VARGAS, C.A. (2018). Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin. Hydrogeology Journal. DOI: 10.1007/s10040- 018-1824-0. 13. KOULAKOV, I & VARGAS, C.A. (2018). Evolution of the Magma Conduit Beneath the Galeras Volcano Inferred from Repeated Seismic Tomography. Geophysical Research Letters 45(1-4). DOI: 10.1029/2018GL078850 14. OCHOA, L.H., NIÑO, L.F., & VARGAS, C.A. (2018). Fast Determination of Earthquake Depth Using Seismic Records of a Single Station, Implementing Machine Learning Techniques. Revista Ingeniería e Investigación 38(2):91-103. DOI: 10.15446/ing.investig.v38n2.68407 15. BARRERA C.A., VARGAS C.A., CORTES, J.E. (2018). Establishing geothermometric constraints on the local geothermal gradients: Case study of the Eastern Cordillera Basin, Colombia. Geodesy and Geodynamics, 1 – 10. doi: 10.1016/j.geog.2017.08.004 16. LIZARAZO-MARRIAGA, J., VARGAS, C.A. & TIRIA, L. (2018). A new approach to predict local site effects related to blast-induced ground vibrations. Journal of Geophysics and Engineering, 15, 1843-1850. https://doi.org/10.1088/1742- 2140/aab8b3. 17. VARGAS, C.A., PULIDO, J.E. & HOBBS, R.W. (2018). Thermal structure of the Panama Basin by analysis of seismic attenuation. Tectonophysics, 730: 81-99. doi.org/10.1016/j.tecto.2018.02.017. 18. VARGAS, C.A., CANEVA, A., MONSALVE, H., SALCEDO. E. (2018). Geophysical Networks in Colombia. Seismological Research Letters, 89(2A): 440-445. doi: 10.1785/0220170168. 19. MONSALVE-JARAMILLO, H., VALENCIA-MINA, W., CANO-SALDAÑA, L. & VARGAS, C.A. (2018). Modeling subduction earthquake sources in the central- western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 116: 47-61. doi.org/10.1016/j.jog.2018.02.005. 20. IDARRAGA-GARCIA, J. & VARGAS, C.A. (2018), Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior. Geodesy and Geodynamics, 9: 93-107. doi.org/10.1016/j.geog.2017.09.006. 21. VARGAS, C. A., KOULAKOV, I., JAUPART, C., GLADKOV, V., GOMEZ, E., EL KHREPY, S. & AL-ARIFI, N. (2017). Breathing of the Nevado del Ruiz volcano reservoir, Colombia, inferred from repeated seismic tomography. Sci. Rep. 7, 46094; doi: 10.1038/srep46094. 22. BLANCO, J. F., VARGAS, C. A. & MONSALVE, G. (2017), Lithospheric thickness estimation beneath Northwestern South America from S-wave receiver function analysis, Geochem. Geophys. Geosyst.,18,
Recommended publications
  • The Mineral Industry of Colombia in 2013
    2013 Minerals Yearbook COLOMBIA U.S. Department of the Interior September 2016 U.S. Geological Survey THE MINERAL INDUSTRY OF COLOMBIA By Susan Wacaster The geology of Colombia encompasses five major structural extraction and output from mines and quarries nonetheless provinces, which are, from east to west, the Amazonian increased by 5.4% to $19.5 billion. Paleoproterozoic continental lithospheric province, the In 2013, the value contributed to the GDP from the Mesoproterozoic Grenvillian continental lithospheric province, exploitation of mines and quarries was about $20.3 billion, the Arquia Neoproterozoic oceanic lithospheric province, the which accounted for 7.7% of the GDP (the same percentage western Cretaceous oceanic lithospheric province, and the as in 2012). Production of mineral fuels, including crude La Guajira Cretaceous oceanic lithospheric province. Colombia petroleum, thorium, and uranium, was valued at $14.7 billion has three well-defined mountain ranges (cordilleras). More compared with $14.1 billion in 2012; production of coal was than 200 emerald deposits and occurrences have been located valued at $3.7 billion compared with $4.0 billion in 2012; in narrow stretches on both sides of the Cordillera Occidental, production of metallic minerals was valued at $1.2 billion which is the easternmost of the mountain ranges. Colombia has compared with $1.3 billion in 2012; and production of been a significant gold-producing country; production has come nonmetallic minerals was valued at $863 million compared from placer, vein, and lode deposits related to porphyry copper with $813 million in 2012. The supply of electricity, gas, and systems. Continental rifting created basins where sediments water contributed about $939 million to the GDP in 2013 rich in organic material became the source of the country’s compared with $930 million in 2012 and accounted for 3.6% of petroleum reserves.
