REVIEW #4-ANSWERS.Jnt

Total Page:16

File Type:pdf, Size:1020Kb

REVIEW #4-ANSWERS.Jnt CALCULUS AB VOLUME – REVIEW (Disk Method, Washer Method, Shells Method, Cross Sections) SHOW ALL WORK IN YOUR NOTEBOOK The base region for all the following solids with known cross sections is the circle with equation: xy229 . Find the volume in each case if the cross sections are parallel to the y-axis (perpendicular to the x-axis). 1. Cross Section: Circles, diameter in the xy=plane 2. Cross Section: Squares, side in the xy-plane 3. Cross Section: Equilateral Triangles, side in the xy-plane 4. Cross Section: Squares, the diagonals in the xy-plane 5. Cross Section: Isosceles Right Triangles, one of the legs in the xy-plane 6. Cross Section: Semicircles, diameter in the xy-plane 7. Find the volume of the solid that lies between planes perpendicular to the x- axis at x = -1 and x = 1. The cross sections perpendicular to the x-axis between these planes are squares whose diagonals run from the semicircle yx1 2 to the semicircle yx 1 2 . 8. The base of a solid is the region between the curve yx 2sin() and the interval [0, ] on the x-axis. Find the volume if the cross sections perpendicular to the x-axis are a) equilateral triangles with bases running from the x-axis to the curve. b) Squares with bases running from the x-axis to the curve. 9. Find the volume of the solid generated by revolving the region enclosed by the parabola yx2 4 and the line y = x about a) the x-axis b) the y-axis c) the line x = 4 d) the line y = 4 10. Find the volume of the solid generated by revolving the region bounded by the x-axis, the curve yx 3 4 , and the lines x = -1 and x = 1 about the x-axis. x2 11. The section of the parabola y from y = 0 to y = 2 is revolved about the 2 y-axis to form a bowl. a) Find the volume of the bowl. b) Find how much the bowl is holding when is filled to a depth of k units (0<k<2). c) If the bowl is filled at a rate of 2 cubic units per second, how fast is the depth k increasing when k = 1? 12. Let R be the region in the first quadrant enclosed by the y-axis and the graphs of yx2sin() and yx sec( ) . a) Find the area of R. b) Find the volume of the solid generated when R is revolved about the x-axis. c) Find the volume of the solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are squares. MULTIPLE CHOICE SECTION OF REVIEW 1. 2. 3. 4. 5. .
Recommended publications
  • The Mathematics of Fels Sculptures
    THE MATHEMATICS OF FELS SCULPTURES DAVID FELS AND ANGELO B. MINGARELLI Abstract. We give a purely mathematical interpretation and construction of sculptures rendered by one of the authors, known herein as Fels sculptures. We also show that the mathematical framework underlying Ferguson's sculpture, The Ariadne Torus, may be considered a special case of the more general constructions presented here. More general discussions are also presented about the creation of such sculptures whether they be virtual or in higher dimensional space. Introduction Sculptors manifest ideas as material objects. We use a system wherein an idea is symbolized as a solid, governed by a set of rules, such that the sculpture is the expressed material result of applying rules to symbols. The underlying set of rules, being mathematical in nature, may thus lead to enormous abstraction and although sculptures are generally thought of as three dimensional objects, they can be created in four and higher dimensional (unseen) spaces with various projections leading to new and pleasant three dimensional sculptures. The interplay of mathematics and the arts has, of course, a very long and old history and we cannot begin to elaborate on this matter here. Recently however, the problem of creating mathematical programs for the construction of ribbed sculptures by Charles Perry was considered in [3]. For an insightful paper on topological tori leading to abstract art see also [5]. Spiral and twirling sculptures were analysed and constructed in [1]. This paper deals with a technique for sculpting works mostly based on wood (but not necessarily restricted to it) using abstract ideas based on twirls and tori, though again, not limited to them.
