Victorian Water Accounts 2018–19 1

Total Page:16

File Type:pdf, Size:1020Kb

Victorian Water Accounts 2018–19 1 Photo credit Cover image: © Craig Moodie Photography Acknowledgment We acknowledge and respect Victorian Traditional Owners as the original custodians of Victoria's land and waters, their unique ability to care for Country and deep spiritual connection to it. We honour Elders past and present whose knowledge and wisdom has ensured the continuation of culture and traditional practices. We are committed to genuinely partner, and meaningfully engage, with Victoria's Traditional Owners and Aboriginal communities to support the protection of Country, the maintenance of spiritual and cultural practices and their broader aspirations in the 21st century and beyond. © The State of Victoria Department of Environment, Land, Water and Planning July 2020 This work is licensed under a Creative Commons Attribution 4.0 International licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Coat of Arms, the Victorian Government logo and the Department of Environment, Land, Water and Planning (DELWP) logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ ISSN 1837-591X (print) ISSN 1837-5928 (pdf) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Accessibility If you would like to receive this publication in an alternative format, please telephone the DELWP Customer Service Centre on 136186, email [email protected], or via the National Relay Service on 133 677 www.relayservice.com.au. This document is also available on the internet at www.delwp.vic.gov.au. Victorian Water Accounts 2018–2019 A statement of Victorian water resources Victorian Water Accounts 2018–19 1 Foreword The 2018–19 Victorian Water Accounts provide an overview of the use and management of Victoria’s water resources. In a time of more extreme weather events and extended periods of water scarcity, regular and comprehensive public water reporting has never been more important. Victoria continues to lead the way in such reporting. Victoria has developed online platforms to make monthly and annual reporting more easily accessible to the public. In 2018–19, conditions were again drier than in the previous year, with below-average rainfall across most of Victoria. Northern parts of the state experienced particularly dry conditions and large parts of East Gippsland continued to suffer from a severe multi-year drought, which affected large parts of eastern Australia. The decreased rainfall and hot conditions meant that there was less surface water available in 2018–19, compared to previous years. Consequently, there was an increase in the number of Victorian towns on water restrictions and an increase in restrictions on the volume that licensed landholders were allowed to divert from streams. The release of the Victorian Water Accounts 2018–19 marks the sixteenth in the series of annual reports. These accounts show the total volume of surface water, groundwater and recycled water available in 2018–19 was 12,073 GL, compared to 15,375 GL in the previous year. Victoria is in a good position to face the challenges of population growth, climate change and extended periods of drought and dry conditions, but we cannot be complacent. The Victorian Government, together with our partners, is leading the way in managing our water resources sustainably through Water for Victoria, our plan for responding to the pressures of climate change and population growth and for doing more with less water. This includes building the Victorian Water Grid with major pipeline extensions, irrigation modernisation, use of the desalination plant and investing in recycling, stormwater use and water efficiency. Together with the Victorian Water Accounts Highlights, released last year and available at https://howmuch.water.vic.gov.au/, we will soon be releasing an online version of the surface water accounts. These combined products will provide a new way to engage with water data and learn more about how water is managed. We are always looking to improve how we report, and if you have any suggestions about this please let the team know what you think by emailing us at [email protected]. THE HON LISA NEVILLE Minister for Water Victorian Water Accounts 2018–19 2 Contents Foreword ................................................................................................................................... 2 Contents .................................................................................................................................... 3 Executive summary ................................................................................................................. 5 PART 1: OVERVIEW OF VICTORIA'S WATER RESOURCES 2018–19 .................................. 9 1. Management of Victoria’s water resources ................................................................. 10 1.1 Types of water resources ...................................................................................................... 10 1.2 Water sector institutional arrangements ................................................................................ 14 1.3 Water entitlement and water resource planning frameworks ................................................. 17 1.4 Monitoring and reporting ........................................................................................................ 24 2. Water availability ............................................................................................................ 26 2.1 Rainfall ................................................................................................................................... 26 2.2 Streamflow ............................................................................................................................. 30 2.3 Storages ................................................................................................................................ 33 2.4 Groundwater .......................................................................................................................... 36 2.5 Response to water availability ............................................................................................... 3 9 3. Water for consumptive use ........................................................................................... 43 3.1 Surface water entitlements and use ....................................................................................... 44 3.2 Groundwater entitlements and use ........................................................................................ 47 3.3 Recycled water production .................................................................................................... 4 9 3.4 Desalination water production ............................................................................................... 50 3.5 Metered urban and commercial consumptive use ................................................................. 50 4. Water for the environment ............................................................................................ 52 4.1 Managed environmental water .............................................................................................. 53 4.2 Obligations on consumptive water entitlements ..................................................................... 57 4.3 Above cap water .................................................................................................................... 59 5. Water trade ..................................................................................................................... 61 5.1 Victoria’s water trade framework............................................................................................ 61 5.2 Overview of trade in 2018–19 ................................................................................................ 62 PART 2: WATER ACCOUNTS 2018–19 .......................................................................... 65 6. River basin accounts ..................................................................................................... 66 6.1 Methodology .......................................................................................................................... 66 6.2 Murray basin .......................................................................................................................... 73 6.3 Kiewa basin ........................................................................................................................... 82 6.4 Ovens basin ........................................................................................................................... 87 6.5 Broken basin .......................................................................................................................... 93 6.6 Goulburn basin ...................................................................................................................... 98 6.7 Campaspe basin .................................................................................................................