    [Show full text]
  • Topographic Response to Neogene Variations in Slab Geometry, Climate And
    Topographic response to Neogene variations in slab geometry, climate and drainage reorganization in the Northern Andes of Colombia Nicolás Pérez-Consuegra1*, Richard F. Ott2, Gregory D. Hoke1, Jorge P. Galve3, Vicente Pérez-Peña3 1. Department of Earth and Environmental Sciences, Syracuse University. Syracuse, USA 2. German Centre for Geoscience Research, Potsdam, Germany 3. Departamento de Geodinámica, Universidad de Granada. Granada, Spain *corresponding author. Email: [email protected] This is a non-peer reviewed preprint and has been submitted to Global Planetary Change (Special Issue). Keywords: River capture, surface uplift, knickpoint migration, tropics, biodiversity 1 Abstract The tropical Northern Andes of Colombia are one the world's most biodiverse places, offering an ideal location for unraveling the linkages between the geodynamic forces that build topography and the evolution of the biota that inhabit it. In this study, we utilize geomorphic analysis to characterize the topography of the Western and Central Cordilleras of the Northern Andes. We supplement our topographic analysis with erosion rate estimates based on gauged suspended sediment loads and river incision rates from volcanic sequences. In the northern Central Cordillera, an elevated low-relief surface (2,500m in elevation, ~40x110 km in size) with quasi-uniform lithology and surrounded by knickpoints, indicates a recent increase in rock and surface uplift rate. Whereas the southern segment of the Central Cordillera shows substantially higher local relief and mostly well graded river profiles consistent with longer term uplift-rate stability. We also identify several areas of major drainage reorganization, including captures and divide migrations that are supported by our erosion and incision rate estimates.
    [Show full text]
  • Paleogeography and History of the Geological Development of the Amazonas Basin 449-502 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch der Geologischen Bundesanstalt Jahr/Year: 1963 Band/Volume: 106 Autor(en)/Author(s): Loczy Louis Artikel/Article: Paleogeography and History of the Geological Development of the Amazonas Basin 449-502 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 449 Jb. Geol. B. A. Bd. 106 S. 449—502 Wien, Dezember 1963 Paleogeography and History of the Geological Development of the Amazonas Basin By Louis LOCZY (With 3 Tables) Contents *) Page Abstract 449 Introduction 451 I. Sedimentary Evolution of the Lower-, Middle- and Upper Amazonas Trough in Brazil 452 II. Sedimentary Evolution of the Upper Amazonas Subandean Zone 457 1. Territory of Acre (Brazil) 457 2. Northeastern Bolivia, Rio Beni and Caupolican Region 459 3. Eastern Peru—Montana Region 461 4. Eastern Ecuador—El Oriente 464 5. Southeastern Colombia—Putomayo and Caqueta Regions 467 III. Chronology of Geological Events and Paleogeography 469 IV. Tectonic Evolution 489 1. The Amazonas Trough in Brazil 489 2. Tectonic Events in the Subandean Amazonas Area 493 References 494 Abstract The huge Amazonas Basin, a sparsely inhabited and badly accessible jungle area, covering approximately 2,100.000 sq. km., stirs up the common interest at the present time. The petroleum explorations become chiefly conspicuous. The Amazonas Basin can be subdivided into two principal morpho- structural units, which differ clearly by their stratigraphical and structural conditions. There are: I—The Lower, Middle and Upper Amazonas Trough in Brazil, and II—The Subandean Zone of Upper Amazonas. *) Note: The redaction ventures to point out, that editing the above work of Prof.