    [Show full text]
  • Centroids by Composite Areas.Pptx
    Centroids Method of Composite Areas A small boy swallowed some coins and was taken to a hospital. When his grandmother telephoned to ask how he was a nurse said 'No change yet'. Centroids ¢ Previously, we developed a general formulation for finding the centroid for a series of n areas n xA ∑ ii i=1 x = n A ∑ i i=1 2 Centroids by Composite Areas Monday, November 12, 2012 1 Centroids ¢ xi was the distance from the y-axis to the local centroid of the area Ai n xA ∑ ii i=1 x = n A ∑ i i=1 3 Centroids by Composite Areas Monday, November 12, 2012 Centroids ¢ If we can break up a shape into a series of smaller shapes that have predefined local centroid locations, we can use this formula to locate the centroid of the composite shape n xA ∑ ii i=1 x = n A ∑ i 4 Centroids by Composite Areas i=1 Monday, November 12, 2012 2 Centroid by Composite Bodies ¢ There is a table in the back cover of your book that gives you the location of local centroids for a select group of shapes ¢ The point labeled C is the location of the centroid of that shape. 5 Centroids by Composite Areas Monday, November 12, 2012 Centroid by Composite Bodies ¢ Please note that these are local centroids, they are given in reference to the x and y axes as shown in the table. 6 Centroids by Composite Areas Monday, November 12, 2012 3 Centroid by Composite Bodies ¢ For example, the centroid location of the semicircular area has the y-axis through the center of the area and the x-axis at the bottom of the area ¢ The x-centroid would be located at 0 and the y-centroid would be located
    [Show full text]
  • Sculptures in S3
    Sculptures in S3 Saul Schleimer and Henry Segerman∗ Abstract We describe the construction of a number of sculptures. Each is based on a geometric design native to the three- sphere: the unit sphere in four-dimensional space. Via stereographic projection, we transfer the design to three- dimensional space. All of the sculptures are then fabricated by the 3D printing service Shapeways. 1 Introduction The three-sphere, denoted S3, is a three-dimensional analog of the ordinary two-dimensional sphere, S2. In n+ general, the n–dimensional sphere is a subset of R 1 as follows: n n+1 2 2 2 S = f(x0;x1;:::;xn) 2 R j x0 + x1 + ··· + xn = 1g: Thus S2 can be seen as the usual unit sphere in R3. Visualising objects in dimensions higher than three is non-trivial. However for S3 we can use stereographic projection to reduce the dimension from four to three. n n n Let N = (0;:::;0;1) be the north pole of S . We define stereographic projection r : S − fNg ! R by x0 x1 xn−1 r(x0;x1;:::;xn) = ; ;:::; : 1 − xn 1 − xn 1 − xn See [1, page 27]. Figure 1a displays the one-dimensional case; this is also a cross-section of the n– dimensional case. For any point (x;y) 2 S1 − fNg draw the straight line L between N and (x;y). Then L meets R1 at a single point; this is r(x;y). N x 1−y (x;y) (a) Stereographic projection from S1 − (b) Two-dimensional stereographic projection applied to the Earth.
    [Show full text]
  • The Mathematics of Mitering and Its Artful Application
    The Mathematics of Mitering and Its Artful Application Tom Verhoeff Koos Verhoeff Faculty of Mathematics and CS Valkenswaard, Netherlands Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven, Netherlands Email: [email protected] Abstract We give a systematic presentation of the mathematics behind the classic miter joint and variants, like the skew miter joint and the (skew) fold joint. The latter is especially useful for connecting strips at an angle. We also address the problems that arise from constructing a closed 3D path from beams by using miter joints all the way round. We illustrate the possibilities with artwork making use of various miter joints. 1 Introduction The miter joint is well-known in the Arts, if only as a way of making fine frames for pictures and paintings. In its everyday application, a common problem with miter joints occurs when cutting a baseboard for walls meeting at an angle other than exactly 90 degrees. However, there is much more to the miter joint than meets the eye. In this paper, we will explore variations and related mathematical challenges, and show some artwork that this provoked. In Section 2 we introduce the problem domain and its terminology. A systematic mathematical treatment is presented in Section 3. Section 4 shows some artwork based on various miter joints. We conclude the paper in Section 5 with some pointers to further work. 2 Problem Domain and Terminology We will now describe how we encountered new problems related to the miter joint. To avoid misunderstand- ings, we first introduce some terminology. Figure 1: Polygon knot with six edges (left) and thickened with circular cylinders (right) 225 2.1 Cylinders, single and double beveling, planar and spatial mitering Let K be a one-dimensional curve in space, having finite length.
