Abstract Accumulation of Environmental and Dietary

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Accumulation of Environmental and Dietary ABSTRACT ACCUMULATION OF ENVIRONMENTAL AND DIETARY HEAVY METALS BY THE WOLF SPIDER PARDOSA MILVINA (ARANEAE, LYCOSIDAE) by Lucas Christopher Erickson Invertebrates provide a key link in moving toxic heavy metals from the environment into the vertebrate food web. Studying the uptake and accumulation of metals in invertebrates can help explain bioaccumulation of metals further up the food web. In this study, I decoupled dietary and substrate exposure to heavy metals and quantified accumulation of cadmium, copper, lead, and zinc in the epigeic wolf spider Pardosa milvina. I also looked at how foraging and lifespan might change in response to heavy metal exposure. I found that P. milvina absorbs and accumulates all four of these heavy metals through its cuticle. However, only metals that also are micronutrients (e.g. zinc) were accumulated from dietary consumption; non-nutritive metals were excreted without accumulation. Female mortality was not affected by heavy metal exposure, while male mortality was negatively affected by substrate exposure to metals but not by dietary exposure. As P. milvina is a common prey item for a variety of vertebrate and invertebrate species, it likely provides a vector for heavy metals to move from the soils into the vertebrate food web. ACCUMULATION OF ENVIRONMENTAL AND DIETARY HEAVY METALS BY THE WOLF SPIDER PARDOSA MILVINA (ARANEAE, LYCOSIDAE) A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science by Lucas Christopher Erickson Miami University Oxford, Ohio 2018 Advisor: Dr. Ann Rypstra Reader: Dr. Al Cady Reader: Dr. Melany Fisk ©2018 Lucas Christopher Erickson This Thesis titled ACCUMULATION OF ENVIRONMENTAL AND DIETARY HEAVY METALS BY THE WOLF SPIDER PARDOSA MILVINA (ARANEAE, LYCOSIDAE) by Lucas Christopher Erickson has been approved for publication by The College of Arts and Science and Department of Biology ____________________________________________________ Dr. Ann Rypstra ______________________________________________________ Dr. Al Cady _______________________________________________________ Dr. Melany Fisk Table of Contents List of Tables ................................................................................................................................ iv List of Figures ................................................................................................................................ v Dedication ..................................................................................................................................... vi Acknowledgements ..................................................................................................................... vii Introduction ................................................................................................................................... 1 Methods .......................................................................................................................................... 5 Results .......................................................................................................................................... 10 Discussion..................................................................................................................................... 12 Future Studies ............................................................................................................................. 16 Literature Cited .......................................................................................................................... 17 Tables/Figures ............................................................................................................................. 21 Appendix ...................................................................................................................................... 40 iii List of Tables Table 1 .......................................................................................................................................... 25 Table 2 .......................................................................................................................................... 26 Table 3 .......................................................................................................................................... 27 Table 4 .......................................................................................................................................... 28 Table 5 .......................................................................................................................................... 29 Table 6 .......................................................................................................................................... 30 Table 7 .......................................................................................................................................... 31 Table 8 .......................................................................................................................................... 32 iv List of Figures Figure 1 ........................................................................................................................................ 33 Figure 2 ........................................................................................................................................ 34 Figure 3 ........................................................................................................................................ 35 Figure 4 ........................................................................................................................................ 36 Figure 5 ........................................................................................................................................ 37 Figure 6 ........................................................................................................................................ 38 Figure 7 ........................................................................................................................................ 39 Figure 8 ........................................................................................................................................ 40 Figure 9 ........................................................................................................................................ 