    [Show full text]
  • Construction of the Eastern Cordillera of Colombia: Insights from the Sedimentary Record
    Volume 3 Quaternary Chapter 3 Neogene https://doi.org/10.32685/pub.esp.37.2019.03 Construction of the Eastern Published online 7 May 2020 Cordillera of Colombia: Insights from the Sedimentary Record Paleogene Brian K. HORTON1* , Mauricio PARRA2 , and Andrés MORA3 1 [email protected] University of Texas at Austin Department of Geological Sciences and Abstract A continuous, long–lived sedimentary record contains important evidence Institute for Geophysics, Jackson School Cretaceous of Geosciences bearing on the geologic evolution of the Eastern Cordillera in the northern Andes of Austin, Texas 78712, USA Colombia. Today, this largely isolated NNE–trending mountain range forms a ca. 1–3 2 [email protected] km high topographic barrier separating the Magdalena Valley hinterland basin from Universidade de São Paulo Instituto de Energia e Ambiente the Llanos foreland basin. A Mesozoic – Cenozoic history of marine and nonmarine Av. Professor Luciano Gualberto 1289, Cidade Universitária, 05508–010 Jurassic sedimentation affected the Eastern Cordillera and flanking Magdalena and Llanos São Paulo, Brasil provinces during contrasting tectonic regimes. (i) Jurassic to earliest Cretaceous ex- 3 [email protected] Ecopetrol S.A tension led to the development and linkage of extensional sub–basins (commonly Vicepresidencia de Exploración half graben features governed by normal faults) in selected regions. (ii) A subsequent Bogotá, Colombia phase of postextensional thermal subsidence generated a thermal sag basin across a * Corresponding author Triassic broader region. (iii) In latest Cretaceous to Paleocene time, initial crustal shortening in the Central Cordillera created a regional flexural basin that was successively broken by the Paleocene – Oligocene emergence of thrust/reverse–fault related uplifts within the Eastern Cordillera partitioning the original regional basin into the Magdalena hin- Permian terland basin and Llanos foreland basin.
    [Show full text]
  • Volume 33 / No. 7-8 / 2013
    The Journal of The Journal of Gemmology2013 / Volume 33 / Nos. 7–8 Gemmology2013 / Volume 33 / Nos. 7–8 Contents The Journal of Gemmology 185 Editorial 246 Abstracts 187 Peñas Blancas: An historic Colombian 251 Book review emerald mine 33 / Nos. 7–8 pp 185–276 / Volume — 2013 R. Ringsrud and E. Boehm 254 Conference reports 201 Greek, Etruscan and Roman garnets in 265 Proceedings of The Gemmological the antiquities collection of the J. Paul Association of Great Britain Getty Museum and Notices L. Thoresen and K. Schmetzer 223 Natural and synthetic vanadium-bearing chrysoberyl K. Schmetzer, M.S. Krzemnicki, T. Hainschwang and H.-J. Bernhardt 239 Tracing cultured pearls from farm to consumer: A review of potential methods and solutions H.A. Hänni and L.E. Cartier Cover Picture: A pair of ancient cameo carvings in garnet. The Hellenistic pyrope-almandine carving on the left (19.1×12.9 mm), probably Queen Arsinoë II of Egypt, is one of most beautiful examples of glyptic art produced in the Classical world and is one of the earliest dated extant cameo carvings in gem garnet. On the right is a pyrope cameo of the head of Eros encircled by a plaque (11.7×9.5 mm). This motif was popular in Roman glyptic of the 1st century BC to 1st century AD. Inv. nos. 81.AN.76.59 (left) and 83.AN.437.42 (right, gift of Damon Mezzacappa and Jonathan H. Kagan). The J. Paul Getty Museum, Villa Collection, Malibu, California. Photo by Harold and Erica Van Pelt. (See ‘Greek, Etruscan and Roman Garnets in the antiquities collection of the J.
    [Show full text]
  • Tectonostratigraphic Terranes in Colombia: an Update. First Part
    Volume 1 Quaternary Chapter 3 Neogene https://doi.org/10.32685/pub.esp.35.2019.03 Tectonostratigraphic Terranes Published online 14 April 2020 in Colombia: An Update First Part: Continental Terranes Paleogene Jorge Julián RESTREPO1* and Jean–François TOUSSAINT2 1 [email protected] Universidad Nacional de Colombia Sede Medellín GEMMA Research Group Abstract The quite abundant geological information that has been produced in recent Cretaceous years in Colombia, especially in geochronological and geological mapping, necessitates Medellín, Colombia 2 [email protected] updating the mosaic of geological terranes that comprise the Colombian territory. Universidad Nacional de Colombia Several modifications to these characteristics and boundaries are proposed for ter- Medellín, Colombia * Corresponding author ranes such as Chibcha, Tahamí, and Calima. Some small terranes that have been de- Jurassic fined recently, including Anacona, Ebéjico (Quebradagrande), and Pozo (Arquía), are placed within the context of the larger terranes. In addition, some new terranes, in- cluding Yalcón, Bocaná, Aburrá, Kogi, and Tairona, are defined and their characteristics are described. With these new geochronological data, we propose that the metamor- phic Cajamarca Complex be replaced by two new lithodemical units: the Antioquia Triassic Complex, which covers mostly rocks that formed during Permian and Triassic meta- morphism, and the Coello Complex, which comprises metamorphic rocks that formed during Jurassic metamorphism. Future lines of investigation are proposed to solve remaining problems, especially the boundaries of some of the newly defined terranes. Permian Keywords: continental terranes, accretions, displaced terranes, Colombia, Andes. Resumen La abundante cantidad de información geológica que se ha generado en los últimos años en Colombia, en particular geocronológica y cartográfica, implica la necesidad de actualizar el mosaico de terrenos geológicos que constituyen el terri- Carboniferous torio colombiano.