Recommended publications
  • Northern Region
    Section 5 Northern Region 109 5.1 Northern Region overview ............................................................................................... 111 5.2 Victorian Murray system .................................................................................................. 114 5.2.1 Barmah Forest ...................................................................................................... 116 5.2.2 Gunbower Creek and Forest ................................................................................ 119 5.2.3 Central Murray wetlands ...................................................................................... 124 5.2.4 Hattah Lakes ........................................................................................................ 129 5.2.5 Lower Murray wetlands ........................................................................................ 132 5.2.6 Lindsay, Mulcra and Wallpolla islands .................................................................. 137 5.3 Ovens system ................................................................................................................... 141 5.4 Goulburn system .............................................................................................................. 145 5.4.1 Goulburn River ..................................................................................................... 147 5.4.2 Goulburn wetlands ............................................................................................... 152 5.5 Broken system .................................................................................................................
    [Show full text]
  • Northern Region
    Section 5 Northern Region 109 5.1 Northern Region overview ............................................................................................... 111 5.2 Victorian Murray system .................................................................................................. 114 5.2.1 Barmah Forest ...................................................................................................... 116 5.2.2 Gunbower Creek and Forest ................................................................................ 119 5.2.3 Central Murray wetlands ...................................................................................... 124 5.2.4 Hattah Lakes ........................................................................................................ 129 5.2.5 Lower Murray wetlands ........................................................................................ 132 5.2.6 Lindsay, Mulcra and Wallpolla islands .................................................................. 137 5.3 Ovens system ................................................................................................................... 141 5.4 Goulburn system .............................................................................................................. 145 5.4.1 Goulburn River ..................................................................................................... 147 5.4.2 Goulburn wetlands ............................................................................................... 152 5.5 Broken system .................................................................................................................
    [Show full text]
  • Dreeite Nature Conservation Reserve Management Statement
    Dreeite Nature Conservation Reserve Management Statement Land Stewardship & Biodiversity Department of Sustainability and Environment May 2005 This Management Statement has been written by Hugh Robertson and James Fitzsimons for the Department of Sustainability and Environment, Victoria. This Statement fulfils obligations by the State of Victoria to the Commonwealth of Australia, which provided financial assistance for the purchase of this reserve under the National Reserve System program of the Natural Heritage Trust. ©The State of Victoria Department of Sustainability and Environment 2005 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. ISBN 1 74152 140 8 Disclaimer: This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. Cover: Permanent wetland surrounded by Stony Knoll Shrubland, Dreeite Nature Conservation Reserve (Photo: James Fitzsimons). Dreeite Nature Conservation Reserve Objectives This Management Statement for the Dreeite Nature Conservation Reserve outlines the reserve’s natural values and the directions for its management in the short to long term. The overall operational management objective is: Maintain, and enhance where appropriate, the condition of the reserve while allowing natural processes of regeneration, disturbance and succession to occur and actively initiating these processes where required. Background and Context Reason for purchase Since the implementation of the National Reserve System Program (NRS) in 1992, all Australian states and territories have been working toward the development of a comprehensive, adequate and representative (CAR) system of protected areas.