41 Figure 10 ...................................................................................................................................... 42 Figure 11 ...................................................................................................................................... 43 v Dedication For my parents. Thanks for everything. vi Acknowledgments There are quite a few people I need to thank for their help and support in getting through graduate school. First and foremost is my advisor Ann Rypstra; without her guidance, none of this work would have been possible. In addition, I would like to thank my committee members Al Cady and Melany Fisk for their insight and feedback throughout my work. Thank you to Mary Gardiner and James Harwood for supplying me with the heavy metal contaminated soil. Thanks as well to John Morton for his help with ICP-MS, especially in working with small amounts of biomass. Thanks to everyone in the Rypstra lab for their help and support (both scientific and emotional) during my time at Miami. An especially heartfelt thank you goes out to Amber Dailey, who has provided constant motivation and support, whether she knew it or not. And finally, thanks to the undergraduate professors that nurtured my spark of scientific curiosity: Bob Verb, Jay Mager, Leslie Riley, Stephen Kolomyjec, and Terry Keiser. Without them, I wouldn’t have applied to graduate school in the first place. vii Introduction Environmental contamination with heavy metals is a pressing concern for both human and environmental health (UNEP 2013). The risks posed by heavy metals have increased in recent decades as human use of heavy metals and their release into the environment has increased (Tchounwou et al. 2012). Anthropogenic activities from industrialization such as burning of fossil fuels and mining are primary drivers of heavy metal deposition into the environment (Alloway 2012). As growing populations in developing countries are increasingly industrialized, the impact of heavy metals in the environment is expected to increase (Nagajyoti et al. 2010). Heavy metals can have negative ecological effects at both individual and population levels (Alloway 2012). Individual exposure to heavy metals may impair development, damage neurological function, cause systemic damage, or otherwise interfere with physiological processes (Tchounwou et al. 2012). Heavy metals may also have non-lethal effects that reduce population viability. Exposure of fish to non-lethal concentrations of heavy metals impaired swimming ability (Eissa et al. 2010), while increased mercury exposure has been tied to reduced nesting rates in bird populations (Heath and Frederick 2005). Heavy metal uptake and accumulation has been widely studied in vertebrates, but has received relatively little attention in soil arthropods (Gall et al. 2015). Furthermore, the majority of arthropod studies have focused on detritivores and herbivores, ignoring how heavy metals may move through the invertebrate food web into predators (Gall et al. 2015). Field studies have shown that heavy
Recommended publications
  • Predation on Reproducing Wolf Spiders: Access to Information Has Differential Effects on Male and Female Survival
    Animal Behaviour 128 (2017) 165e173 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Predation on reproducing wolf spiders: access to information has differential effects on male and female survival * Ann L. Rypstra a, , Chad D. Hoefler b, 1, Matthew H. Persons c, 2 a Department of Biology, Miami University, Hamilton, OH, U.S.A. b Department of Biology, Arcadia University, Glenside, PA, U.S.A. c Department of Biology, Susquehanna University, Selinsgrove, PA, U.S.A. article info Predation has widespread influences on animal behaviour, and reproductive activities can be particularly Article history: dangerous. Males and females differ in their reactions to sensory stimuli from predators and potential Received 13 September 2016 mates, which affects the risk experienced by each sex. Thus, the information available can cause dif- Initial acceptance 8 November 2016 ferential survival and have profound implications for mating opportunities and population structure. The Final acceptance 24 March 2017 wolf spider, Pardosa milvina, detects and responds in a risk-sensitive manner to chemotactile information from a larger predator, the wolf spider Tigrosa helluo. Male P. milvina use similar chemotactile cues to find MS. number: A16-00806R2 females whereas female P. milvina focus on the visual, and perhaps vibratory, aspects of the male display. Our aim was to document the risk posed by T. helluo predators on P. milvina during reproduction and to Keywords: determine whether augmenting chemotactile information would affect that outcome. In the laboratory, chemical cue we explored the effects of adding predator and/or female cues on the predatory success of T.
    [Show full text]
  • 2016 Persons Mercury Content Spiders
    Variation in total mercury content among riparian and non-riparian spider species Hailey Shannon, Derek Wilson, Tara Barbarich, Brian Mangan*, and Matthew Persons Dept. of Biology, Susquehanna University, Selinsgrove, PA 17870 *Dept. of Biology, King’s College, Wilkes-Barre, PA 18711 ABSTRACT Spiders collected and Mercury is a persistent environmental contaminant that primarily originates from coal-fired Spiders prepared power plants but may arise from other sources including uncontrolled mine fires. Variation in Collected spiders were rinsed total mercury uptake and mobilization through the apex arthropod community is poorly identified (N = 672) with water for at least 10 understood. We measured total mercury among ground and web-building spiders at sites along the Susquehanna River near a coal-fired power plant and compared total mercury levels seconds and placed in small to spiders from uncontrolled coal fire burn sites (Centralia, PA and Laurel Run, PA) and Spiders were labeled containers. Spiders reference sites away from the river or point sources of mercury pollution (agricultural fields collected from 6 sites were kept frozen until and headwater streams). We measured total mercury across species, age classes, and sexes from June to analyzed. for several species of ground spider and a web-building spider at these sites. Spiders from November of 2015 mine fire sites had total mercury levels over 2.5 times higher than those in riparian zones and 2016. Tetragnatha elongata Spiders analyzed for Hg adjacent to the power plant and about six times higher than those from agricultural fields or Spiders were sent to King’s riparian zones away from power plants.