    [Show full text]
  • Physiographic and Geological Setting of the Colombian Territory
    Volume 1 Quaternary Chapter 1 Neogene https://doi.org/10.32685/pub.esp.35.2019.01 Physiographic and Geological Setting Published online 24 November 2020 of the Colombian Territory Paleogene Jorge GÓMEZ TAPIAS1* , Alberto NÚÑEZ–TELLO2 , Daniela MATEUS–ZABALA3 , Fernando Alirio ALCÁRCEL–GUTIÉRREZ4, Rubby Melissa LASSO–MUÑOZ5 , 6 7 Eliana MARÍN–RINCÓN , and María Paula MARROQUÍN–GÓMEZ 1 [email protected] Servicio Geológico Colombiano Cretaceous Dirección de Geociencias Básicas Abstract The territory of the Republic of Colombia is in the northwestern corner of Grupo Mapa Geológico de Colombia South America, a region influenced by the Caribbean and Nazca oceanic plates, and Diagonal 53 n.° 34–53 Bogotá, Colombia the South American continental plate. In Colombia, six natural regions are distin- 2 [email protected] Servicio Geológico Colombiano guished: Andean, Caribbean, Pacific, Orinoquia, Amazonian, and Insular. The Andean Jurassic Dirección de Geociencias Básicas region corresponds to the great mountain belt of the Andes, which in Colombia is Grupo Mapa Geológico de Colombia Diagonal 53 n.° 34–53 divided into the Western, Central, and Eastern Cordilleras, separated by the inter– Bogotá, Colombia Andean valleys of the Cauca and Magdalena Rivers. The Caribbean region is to the 3 [email protected] north and include the coastal areas of the Caribbean Sea. It is a region of flat to un- Servicio Geológico Colombiano Dirección de Geociencias Básicas Triassic dulating relief, with some high topography, among which the Sierra Nevada de Santa Grupo Mapa Geológico de Colombia Diagonal 53 n.° 34–53 Marta stands out. The Pacific region, in the west of Colombia, has flat to undulating Bogotá, Colombia morphology and host the serranía de Baudó.
    [Show full text]
  • A Model of the Quindío and Risaralda Quaternary Deposits
    Volume 4 Quaternary Chapter 9 Neogene https://doi.org/10.32685/pub.esp.38.2019.09 A Model of the Quindío and Risaralda Published online 27 November 2020 Quaternary Deposits Paleogene Armando ESPINOSA–BAQUERO1* Abstract Quaternary deposits of the Quindío–Risaralda Basin are widely linked to neotectonic activity of the Romeral Fault System; its study and characterization are 1 [email protected], armandoespinosa@ uniquindio.edu.co Cretaceous important due to the seismic threat and the risk it represents for populations in the Servicio Geológico Colombiano Quindío and Risaralda Departments. Diagonal 53 n.° 34–53 Bogotá, Colombia These Quaternary deposits are classified into four units: The ancient Quaternary Universidad del Quindío Quindío–Risaralda Fan, which is divided according to geomorphology, geology, and pe- Facultad de Ingeniería Quimbaya Group trography into three assemblages—the proximal, intermediate, and distal fans; recent * Corresponding author Jurassic Quaternary alluvium, represented by subhorizontally bedded deposits that occupy small basins of less than 10 km2; nearly active and active Quaternary colluvium and Supplementary Information: alluvium, related to faults; and pyroclastic deposits, nearly active and active, which are S: https://www2.sgc.gov.co/ LibroGeologiaColombia/tgc/ separated into two types: Ash falls and reworked or redeposited ash. Triassic sgcpubesp38201909s.pdf The genesis and evolution of the Quindío–Risaralda Basin are subdivided into four stages: The formation of the Quindío–Risaralda depression controlled by normal faults, which occurred after a phase of folding during the Pliocene in the Cauca–Patía Basin; the beginning of the constructive phase of the Quindío–Risaralda Fan in the early Quaternary, characterized by the deposition of proximal fans during strong volcanic Permian activity; the uplift of the Quindío–Risaralda Fan; and the destructive phase, which generated intermediate and distal fans associated with the uplift phase.