    [Show full text]
  • NORTH CENTRAL WATERWAY STRATEGY 2014-2022 CONTENTS Iii
    2014-2022 NORTH CENTRAL WATERWAY STRATEGY Acknowledgement of Country The North Central Catchment Management Authority acknowledges Aboriginal Traditional Owners within the region, their rich culture and spiritual connection to Country. We also recognise and acknowledge the contribution and interest of Aboriginal people and organisations in land and natural resource management. Document name: 2014-22 North Central Waterway Strategy North Central Catchment Management Authority PO Box 18 Huntly Vic 3551 T: 03 5440 1800 F: 03 5448 7148 E: [email protected] www.nccma.vic.gov.au © North Central Catchment Management Authority, 2014 A copy of this strategy is also available online at: www.nccma.vic.gov.au The North Central Catchment Management Authority wishes to acknowledge the Victorian Government for providing funding for this publication through the Victorian Waterway Management Strategy. This publication may be of assistance to you, but the North Central Catchment Management Authority (North Central CMA) and its employees do not guarantee it is without flaw of any kind, or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on information in this publication. The North Central Waterway Strategy was guided by a Steering Committee consisting of: • James Williams (Steering Committee Chair and North Central CMA Board Member) • Richard Carter (Natural Resource Management Committee Member) • Andrea Keleher (Department of Environment and Primary Industries) • Greg Smith (Goulburn-Murray Water) • Rohan Hogan (North Central CMA) • Tess Grieves (North Central CMA). The North Central CMA would like to acknowledge the contributions of the Steering Committee, Natural Resource Management Committee (NRMC) and the North Central CMA Board.
    [Show full text]
  • Environmental Condition of Rivers and Streams in the Latrobe, Thomson and Avon Catchments
    ENVIRONMENTAL CONDITION OF RIVERS AND STREAMS IN THE LATROBE, THOMSON AND AVON CATCHMENTS Publication 832 March 2002 1 INTRODUCTION activities have contributed to a significant change in the quantity and quality of water delivered to Lake This publication provides an overview of the Wellington and there is a significant amount of environmental condition of the rivers and streams in public concern regarding impacts on the health of the Latrobe, Thomson and Avon catchments1 (Figure the Gippsland Lakes. 1). The Latrobe and Thomson river systems, for The Latrobe, Thomson and Avon catchments contain example, contribute approximately twice the some of Victoria’s most significant river systems. nutrient inputs to the Gippsland Lakes than all other Located in the Gippsland region of Victoria, these riverine inputs. The most significant nutrient loading three river systems form the total catchment of Lake is associated with high flow events and reflects the Wellington, the western-most of the Gippsland increased surface runoff and erosion caused Lakes. The demands on these freshwater resources through land clearance and urbanisation. are considerable. Australia’s largest pulp and paper It is commonly agreed that the only long-term mill, most of the State’s power industry, much of solution for improving the condition of Lake Melbourne’s water supply and the State’s second Wellington is to significantly reduce the nutrient largest irrigation district fall within their catchment loads from the Latrobe and Thomson river systems. boundaries. Restoration of the catchments to a more sustainable Much change has occurred in these catchments land use, revegetating riparian zones and reducing since early settlement.
    [Show full text]
  • NEOTECTONICS, SALINITY, PALAEOCLIMATES and VOLCANISM Australian Earth Science Convention Pre-Conference Field Trip Adelaide – Melbourne 28 June to 2 July 2006
    CRCLEME Cooperative Research Centre for OPEN FILE Landscape Environments and Mineral Exploration REPORT SERIES CAL GI SO O C I L E O T E Y G O I nc A F or po rated I L A U S T R A NEOTECTONICS, SALINITY, PALAEOCLIMATES AND VOLCANISM Australian Earth Science Convention Pre-conference Field Trip Adelaide – Melbourne 28 June to 2 July 2006 Compiled by: David Gibson and Kate Boston With contributions from: Heike Apps, Steve Bourne, Kristen Cullen, Dan Clark, Jon Clarke, Patrick de Deckker, David Gibson, Larysa Halas, Bernie Joyce, Mike Sandiford, Liz Reid and John Wilford CRC LEME OPEN FILE REPORT 235 June 2008 CRCLEME for THE ENVIRONMENT, ENGINEERING HYDROGEOLOGICAL SPECIALIST GROUP GEOLOGICAL SOCIETY OF AUSTRALIA CRC LEME is an unincorporated joint venture between CSIRO-Exploration & Mining, and Land & Water, The Australian National University, Curtin University of Technology, University of Adelaide, Geoscience Australia, Primary Industries and Resources SA, NSW Department of Primary Industries and Minerals Council of Australia, established and supported under the Australian Government’s Cooperative Research Centres Program. CRCLEME Cooperative Research Centre for Landscape Environments and Mineral Exploration CAL GI SO O C I L E O T E Y G O I nc A F or po rated I L A U S T R A NEOTECTONICS, SALINITY, PALAEOCLIMATES AND VOLCANISM Australian Earth Science Convention Pre-conference Field Trip Adelaide – Melbourne 28 June to 2 July 2006 Convened by the Environment, Engineering Hydrogeological Specialist Group of the Geological Society of Australia