    [Show full text]
  • Schizocosa Ocreata): a Comparison of Survivorship, Critical Body Water Content, and Water Loss Rates Between Sexes
    Canadian Journal of Zoology Dehydration resistance and tolerance in the brush -legged wolf spider (Schizocosa ocreata): A comparison of survivorship, critical body water content, and water loss rates between sexes. Journal: Canadian Journal of Zoology Manuscript ID cjz-2016-0133.R1 Manuscript Type: Article Date Submitted by the Author: 21-Nov-2016 Complete List of Authors: Herrmann,Draft Samantha; The Ohio State University, Evolution, Ecology, and Orgnaismal Biology Roberts, J. ; The Ohio State University at Newark, Evolution, Ecology, and Organismal Biology ECOLOGY < Discipline, PHYSIOLOGY < Discipline, ARANEAE < Taxon, Keyword: STRESS < Organ System, TEMPERATE < Habitat https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 30 Canadian Journal of Zoology Dehydration resistance and tolerance in the brush-legged wolf spider (Schizocosa ocreata ): A comparison of survivorship, critical body water content, and water loss rates between sexes. Samantha K. Herrmann, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA. ( [email protected] ) J. Andrew Roberts, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Newark, Newark, Ohio, USA. ( [email protected] ) Corresponding Author: Samantha Herrmann,Draft 240B Jennings Hall, 1735 Neil Avenue, Columbus, Ohio, 43210, USA; Ph. 630.485.0636; Fx. 614 292-4390; [email protected] 1 https://mc06.manuscriptcentral.com/cjz-pubs Canadian Journal of Zoology Page 2 of 30 Dehydration resistance and tolerance in the wolf spider Schizocosa ocreata : A comparison of survivorship, critical body water content, and water loss rates between sexes. Samantha K. Herrmann and J. Andrew Roberts Small-bodied terrestrial animals like spiders face challenges maintaining water reserves essential for homeostasis.
    [Show full text]
  • Views See Kats and Dill; 1998; Dick and Grostal, 2001), While Predators Use Chemical Cues to Locate Prey (Koivula and Korpimaki, 2001)
    Miami University The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Kerri M. Wrinn Candidate for the Degree: Doctor of Philosophy _______________________ Ann L. Rypstra, Advisor ________________________ Michelle D. Boone, Reader ________________________ Thomas O. Crist, Reader ________________________ Maria J. Gonzalez, Reader _________________________ David L. Gorchov Graduate School Representative ABSTRACT IMPACTS OF AN HERBICIDE AND PREDATOR CUES ON A GENERALIST PREDATOR IN AGRICULTURAL SYSTEMS by Kerri M. Wrinn Animals use chemical cues for signaling between species. However, anthropogenic chemicals can interrupt this natural chemical information flow, affecting predator- prey interactions. I explored how a glyphosate-based herbicide influenced the reactions of Pardosa milvina, a common wolf spider in agricultural systems, to its predators, the larger wolf spider, Hogna helluo and the carabid beetle, Scarites quadriceps. First, I tested the effects of exposure to herbicide and chemical cues from these predators on the activity, emigration, and survival of P. milvina in laboratory and mesocosm field experiments. In the presence of H. helluo cues in the laboratory, P. milvina always decreased activity and increased time to emigration. However, in the presence of S. quadriceps cues, these spiders only decreased activity and increased time to emigration when herbicide was also present. Presence of predator cues and herbicide did not affect the emigration of P. milvina from field mesocosms, but survival was highest for spiders exposed to S. quadriceps cues alone and lowest for those exposed to herbicide alone. Secondly, I tested the effects of predator cues, herbicide and prey availability on foraging and reproduction in female P. milvina. Spiders offered more prey captured and consumed more, while those exposed to H.