    [Show full text]
  • Paleozoic of Colombian Andes: Published Online 19 May 2020 New Paleontological Data and Regional
    Volume 1 Quaternary Chapter 9 Neogene https://doi.org/10.32685/pub.esp.35.2019.09 Paleozoic of Colombian Andes: Published online 19 May 2020 New Paleontological Data and Regional Stratigraphic Review Paleogene Mario MORENO–SÁNCHEZ1* , Arley GÓMEZ–CRUZ2 , and 1 [email protected] Universidad de Caldas 3 José BUITRAGO–HINCAPIÉ Facultad de Ciencias Exactas y Naturales Departamento de Ciencias Geológicas Cretaceous Calle 65 n° 26–10 Abstract The continental basement, east of the Otú–Pericos Fault, is made up of two Manizales, Colombia sectors with different geological histories. The western sector, comprised of Payandé, 2 [email protected] and Payandé San Lucas blocks, are considered here as a part of the autochthonous Universidad de Caldas Facultad de Ciencias Exactas y Naturales basement of South America. The autochthonous basement is composed of high–grade Departamento de Ciencias Geológicas Calle 65 n° 26–10 Jurassic metamorphic rocks with Grenvillian and Amazonian ages. The basal sedimentary cov- Manizales, Colombia er includes marine deposits that span from Ediacaran to Ordovician in the Llanos 3 [email protected] Servicio Geológico Colombiano Basin, and from the Ordovician, in the La Macarena and Magdalena Valley. The East- Dirección de Geociencias Básicas ern Cordillera consists of an allochthonous tectonic block (Quetame–Mérida Terrane) Diagonal 53 n° 34–53 Bogotá D. C., Colombia where several phases of metamorphism are identified. The Bucaramanga Gneiss and Triassic * Corresponding author Silgará Schists (sensu stricto) were formed during the Precambrian. The Chicamocha Schists originated from a sedimentary protolith of Cambrian age. The identification of bioturbation in metamorphic rocks of the Quetame Massif confirms the existence of Phanerozoic rocks in the area.
    [Show full text]
  • World Bank Document
    Document of The World Bank e' . FOR OFFICIAL USE ONLY Public Disclosure Authorized Report No. 5084-CO Public Disclosure Authorized STAFF APPRAISAL REPORT COLOMBIA PETROLEUM PROJECT Public Disclosure Authorized October 19, 1984 Public Disclosure Authorized Energy Department This document has a restricted distribution and may be used by recipients only in the performance of their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS Currency Unit = Colombian Peso (C$) C$ 1 = 100 centavos (ctv) C$ 106.46 = US$1.00 (Sept. 21, 1984) C$ 1 =US$0.094 (Sept. 21, 1984) C$ 1,000 = US$9.4 (Sept. 21, 1984) AVERAGE EXCHANGE RATES USED (C$/US$1.00) 1980 1981 1982 1983 47.28 54.49 64.10 79.53 WEIGHTS AND MEASURES I Metric Ton (m ton) = 1,000 Kilograms (kg) 1 Metric ton (m ton) = 2,204 Pounds (lb) 1 Meter (m) = 3.28 Feet (ft) 1 Kilometer (km) = 0.62 Miles (mi) 1 Cubic Meter (mi) = 35.3 Cubic Feet (cu ft) 1 Barrel (Bbl) = 0.159 Cubic Meter 1 Barrel (Bbl) = Barrels of 42 gallons 1 Metric Ton of Oil (API 30) = 7.19 Barrels 1 Kilocalorie (kcal) = 3.97 British thermal units (BTU) 1 Ton of Oil Equivalent (t.o.e.) 10 million kcal (39.7 million BTU) GLOSSARY OF ABBREVIATIONS "M" preceeding any unit indicates thousand "RM" preceeding any unit indicates million lt,"4II preceeding any unit indicates billion BD = Barrels per day MBD Thousand barrels per day MMB = Million barrels gal CGallon kW = kilowatt MCF TThousand cubic feet TCF Trillion cubic feet MMCFD = Million cubic feet per day MW - Megawatt GW
    [Show full text]
  • Structural Analysis of the Bogotá Anticline, Colombian Eastern Cordillera: Implications on Deformational Styles of the Llanos Foothills
