Inelastic Diffractive Event Classification in Proton-Proton Collision with The

Total Page:16

File Type:pdf, Size:1020Kb

Inelastic Diffractive Event Classification in Proton-Proton Collision with The Inelastic diffractive event classification in proton-proton collision with the CMS experiment Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften bei der KIT-Fakultät Physik des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Melike Akbiyik aus der Türkey, Yüksekova Tag der mündlichen Prüfung: 13.07.2018 Referent: Prof. Dr. Thomas Müller Korreferent: Prof. Dr. Dr. h.c. Johannes Blümer Betreuer: Dr. Ralf Ulrich Abstract This thesis is devoted to diffraction physics at the CERN LHC. The experimental part of the work studiesp rapidity gap production in the run 2 data samples recorded by the CMS experiment at s = 13 TeV. A multivariate analysis method based on boosted deci- sion trees is developed to determine the cross-section of individual single diffractive (SD) and double diffractive (DD) processes. Diffractive interactions are characterized by ra- pidity gaps, which are regions in the detector devoid of particles and can be measured with a combination of central tracking and very forward calorimeters such as CASTOR. In hadronic collisions, most of the primary energy flows in the forward direction, which is why the forward region is in particular extremely important to characterize events. An event classifier is used to distinguish which process belongs to a specific inelastic event. This event classification is done with the charged particle tracks reconstructed in the sili- con pixel detector in combination with all calorimeter towers of CMS. The efficiency and purity are optimized. The classification uses global observations made by CMS in the huge acceptance region −6:6 < η < 5:2, and down as close as possible to the noise levels. Such a comprehensive multivariate study has never been attempted before. The advantage is an optimal use of CMS for diffractive event classification and thus, a high precision of the measurement. One result of this thesis is an indication of a very slow rise of the single diffractive cross section at the highest energies. Some event generators are challenged by these data. It could be that this is first signs of protons becoming fully opaque in a central collision. Zusammenfassung Ziel der Arbeit ist es diffraktive Physik am CERN LHC zu untersuchen. Der experi- mentelle Teil der Arbeit befasst sich mit der Untersuchung derp Erzeugung von Rapid- itätslücken in Run 2 Daten, die mit dem CMS Experiment bei s = 13 TeV aufgezeichnet wurden. Eine multivariate Analyse Methode, basierend auf "boosted decision trees" wurde entwickelt, um die Wirkungsquerschnitte von einzel- (SD) und doppel- (DD) diffraktiven Ereignissen zu bestimmen. Diffraktive Ereignisse sind durch Rapiditätslücken gekennze- ichnet, welches Bereiche im Detektor ohne Teilchenerzeugung sind. Solche Lücken können durch eine Kombination von zentralen Spurdetektoren und Vorwärtskalorimetern wie CAS- TOR nachgewiesen werden. In hadronischen Kollisionen wird ein Großteil der erzeugten Energie in die Vorwärtsrichtung gelenkt. Dies ist der Grund dafür, dass Vorwärtsdetek- toren besonders wichtig sind in der globalen Charakterisierung von Ereignissen. Eine Klassifizierung von Ereignissen wurde entwickelt um inelastische Kollisionen entsprechend einzuordnen. Die Klassifizierung basiert auf Messdaten des zentralen Silizium Spurde- tektors, sowie aller Kalorimeter Zellen des CMS Experimentes. Die Charakterisierung verwendet globale Beobachtungen des CMS Experimentes im riesigen Akzeptanzbereich von −6:6 < η < 5:2 und so nahe wie möglich am Rauschlevel. Ein derart umfassender Einsatz multivariater Analysetechniken wurde in CMS bisher noch nicht verfolgt. Die Ar- beit verspricht sich davon einen optimalen Einsatz von CMS Daten für die Klassifizierung von diffraktiven Ereignissen sowie eine hohe Präzision der erzielten Messungen. Ein Ergeb- nis der Arbeit ist ein Anzeichen für einen nur langsamen Anstieg des einzel-diffraktiven Querschnittes hin zu sehr hohen Energien. Einige Ereignisgeneratoren haben mit dieser Schlussfolgerung Schwierigkeiten. Es könnte sein, dass diese Daten ein erster Hinweis da- rauf sind, dass zentrale Proton-Proton Kollisionen vollkommen opak werden. Contents 1 Introduction1 2 Theoretical background5 2.1 Cosmic rays and extensive air showers....................5 2.1.1 Cosmic rays...............................5 2.1.2 Physics of extensive air showers....................6 2.2 The Standard model of particle physics.................... 10 2.3 The kinematics of the colliding particles................... 14 2.3.1 Cross sections.............................. 17 2.3.2 Rapidity and rapidity gaps....................... 26 2.3.3 Modeling of diffraction in MC generators............... 29 2.3.4 Underlying event............................ 