    [Show full text]
  • 1 Impact of Relative Humidity on the Biology of Pardosa Milvina Hentz
    Impact of Relative Humidity on the Biology of Pardosa milvina Hentz, 1844 (Araneae: Lycosidae) A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Ryan D. Bell, B.S. Graduate Program in Entomology The Ohio State University 2009 Thesis Committee: Dr. Glen R. Needham, Advisor Dr. David J. Horn Dr. Richard A. Bradley 1 Copyright by Ryan D. Bell 2009 2 Abstract Pardosa milvina is a small wolf spider commonly associated with agricultural ecosystems. P. milvina produces dragline silk that is attached to the substrate over which it moves, but is not used in capturing prey. The effect relative humidity on P. milvina behavior and biology was examined through a series of experiments. The water balance constraints of P. milvina were studied to determine its body water content and its water loss rate at 0% RH. The calculated water loss rate is comparable to that of other terrestrial arthropods, and body water content was similar to other Pardosa spp. To examine the degree to which prey items are utilized as a water source, a study was conducted to determine if dehydrated spiders were more likely to take prey than hydrated spiders of comparable satiation levels. The individuals tested did not show an increase in prey taking when under water stress, as no spiders in either treatment took prey. Although they did not take prey, the dehydrated spiders regained a significantly greater mass when presented with water, indicating that free-standing water sources are preferred over prey if the spider is not hungry.
    [Show full text]
  • List of Ohio Spiders
    List of Ohio Spiders 20 March 2018 Richard A. Bradley Department of EEO Biology Ohio State University Museum of Biodiversity 1315 Kinnear Road Columbus, OH 43212 This list is based on published specimen records of spider species from Ohio. Additional species that have been recorded during the Ohio Spider Survey (beginning 1994) are also included. I would very much appreciate any corrections; please mail them to the above address or email ([email protected]). 656 [+5] Species Mygalomorphae Antrodiaetidae (foldingdoor spiders) (2) Antrodiaetus robustus (Simon, 1890) Antrodiaetus unicolor (Hentz, 1842) Atypidae (purseweb spiders) (3) Sphodros coylei Gertsch & Platnick, 1980 Sphodros niger (Hentz, 1842) Sphodros rufipes (Latreille, 1829) Ctenizidae (trapdoor spiders) (1) Ummidia audouini (Lucas, 1835) Araneomorphae Agelenidae (funnel weavers) (14) Agelenopsis emertoni Chamberlin & Ivie, 1935 | Agelenopsis kastoni Chamberlin & Ivie, 1941 | Agelenopsis naevia (Walckenaer, 1805) grass spiders Agelenopsis pennsylvanica (C.L. Koch, 1843) | Agelnopsis potteri (Blackwell, 1846) | Agelenopsis utahana (Chamberlin & Ivie, 1933) | Coras aerialis Muma, 1946 Coras juvenilis (Keyserling, 1881) Coras lamellosus (Keyserling, 1887) Coras medicinalis (Hentz, 1821) Coras montanus (Emerton, 1889) Tegenaria domestica (Clerck, 1757) barn funnel weaver In Wadotes calcaratus (Keyserling, 1887) Wadotes hybridus (Emerton, 1889) Amaurobiidae (hackledmesh weavers) (2) Amaurobius ferox (Walckenaer, 1830) In Callobius bennetti (Blackwall, 1848) Anyphaenidae (ghost spiders)
    [Show full text]
  • SHORT COMMUNICATION Influence of Prey Availability on Seasonal Fluctuation in Body Condition in the Wolf Spider, Pardosa Milvina
    2013. The Journal of Arachnology 41:400–403 SHORT COMMUNICATION Influence of prey availability on seasonal fluctuation in body condition in the wolf spider, Pardosa milvina (Araneae: Lycosidae) Jason M. Schmidt1,4, James D. Harwood2 and Ann L. Rypstra3: 1Department of Zoology, Miami University, Oxford, Ohio 45056 USA. E-mail: [email protected]; 2Department of Entomology, University of Kentucky, Lexington, Kentucky 40546 USA; 3Department of Zoology, Miami University, Hamilton, Ohio 45011 USA Abstract. Foraging by an organism varies over the season in response to environmental conditions. Predatory arthropods, such as spiders, are frequently in a food-limited state despite their polyphagous habits and may feed opportunistically to enhance rates of growth, survival and reproduction. We predicted that, to circumvent food limitation, spider foraging would be related to prey availability. We examined the extent to which body condition of spiders, a correlate of recent foraging, was related to prey availability and habitat type. Wolf spiders Pardosa milvina (Hentz 1844) were collected between May and October in two habitat types, corn and soybean fields. To assess changes in spider condition, we calculated and compared multiple body condition indices derived from morphometric measures of individual spiders. Prey abundance was monitored over the same period using a vacuum suction sampler. Body condition indices provided qualitatively equivalent results. Interestingly, juvenile males were in better condition than adult males, but the opposite was the case for juvenile versus adult females. Although the availability of potential prey generally increased over the growing season, changes in body condition fluctuated independently of prey, suggesting that Pardosa milvina have life history differences in foraging and demand for resources that may influence foraging decisions.