    Boletín de Geología ISSN: 0120-0283 ISSN: 2145-8553 Universidad Industrial de Santander Structural analysis of the Bogotá Anticline, Colombian Eastern Cordillera: Implications on deformational styles of the Llanos Foothills Barrera, Daniel; Mora, Andrés; Tesón, Eliseo Structural analysis of the Bogotá Anticline, Colombian Eastern Cordillera: Implications on deformational styles of the Llanos Foothills Boletín de Geología, vol. 41, núm. 3, 2019 Universidad Industrial de Santander Disponible en: http://www.redalyc.org/articulo.oa?id=349664643003 DOI: 10.18273/revbol.v41n3-2019001 PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Artículos científicos Structural analysis of the Bogotá Anticline, Colombian Eastern Cordillera: Implications on deformational styles of the Llanos Foothills Análisis estructural del Anticlinal de Bogotá, Cordillera Oriental de Colombia: Implicaciones en el estilo de deformación del Piedemonte Llanero Daniel Barrera 1* Universidad EAFIT, Colombia ORCID: hp://orcid.org/0000-0003-0121-2171 Andrés Mora 2 [email protected] ECOPETROL S.A., Colombia ORCID: hp://orcid.org/0000-0002-4276-7109 Eliseo Tesón 2 [email protected] Boletín de Geología, vol. 41, núm. 3, 2019 ECOPETROL S.A., Colombia Universidad Industrial de Santander ORCID: hp://orcid.org/0000-0002-6065-6963 Recepción: 21 Marzo 2019 Aprobación: 21 Agosto 2019 DOI: 10.18273/revbol.v41n3-2019001 ABSTRACT: In this study we describe and discuss a structural analysis of the Bogotá CC BY Anticline, based on the creation of a new geological map and structural cross sections, to propose a model of evolution for the folding.
    [Show full text]
  • Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia with Caribbean Plateau Collisi
    PUBLICATIONS Tectonics RESEARCH ARTICLE Linking Late Cretaceous to Eocene Tectonostratigraphy 10.1002/2017TC004612 of the San Jacinto Fold Belt of NW Colombia With Key Points: Caribbean Plateau Collision and Flat Subduction • We linked Upper Cretaceous to Eocene tectonostratigraphic evolution J. Alejandro Mora1 , Onno Oncken2 , Eline Le Breton3 , Mauricio Ibánez-Mejia4,5 , of the San Jacinto fold belt of NW 6 1 1 7 8 Colombia with plate kinematics Claudio Faccenna , Gabriel Veloza , Vickye Vélez , Mario de Freitas , and Andrés Mesa • Eocene major change in plate 1 2 3 kinematics caused to the onset of flat Hocol S.A., Bogotá, Colombia, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, Department of Earth subduction and cessation of arc Sciences, Freie Universität Berlin, Berlin, Germany, 4Department of Earth, Atmospheric and Planetary Sciences, magmatism in northwest Colombia Massachusetts Institute of Technology, Cambridge, MA, USA, 5Department of Earth and Environmental Sciences, University • The existence of a tear or STEP fault in of Rochester, Rochester, NY, USA, 6Dipartimento Scienze, Universitá Roma TRE, Rome, Italy, 7Caravela Energy, Bogotá, the Caribbean Plate, located toward 8 the western end of the Oca-San Colombia, Horizonz Consulting, Bogotá, Colombia Sebastián-El Pilar Fault System is proposed Abstract Collision with and subduction of an oceanic plateau is a rare and transient process that usually Supporting Information: leaves an indirect imprint only. Through a tectonostratigraphic analysis of pre-Oligocene sequences in the • Supporting Information S1 San Jacinto fold belt of northern Colombia, we show the Late Cretaceous to Eocene tectonic evolution of northwestern South America upon collision and ongoing subduction with the Caribbean Plate. We linked the Correspondence to: deposition of four fore-arc basin sequences to specific collision/subduction stages and related their J.
    [Show full text]