31 3 Experimental methods 33 3.1 The large hadron collider............................ 33 3.2 The CMS experiment.............................. 35 3.2.1 The central instrumentation of the CMS detector.......... 36 3.2.2 Forward instrumentation of the CMS detector............ 40 3.2.3 Trigger system............................. 41 3.2.4 Simulations............................... 42 3.3 Multivariate event classification........................ 43 3.3.1 Training phase and application phase................. 44 3.3.2 Boosted decision trees......................... 48 3.4 Event reconstruction and software....................... 52 3.4.1 Introducing software.......................... 52 3.4.2 Track and vertex reconstruction.................... 52 3.4.3 ECAL and HCAL towers energy reconstruction........... 54 3.4.4 CASTOR tower reconstruction.................... 54 4 Performance improvements studies 55 4.1 The luminosity determination in ultra-peripheral collisions in proton-lead collisions..................................... 55 4.2 Proton-lead collisions.............................. 56 4.2.1 Starlight event generation....................... 56 4.2.2 The kinematical description of the dimuon process.......... 58 iii 4.2.3 Exclusive collection........................... 60 4.2.4 Correction for acceptance and efficiency................ 62 4.2.5 Luminosity cross-check......................... 65 4.3 Inter-calibration of CASTOR calorimeter................... 67 4.3.1 CASTOR calorimeter.......................... 67 4.3.2 Inter-calibration............................. 68 4.3.3 Channel by channel inter-calibration................. 71 4.3.4 Absolute energy scale.......................... 79 5 Data analysis 83 5.1 LHC run 2.................................... 85 5.2 Event selection................................. 89 5.3 Rapidity gap definition............................. 93 5.4 The kinematics of the diffractive process................... 97 5.5 Diffractive processes identification....................... 100 5.6 Multivariate analysis.............................. 105 5.7 Classifier response................................ 114 5.8 Integrated cross section DD and SD...................... 118 5.9 The Influence of the variable selection on the training............ 129 5.10 Extrapolation of the visible SD and DD cross sections............ 143 5.11 Systematic uncertainties............................ 144 5.12 Results...................................... 151 6 Summary 153 7 Bibliography 157 8 Acknowledgements 163 1 Introduction Diffractive processes form a significant contribution to the total inelastic cross section and therefore it is very important to understand the mechanism behind them. The aim of this thesis is to develop a selection for single diffractive (SD) and double diffractive (DD) events, and, in addition to this, study some of the properties of these events. Inclusive diffractive interactions cannot be calculated within perturbative quantum chromodynamics (pQCD) [1–4], and traditionally have been described by models based on Regge theory [5]. It is very difficult to understand theoretically [6]. However, very important because of the large cross section and contribution e.g. to the underlying event and pileup in particular also at high luminosity LHC [7]. Furthermore, at ultra-high energies in cosmic ray air showers, diffraction is a major effect with important consequences for the interpretation of cosmic ray data [8]. In this thesis I present the firstp observation of soft diffractive dissoci- ation in proton-proton collisions of LHC Run 2 at s = 13 TeV using a novel multivariate event classification. It is significantly important to choose a well-motivated parameter set since the performance of the classification method depends on the used variables. I use tracks, energies, and towers from forward hadronic and CASTOR [9] calorimeter as input variables. Several input sets of the classification variables are compared to see the perfor- mance using the different simulations such as EPOS [10] and Pythia 8 [11]. Diffraction is classified from the two final state hadronic systems separated by the largest rapidity gap in the event. Runs are selected by requiring that the relevant components of the CMS [12]detector were fully functional, in particular, the CASTOR forward calorimeter, HF, and pixel tracker. The application of multivariate classification on global event prop- erties using all components of the CMS experiment is by itself a big challenge. All aspects of the CMS experiment contribute and must be studied. The thesis provides a basic theo- retical introduction needed for the work in Chapter 2. A brief overview of the extensive air showers, cosmic rays, the Standard Model and Quantum Chromodynamics [13] is given. In the chapter 3, we will take a brief look at experimental methods that were used for this thesis.