    [Show full text]
  • Cross-Section- Surface Area of a Prism- Surface Area of a Cylinder- Volume of a Prism
    S8.6 Volume Things to Learn (Key words, Notation & Formulae) Complete from your notes Radius- Diameter- Surface Area- Volume- Capacity- Prism- Cross-section- Surface area of a prism- Surface area of a cylinder- Volume of a prism- Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below: Q2. What is the surface area of a cuboid with the dimensions 4cm, 5cm and 6cm? Section 2. Volume of cuboids: Q1. Calculate the volume of these cuboids: S8.6 Volume Q2. Section 3. Definition of prisms: Label all the shapes and tick the ones that are prisms. Section 4. Surface area of prisms: Q1. Find the surface area of this triangular prism. Q2. Calculate the surface area of this cylinder. S8.6 Volume Q3. Cans are in cylindrical shapes. Each can has a diameter of 5.3 cm and a height of 11.4 cm. How much paper is required to make the label for the 20 cans? Section 5. Volume of a prism: Q1. Find the volume of this L-shaped prism. Q2. Calculate the volume of this prism. Give your answer to 2sf Section 6 . Volume of a cylinder: Q1. Calculate the volume of this cylinder. S8.6 Volume Q2. The diagram shows a piece of wood. The piece of wood is a prism of length 350cm. The cross-section of the prism is a semi-circle with diameter 1.2cm. Calculate the volume of the piece of wood. Give your answer to 3sf. Section 7. Problems involving volume and capacity: Q1. Sam buys a planter shown below.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Archimedes and the Arbelos1 Bobby Hanson October 17, 2007
    Archimedes and the Arbelos1 Bobby Hanson October 17, 2007 The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics. — G.H. Hardy, A Mathematician’s Apology ACBr 1 − r Figure 1. The Arbelos Problem 1. We will warm up on an easy problem: Show that traveling from A to B along the big semicircle is the same distance as traveling from A to B by way of C along the two smaller semicircles. Proof. The arc from A to C has length πr/2. The arc from C to B has length π(1 − r)/2. The arc from A to B has length π/2. ˜ 1My notes are shamelessly stolen from notes by Tom Rike, of the Berkeley Math Circle available at http://mathcircle.berkeley.edu/BMC6/ps0506/ArbelosBMC.pdf . 1 2 If we draw the line tangent to the two smaller semicircles, it must be perpendicular to AB. (Why?) We will let D be the point where this line intersects the largest of the semicircles; X and Y will indicate the points of intersection with the line segments AD and BD with the two smaller semicircles respectively (see Figure 2). Finally, let P be the point where XY and CD intersect. D X P Y ACBr 1 − r Figure 2 Problem 2. Now show that XY and CD are the same length, and that they bisect each other.
    [Show full text]
  • Lesson 20: Composite Area Problems
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 20 7•3 Lesson 20: Composite Area Problems Student Outcomes . Students find the area of regions in the coordinate plane with polygonal boundaries by decomposing the plane into triangles and quadrilaterals, including regions with polygonal holes. Students find composite areas of regions in the coordinate plane by decomposing the plane into familiar figures (triangles, quadrilaterals, circles, semicircles, and quarter circles). Lesson Notes In Lessons 17 through 20, students learned to find the areas of various regions, including quadrilaterals, triangles, circles, semicircles, and those plotted on coordinate planes. In this lesson, students use prior knowledge to use the sum and/or difference of the areas to find unknown composite areas. Classwork Example 1 (5 minutes) Scaffolding: For struggling students, display Example 1 posters around the room displaying the visuals and the Find the composite area of the shaded region. Use ퟑ. ퟏퟒ for 흅. formulas of the area of a circle, a triangle, and a quadrilateral for reference. Allow students to look at the problem and find the area independently before solving as a class. What information can we take from the image? Two circles are on the coordinate plane. The diameter of the larger circle is 6 units, and the diameter of MP.1 the smaller circle is 4 units. How do we know what the diameters of the circles are? We can count the units along the diameter of the circles, or we can subtract the coordinate points to find the length of the diameter. Lesson 20: Composite Area Problems 283 This work is derived from Eureka Math ™ and licensed by Great Minds.
    [Show full text]
  • Chapter 6 the Arbelos
    Chapter 6 The arbelos 6.1 Archimedes’ theorems on the arbelos Theorem 6.1 (Archimedes 1). The two circles touching CP on different sides and AC CB each touching two of the semicircles have equal diameters AB· . P W1 W2 A O1 O C O2 B A O1 O C O2 B Theorem 6.2 (Archimedes 2). The diameter of the circle tangent to all three semi- circles is AC CB AB · · . AC2 + AC CB + CB2 · We shall consider Theorem ?? in ?? later, and for now examine Archimedes’ wonderful proofs of the more remarkable§ Theorems 6.1 and 6.2. By synthetic reasoning, he computed the radii of these circles. 1Book of Lemmas, Proposition 5. 2Book of Lemmas, Proposition 6. 602 The arbelos 6.1.1 Archimedes’ proof of the twin circles theorem In the beginning of the Book of Lemmas, Archimedes has established a basic proposition 3 on parallel diameters of two tangent circles. If two circles are tangent to each other (internally or externally) at a point P , and if AB, XY are two parallel diameters of the circles, then the lines AX and BY intersect at P . D F I W1 E H W2 G A O C B Figure 6.1: Consider the circle tangent to CP at E, and to the semicircle on AC at G, to that on AB at F . If EH is the diameter through E, then AH and BE intersect at F . Also, AE and CH intersect at G. Let I be the intersection of AE with the outer semicircle. Extend AF and BI to intersect at D.