    [Show full text]
  • Abstract Impact of an Atrazine-Based Herbicide On
    ABSTRACT IMPACT OF AN ATRAZINE-BASED HERBICIDE ON AN AGROBIONT WOLF SPIDER by Jake A. Godfrey For animals that live in association with humans, a key ecological question is how anthropogenic factors influence their behavior and life history. While major negative effects are obvious, subtle non-lethal responses to anthropogenic stimuli may provide insight into the features that lead to the success of species that thrive in habitats heavily impacted by humans. Here I explored the influence of the herbicide atrazine on the behavior and various life history traits exhibited by a wolf spider that is found in agroecosystems where this herbicide is commonly applied. In my first experiment, exposure to atrazine altered activity patterns of this spider. In my second experiment, exposure delayed maturation and increased the probability of spiders having a faulty molt. Atrazine also decreased the probability of producing an egg sac after mating, increased mass of egg sacs that were produced, and negatively impacted adult lifespans. These results suggest that the atrazine based herbicides that are routinely applied to agricultural fields result in altered behavior and life history traits of these spiders and may therefore influence the community of predators and their effects on the food web in complex ways. IMPACT OF AN ATRAZINE-BASED HERBICIDE ON AN AGROBIONT WOLF SPIDER A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science by Jake A. Godfrey Miami University Oxford, Ohio 2017 Advisor: Ann L. Rypstra Reader: Michelle D. Boone Reader: Alan B. Cady Reader: Ann L.
    [Show full text]
  • A Checklist of Maine Spiders (Arachnida: Araneae)
    A CHECKLIST OF MAINE SPIDERS (ARACHNIDA: ARANEAE) By Daniel T. Jennings Charlene P. Donahue Forest Health and Monitoring Maine Forest Service Technical Report No. 47 MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY September 2020 Augusta, Maine Online version of this report available from: https://www.maine.gov/dacf/mfs/publications/fhm_pubs.htm Requests for copies should be made to: Maine Forest Service Division of Forest Health & Monitoring 168 State House Station Augusta, Maine 04333-0168 Phone: (207) 287-2431 Printed under appropriation number: 013-01A-2FHM-52 Issued 09/2020 Initial printing of 25 This product was made possible in part by funding from the U.S. Department of Agriculture. Forest health programs in the Maine Forest Service, Department of Agriculture Conservation and Forestry are supported and conducted in partnership with the USDA, the University of Maine, cooperating landowners, resource managers, and citizen volunteers. This institution is prohibited from discrimination based on race, color, national origin, sex, age, or disability. 2 A CHECKLIST OF MAINE SPIDERS (ARACHNIDA: ARANEAE) 1 2 DANIEL T. JENNINGS and CHARLENE P. DONAHUE ____________________________________ 1 Daniel T. Jennings, retired, USDA, Forest Service, Northern Forest Experiment Station. Passed away September 14, 2020 2 Charlene P. Donahue, retired, Department of Agriculture, Conservation and Forestry – Maine Forest Service. Corresponding Author [email protected] 4 Table of Contents Abstract 1 Introduction 1 Figure 1. Map of State of Maine
    [Show full text]
  • Revision of the Milvinagroup of the Wolf Spider Genus
    REVISION OF THE MILVINA GROUP OF THE WOLF SPIDER GENUS PARDOSA (ARANEAE: LYCOSIDAE) By C. D. DONDALE AND J. H. REDNER Biosystematics Research Institute Research Branch, Agriculture Canada, Ottawa, Ontario, Canada K1A OC6 INTRODUCTION The genus Pardosa C. L. Koch is a large and widespread group of wolf spiders. Several species groups have been recognized in North America (Lowrie and Dondale 1981). The objective of the present paper is to define and revise the milvina group. The milvina group of the genus Pardosa consists of 18 American species of wolf spiders. The greatest concentration of species seems to be in the southeastern United States and Mexico. Only P. milvina (Hentz), P. saxatilis (Hentz), and P. littoralis Banks range northward as far as Canada, and only P. portoricensis Banks, P. hamifera F. Pickard-Cambridge, and P. littoralis have been found in the West Indies. P. fastosa (Keyserling)extends into South America as far as Ecuador. None are found on the U.S. Pacific coast or in the U.S. Rocky Mountains, and few specimens are recorded from the Great Plains. Terminology for anatomical parts is defined by Dondale and Redner (1978) and by Figures 2-7 and 41-45 here. Measurements are given as the mean and standard deviation for 10 to 20 specimens or as the range for fewer. RELATIONSHIPS The external genitalia, in our opinion, provide the best indicators of relationships within the milvina group. The inferred relationships among the species are shown in Figure 1. Females of all species in the group have the lateral margins of the median septum raised and thickened at the site of the copulatory openings (character l, Fig.