Recommended publications
  • Impulse and Momentum
    Impulse and Momentum All particles with mass experience the effects of impulse and momentum. Momentum and inertia are similar concepts that describe an objects motion, however inertia describes an objects resistance to change in its velocity, and momentum refers to the magnitude and direction of it's motion. Momentum is an important parameter to consider in many situations such as braking in a car or playing a game of billiards. An object can experience both linear momentum and angular momentum. The nature of linear momentum will be explored in this module. This section will discuss momentum and impulse and the interconnection between them. We will explore how energy lost in an impact is accounted for and the relationship of momentum to collisions between two bodies. This section aims to provide a better understanding of the fundamental concept of momentum. Understanding Momentum Any body that is in motion has momentum. A force acting on a body will change its momentum. The momentum of a particle is defined as the product of the mass multiplied by the velocity of the motion. Let the variable represent momentum. ... Eq. (1) The Principle of Momentum Recall Newton's second law of motion. ... Eq. (2) This can be rewritten with accelleration as the derivate of velocity with respect to time. ... Eq. (3) If this is integrated from time to ... Eq. (4) Moving the initial momentum to the other side of the equation yields ... Eq. (5) Here, the integral in the equation is the impulse of the system; it is the force acting on the mass over a period of time to .
    [Show full text]
  • Formation of Centauro and Strangelets in Nucleus–Nucleus Collisions at the LHC and Their Identification by the ALICE Experiment 1 A.L.S
    HE.6.2.02 Formation of Centauro and Strangelets in Nucleus–Nucleus Collisions at the LHC and their Identification by the ALICE Experiment 1 A.L.S. Angelis1,J.Bartke2, M.Yu. Bogolyubsky3, S.N. Filippov4, E. Gładysz-Dziadus´2, Yu.V. Kharlov3,A.B.Kurepin4, A.I. Maevskaya4, G. Mavromanolakis1, A.D. Panagiotou1, S.A. Sadovsky3,P.Stefanski2 and Z. Włodarczyk5 1Division of Nuclear and Particle Physics, University of Athens,Greece. 2Institute of Nuclear Physics, Cracow, Poland. 3Institute for High Energy Physics, Protvino, Russia. 4Institute for Nuclear Research, Moscow,Russia. 5Institute of Physics, Pedagogical University, Kielce, Poland. Abstract We present a phenomenological model which describes the formation of a Centauro fireball in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. We describe the CASTOR detector for the ALICE experiment at the LHC. CASTOR will probe, in an event- by-event mode, the very forward, baryon-rich phase space 5.6 ≤ η ≤ 7.2in5.5×A TeV central Pb + Pb collisions. We present results of simulations for the response of the CASTOR calorimeter, and in particular to the traversal of Strangelets. 1 Introduction: The physics motivation to study the very forward phase space in nucleus–nucleus collisions stems from the potentially very rich field of new phenomena, to be produced in and by an environment with very high baryochemical potential. The study of this baryon-dense region, much denser than the highest baryon density attained at the AGS or SPS, will provide important information for the understanding of a Deconfined Quark Matter (DQM) state at relatively low temperatures, with different properties from those expected in the higher temperature baryon-free region around mid-rapidity, thought to exist in the core of neutron stars.
    [Show full text]
  • Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN”
    DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this.