    [Show full text]
  • Changes in Cross-Section Geometry and Channel Volume in Two Reaches of the Kankakee River in Illinois, 1959-94
    Changes in Cross-Section Geometry and Channel Volume in Two Reaches of the Kankakee River in Illinois, 1959-94 By PAUL J. TERRIO and JOHN E. NAZIMEK U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 96 4261 Prepared in cooperation with the KANKAKEE COUNTY SOIL AND WATER CONSERVATION DISTRICT Urbana, Illinois 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 221 N. Broadway Box 25286 Urbana, Illinois 61801 Denver, CO 80225 CONTENTS Abstract......................................................................................... 1 Introduction...................................................................................... 1 Purpose and Scope............................................................................ 3 Description of the Study Area................................................................... 4 Acknowledgments............................................................................ 4 Compilation and Measurement of Channel Cross-Section Geometry Data ..................................... 6 Momence Wetlands Reach ..................................................................... 6 Six-Mile Pool Reach .........................................................................
    [Show full text]
  • The Pythagorean Theorem Crown Jewel of Mathematics
    The Pythagorean Theorem Crown Jewel of Mathematics 5 3 4 John C. Sparks The Pythagorean Theorem Crown Jewel of Mathematics By John C. Sparks The Pythagorean Theorem Crown Jewel of Mathematics Copyright © 2008 John C. Sparks All rights reserved. No part of this book may be reproduced in any form—except for the inclusion of brief quotations in a review—without permission in writing from the author or publisher. Front cover, Pythagorean Dreams, a composite mosaic of historical Pythagorean proofs. Back cover photo by Curtis Sparks ISBN: XXXXXXXXX First Published by Author House XXXXX Library of Congress Control Number XXXXXXXX Published by AuthorHouse 1663 Liberty Drive, Suite 200 Bloomington, Indiana 47403 (800)839-8640 www.authorhouse.com Produced by Sparrow-Hawke †reasures Xenia, Ohio 45385 Printed in the United States of America 2 Dedication I would like to dedicate The Pythagorean Theorem to: Carolyn Sparks, my wife, best friend, and life partner for 40 years; our two grown sons, Robert and Curtis; My father, Roscoe C. Sparks (1910-1994). From Earth with Love Do you remember, as do I, When Neil walked, as so did we, On a calm and sun-lit sea One July, Tranquillity, Filled with dreams and futures? For in that month of long ago, Lofty visions raptured all Moonstruck with that starry call From life beyond this earthen ball... Not wedded to its surface. But marriage is of dust to dust Where seasoned limbs reclaim the ground Though passing thoughts still fly around Supernal realms never found On the planet of our birth. And I, a man, love you true, Love as God had made it so, Not angel rust when then aglow, But coupled here, now rib to soul, Dear Carolyn of mine.
    [Show full text]
  • Extensionalism: the Revolution in Logic
    Nimrod Bar-Am Extensionalism: The Revolution in Logic Bar-Am_Fm.indd iii 1/22/2008 10:19:09 PM N. Bar-Am Head, Rhetoric and Philosophy of Communication Unit Communication Department Sapir College of the Negev M.P. Hof Ashkelon 79165 Israel ISBN: 978-1-4020-8167-5 e-ISBN: 978-1-4020-8168-2 DOI: 10.1007/ 978-1-4020-8168-2 Library of Congress Control Number: 2007941591 All Rights Reserved © 2008 Springer Science + Business Media, B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper. 9 8 7 6 5 4 3 2 1 springer.com Bar-Am_Fm.indd iv 1/22/2008 10:19:09 PM Motto: “… logic … since Aristotle … has been unable to advance a step, and, thus, to all appearances has reached its completion” Immanuel Kant, The Critique of Pure Reason Preface to the 2nd ed., 1787 “Pure mathematics was discovered by Boole … the fact being that Boole was too modest to suppose his book the first ever written on mathematics.… His book was in fact concerned with formal logic, and this is the same thing as mathematics” Bertrand Russell Recent Work in the Philosophy of Mathematics, 1901 Bar-Am_Fm.indd vii 1/22/2008 10:19:09 PM Abstract For a very long time, Aristotelian logic was accepted as a tool (Organon) for the generation of scientific theory.
    [Show full text]