    [Show full text]
  • Socially-Facilitated Antipredator Responses in the Wolf Spider Pardosa Milvina
    Susquehanna University Scholarly Commons Senior Scholars Day Apr 28th, 12:00 AM - 12:00 AM Socially-Facilitated Antipredator Responses in the Wolf Spider Pardosa milvina Kaitlyn Herron Follow this and additional works at: https://scholarlycommons.susqu.edu/ssd Part of the Behavioral Neurobiology Commons Herron, Kaitlyn, "Socially-Facilitated Antipredator Responses in the Wolf Spider Pardosa milvina" (2020). Senior Scholars Day. 12. https://scholarlycommons.susqu.edu/ssd/2020/posters/12 This Event is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Senior Scholars Day by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Socially-facilitated antipredator responses in the wolf spider Pardosa milvina ! Kaitlyn A. Herron and Matthew H. Persons ! ! Neuroscience Program, Susquehanna University, Selinsgrove, PA 17870 ! ABSTRACT Conspecifics with No Predator Conspecifics with Predator Conspecifics with No Predator METHODS cues, Subject with Predator cues, Subject without cues, Subject without Predator Animals use diverse sources of information to assess predation risk. Many may use direct A cues (CNPSP) Female Pardosa test Predator (CPSNP) Female cues (CNPSNP) Female Pardosa test B D subject (center) has access to silk cues from Pardosa test subject (center) has no silk subject (center) has no access to silk cues information such as visual or odor cues associated with a predator. Additionally, social its larger predatory wolf spider, Tigrosa while cues from Tigrosa while two other female from Tigrosa while two other female Pardosa two other female Pardosa (outside ring) do Pardosa (outside ring) do have access to (outside ring) also have no access to predator species may use indirect sources of information such as observing antipredator responses of not have access to predator cues.
    [Show full text]
  • A Preliminary Checklist to the Spiders (Arachnida: Araneae) of Minnesota (U.S.A.) with Annotations
    A Preliminary Checklist to the Spiders (Arachnida: Araneae) of Minnesota (U.S.A.) with Annotations Chad J. Heins: Biology Department, Bethany Lutheran College, Mankato, Minnesota Assistant Professor of Biology Bethany Lutheran College 700 Luther Drive Mankato, MN 56001 Abstract This is a list of spider species for Minnesota (U.S.A.). It includes species that have been recorded in Minnesota as well as those which have ranges that suggest they are likely to be found in the state in the future. The checklist is a compilation of records from the literature, museums, and personal collection efforts by the author. Each species is annotated with a select reference or references and a comment if necessary. This list represents several new state records and expansions of several species’ known ranges. Key Terms: Minnesota, Araneae INTRODUCTION Spiders are an abundant component of terrestrial arthropod assemblages. Over 3,800 species of spiders have been documented in North America north of Mexico (Bradley 2013). They present interesting subjects for the study of behavior, taxonomy, and ecology and it has been suggested that they may serve as important ecological indicators (Clausen 1986; Churchill 1997). Their abundance, ease of capture, and limited expense to study make them ideal subjects for study at the undergraduate level and an interest in such applications sent the author in search of a list of Minnesota spiders. The only faunal list for Minnesota that could be located was limited to the family-level (Cutler 1976). Several states and provinces in North America have developed such spider faunal lists. In the Upper Midwest, such lists have been created for Michigan (Snider 1991), Illinois/Indiana (Beatty 2002), Wisconsin (Levi & Field 1954), and Manitoba (Benell-Aitchison & Dondale 1990).
    [Show full text]