    [Show full text]
  • AIAA 19Th Fluid Dynamics, Plasma Dynamics and Lasers Conference June 8-10, 1987/Honolulu, Hawaii
    AIAA-87 -1407 Electron-Cyclotron-Resonance (ECR) Plasma Acceleration J. C. Sercel Jet Propulsion Laboratory California Institute of Technology Pasadena, California AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference June 8-10, 1987/Honolulu, Hawaii For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 1633 Broadway, New York, NY 10019 AIAA-87-1407 ELECTRON-CYCLOTRON-RESONANCE (ECR) PLASMA ACCELERATION Joel C. Sercel* Jet Propulsion Laboratory California Institute of Technology Pasadena, California Abstract P power per unit volume, W/m3 R position vector, m A research effort directed at analytically v velocity, mls and experimentally investigating Electron­ U energy, J or eV Cyclotron-Resonance (ECR) plasma acceleration V electrostatic potential, volts is outlined. Relevant past research is reviewed. T temperature, Kelvin or eV The prospects for application of ECR plasma acceleration to spacecraft propulsion are described. It is shown that previously unexplained losses in converting microwave magnetic dipole moment power to directed kinetic power via ECR plasma reaction cross section, m2 acceleration can be understood in terms of diffusion of energized plasma to the physical time constant, s walls of the accelerator. It is argued that line radiation losses from electron-ion and electron­ SubscriPts atom inelastic collisions should be less than estimated in past research. Based on this new A acceleration understanding, the expectation now exists that B Bohm efficient ECR plasma accelerators can be e electron designed for application to high specific impulse ex excitation spacecraft propulsion. ionization summation variable refers to lowest energy level Acronyms and Abbreviations p perpendicular r relative D-He3 Deuterium Helium-Three sp space charge induced ECR Electron-Cyclotron-Resonance to t total GE General Electric JPL Jet Propulsion Laboratory LeRC Lewis Research Center I.
    [Show full text]
  • CASTOR: the ALICE Forward Detector for Identification of Centauros And
    CASTOR: A FORWARD DETECTOR FOR THE IDENTIFICATION OF CENTAURO AND STRANGELETS IN NUCLEUS–NUCLEUS COLLISIONS AT THE LHC ∗ A.L.S. ANGELISa, J. BARTKEb, M.YU. BOGOLYUBSKYc, S.N. FILIPPOVd, E. GLADYSZ-DZIADU S´b, YU.V. KHARLOVc, A.B. KUREPINd, A.I. MAEVSKAYAd, G. MAVROMANOLAKISa, A.D. PANAGIOTOUa, S.A. SADOVSKYc, P. STEFANSKIb, Z. WLODARCZYK e aNuclear and Particle Physics Division, University of Athens, Hellas. bInstitute of Nuclear Physics, Cracow, Poland. cInstitute for High Energy Physics, Protvino, Russia. dInstitute for Nuclear Research, Moscow, Russia. eInstitute of Physics, Pedagogical University, Kielce, Poland. The physics motivation for a very forward detector to be employed in heavy ion collisions at the CERN LHC is discussed. A phenomenological model describing the formation and decay of a Centauro fireball in nucleus-nucleus collisions is presented. The CASTOR detector which is aimed to measure the hadronic and photonic content of an interaction and to identify deeply penetrating objects in the very forward, baryon-rich phase space 5.6 ≤ η ≤ 7.2 in an event-by-event mode is described. Results of simulations of the expected response of the calorimeter, and in particular to the passage of strangelets, are presented. 1 Introduction The ALICE detector 1, which is aimed at investigating nucleus–nucleus col- lisions at the LHC, will be fully instrumented for hadron and photon identi- fication only in the limited angular region around mid-rapidity, covering the pseudorapidity interval η 1. An additional muon detector 2 will be in- stalled on one side and will| | cover ≤ the pseudorapidity interval 2.5 η 4.0.
    [Show full text]
  • The Very Forward CASTOR Calorimeter of the CMS Experiment
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration .
    [Show full text]
  • Analysis of Thruster Requirements and Capabilities for Local Satellite Clusters
    I I ANALYSIS OF THRUSTER REQUIREMENTS AND CAPABILITIES FOR LOCAL SATELLITE CLUSTERS G. I. Yashkot, D.E. Hastingstt I Massachusetts Institute of Technology Cambridge, Massachusetts I Abstract This paper examines the propulsive requirements necessary to maintain the relative positions of satellites orbiting in a local cluster. Formation of these large baseline arrays could allow high resolution imaging of terrestrial or I astronomical targets using techniques similar to those used for decades in radio interferometry. A key factor in the image quality is the relative positions of the individual apertures in the sparse array. The relative positions of satellites in a cluster are altered by "tidal" accelerations which are a function of the cluster baseline and orbit altitude. These accelerations must be counteracted by continuous thrusting to maintain the relative positions of the satellites. I Analysis of propulsive system requirements, limited by spacecraft power, volume, and mass constraints, indicates that specific impulses and efficiencies typical of ion engines or Hall thrusters (SPT's) are necessary to maintain large cluster baselines. In addition, required thrust to spacecraft mass ratios for reasonable size clusters are approximately I 15J..LNlkg. Finally, the ability of a proposed linear ion microthruster to meet these requirements is examined. A variation of Brophy's method is used to show that primary electron containment lengths on the order of 10 mm are I necessary to achieve those thruster characteristics. Preliminary sizing
    [Show full text]
  • Centauro and Strange Object Research in Nucleus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE CASTOR: Centauro And Strange Object Research in provided by CERN Document Server nucleus-nucleus collisions at LHC Ewa G ladysz-Dziadu´s for the CASTOR group A L S Angelis1, X Aslanoglou2,JBartke3, K Chileev4, 3 4 4 4 EG ladysz-Dziadu´s ∗,MGolubeva,FGuber,TKaravitcheva, YVKharlov5,ABKurepin4, G Mavromanolakis1, A D Panagiotou1, S A Sadovsky5 VVTiflov4, and Z Wlodarczyk 6 1 Nuclear and Particle Physics Division, University of Athens, Athens, Greece. 2 Department of Physics, the University of Ioannina, Ioannina, Greece. 3 Institute of Nuclear Physics, Cracow, Poland. 4 Institute for Nuclear Research, Moscow, Russia. 5 Institute for High Energy Physics, Protvino, Russia. 6 Institute of Physics, Pedagogical University, Kielce, Poland. Abstract. We describe the CASTOR detector designed to probe the very forward, baryon-rich rapidity region in nucleus-nucleus collisions at the LHC. We present a phenomenological model describing the formation of a QGP fireball in high baryochemical potential environment, and its subsequent decay into baryons and possibly strangelets. The model explains the Centauro events observed in cosmic rays and the long-penetrating component frequently accompanying them, and makes predictions for the LHC. Simulations of Centauro-type events by means of our Monte-Carlo event generator CNGEN were done. To study the response of the apparatus to new effects, different exotic species (DCC clusters, Centauros, strangelets and so{called mixed events produced by baryons and strangelets being the remnants of the Centauro fireball explosion) were passed through the deep calorimeter. The energy deposition pattern in the calorimeter appears to be a new clear signature of the QGP state.
    [Show full text]
  • Phenomenological Review on Quark–Gluon Plasma: Concepts Vs
    Review Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations Roman Pasechnik 1,* and Michal Šumbera 2 1 Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden 2 Nuclear Physics Institute ASCR 250 68 Rez/Prague,ˇ Czech Republic; [email protected] * Correspondence: [email protected] Abstract: In this review, we present an up-to-date phenomenological summary of research developments in the physics of the Quark–Gluon Plasma (QGP). A short historical perspective and theoretical motivation for this rapidly developing field of contemporary particle physics is provided. In addition, we introduce and discuss the role of the quantum chromodynamics (QCD) ground state, non-perturbative and lattice QCD results on the QGP properties, as well as the transport models used to make a connection between theory and experiment. The experimental part presents the selected results on bulk observables, hard and penetrating probes obtained in the ultra-relativistic heavy-ion experiments carried out at the Brookhaven National Laboratory Relativistic Heavy Ion Collider (BNL RHIC) and CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) accelerators. We also give a brief overview of new developments related to the ongoing searches of the QCD critical point and to the collectivity in small (p + p and p + A) systems. Keywords: extreme states of matter; heavy ion collisions; QCD critical point; quark–gluon plasma; saturation phenomena; QCD vacuum PACS: 25.75.-q, 12.38.Mh, 25.75.Nq, 21.65.Qr 1. Introduction Quark–gluon plasma (QGP) is a new state of nuclear matter existing at extremely high temperatures and densities when composite states called hadrons (protons, neutrons, pions, etc.) lose their identity and dissolve into a soup of their constituents—quarks and gluons.
    [Show full text]
  • Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN
    DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) CERN-THESIS-2018-033 25/04/2018 Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this.
    [Show full text]
  • Digitalcommons@University of Nebraska - Lincoln
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Instructional Materials in Physics and Calculus-Based General Physics Astronomy 1975 COLLISIONS Follow this and additional works at: https://digitalcommons.unl.edu/calculusbasedphysics Part of the Other Physics Commons "COLLISIONS" (1975). Calculus-Based General Physics. 6. https://digitalcommons.unl.edu/calculusbasedphysics/6 This Article is brought to you for free and open access by the Instructional Materials in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Calculus-Based General Physics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Module -- STUDY GUIDE COLLISIONS INTRODUCTION If you have ever watched or played pool, football, baseball, soccer, hockey, or been involved in an automobile accident you have some idea about the results of a collision. We are interested in studying collisions for a variety of reasons. For example, you can determine the speed of a bullet by making use of the physics of the collision process. You can also estimate the speed of an automobile before the accident by knowing the physics of the collision process and a few other physical principles. Physicists use collisions to determine the properties of atomic and subatomic particles. Essentially, a particle accelerator is a device that provides a controlled collision process between subatomic particles so that, among other things, some of the properties of the target particle can be studied. In addition the study of collisions is an example of the use of a fundamental physical tool, i.e., a conservation law. A conservation law implies that something remains the same, i.e., is conserved, as you have seen in a previous module, Conservation of Energy.
    [Show full text]
  • N Institute of Nuclear Physics Krakow, Poland
    PL9902702 The Henryk NiewoaniczansKi H n Institute of Nuclear Physics Krakow, Poland Report N0.I8OO/PH THE ENERGY DEPOSITION PATTERN AS THE UNCONVENTIONAL STRANGELET SIGNATURE AND ITS RELEVANCE TO THE CASTOR CALORIMETER A.L.S. Angelis1, J.Bartke2, E.Gladysz-Dziadus2 and Z.Wlodarczyk3 Address: Main site: High Energy Department: ul. Radzikowskiego 152, ul. Kawiory 26 A, 31-342 Krak6w, Poland 30-055 Krakow, Poland e-mail: [email protected] e-mail: [email protected] 30- 50 Report N0.I8OO/PH THE ENERGY DEPOSITION PATTERN AS THE UNCONVENTIONAL STRANGELET SIGNATURE AND ITS RELEVANCE TO THE CASTOR CALORIMETER A.L.S. Angelis1, J.Bartke2, E.Gladysz-Dziadus2 and Z.Wlodarczyk3 '•University of Athens, Athens, Hellas l'Institute of Nuclear Physics, Cracow, Poland ^Institute of Physics, Pedagogical University, Kielce, Pola.nd July 1998 PRINTED AT THE HENRYK NIEWODNICZANSKI INSTITUTE OF NUCLEAR PHYSICS KRAK6W, UL. RADZIKOWSKIEGO 152 Xerocopy: INP Krakow copies. Abstract It has been shown, by GEANT simulations, that the energy deposition pattern in deep calorimeters could be the spectacular and unconventional signature of different kinds of stable and unstable strangelets. The CASTOR calorimeter is shown to be the appropriate tool for detection of strongly penetrating objects, such as strangelets possibly produced in the baryon-rich region in central Pb-Pb collisions at LHC energies. 1 Introduction. The possible way to produce a quark-gluon plasma in the laboratory is by col- lisions of heavy ions at ultrarelativistic energies. New forms of matter might be formed during the phase transition from hadronic matter to a deconfined plasma. The properties of some forms of hypothetical strange matter, as small lumps of strange quark matter (strangelets) or hyperon matter (metastable exotic multihy- pernuclear objects (MEMO'S)) have been recently discussed by many authors (see for example [1, 2]), with special emphasis on their relevance to the present and future heavy ion experiments.
    [Show full text]