    [Show full text]
  • Victorian Recreational Fishing Guide 2021
    FREE TARGET ONE MILLION ONE MILLION VICTORIANS FISHING #target1million VICTORIAN RECREATIONAL FISHING A GUIDE TO FISHING RULES AND PRACTICES 2021 GUIDE 2 Introduction 55 Waters with varying bag and size limits 2 (trout and salmon) 4 Message from the Minister 56 Trout and salmon regulations 5 About this guide 60 Year-round trout and salmon fisheries 6 Target One Million 61 Trout and salmon family fishing lakes 9 Marine and estuarine fishing 63 Spiny crays 10 Marine and estuarine scale fish 66 Yabbies 20 Sharks, skates and rays 68 Freshwater shrimp and mussels 23 Crabs INTRODUCTION 69 Freshwater fishing restrictions 24 Shrimps and prawns 70 Freshwater fishing equipment 26 Rock lobster 70 Using equipment in inland waters 30 Shellfish 74 Illegal fishing equipment 33 Squid, octopus and cuttlefish 74 Bait and berley 34 Molluscs 76 Recreational fishing licence 34 Other invertebrates 76 Licence information 35 Marine fishing equipment 78 Your fishing licence fees at work 36 Using equipment in marine waters 82 Recreational harvest food safety 40 Illegal fishing equipment 82 Food safety 40 Bait and berley 84 Responsible fishing behaviours 41 Waters closed to recreational fishing 85 Fishing definitions 41 Marine waters closed to recreational fishing 86 Recreational fishing water definitions 41 Aquaculture fisheries reserves 86 Water definitions 42 Victoria’s marine national parks 88 Regulation enforcement and sanctuaries 88 Fisheries officers 42 Boundary markers 89 Reporting illegal fishing 43 Restricted areas 89 Rule reminders 44 Intertidal zone
    [Show full text]
  • Dams in Victoria Safe and Versatile Infrastructure
    Dams in Victoria Safe and versatile infrastructure A dam is a wall that holds back water to form a basin, lake or reservoir. Dams are typically made of earth, rock or concrete. Dams can be privately owned, owned by business or a Government agency. They can be used to store water for drinking, industry or farming, to protect property from flooding, or for recreation. Dams in Victoria Victoria has about 450,000 dams – this number shows how important dams are to the economy and our way of life. The sizes of our dams range from major storages such as Dartmouth dam (about 4,000,000 ML), Lake Eildon (about 3,300,000 ML) and the Thomson dam (about 1,070,000 Farm dams ML) to small swimming pool-sized dams on farms or lifestyle properties. These smaller privately-owned dams are the most Generating power: these large dams hold water for cooling common type of dam in Victoria. Together, Victoria’s dams have coal or gas-fired power stations or to generate hydro-electric a total storage capacity of about 13,400,000 ML. power. How we use our dams Recreation: some of the lakes created by dams are used for recreational activities such as boating and fishing. These dams Dams have huge social, economic and environmental benefits. can be popular tourist destinations and the tourism generated The vast majority of dams in Victoria have been built to store by these dams can be important to the social and economic rainfall when it is plentiful for use in times when it is most wellbeing of regional communities.
    [Show full text]
  • Central Region
    Section 3 Central Region 49 3.1 Central Region overview .................................................................................................... 51 3.2 Yarra system ....................................................................................................................... 53 3.3 Tarago system .................................................................................................................... 58 3.4 Maribyrnong system .......................................................................................................... 62 3.5 Werribee system ................................................................................................................. 66 3.6 Moorabool system .............................................................................................................. 72 3.7 Barwon system ................................................................................................................... 77 3.7.1 Upper Barwon River ............................................................................................... 77 3.7.2 Lower Barwon wetlands ........................................................................................ 77 50 3.1 Central Region overview 3.1 Central Region overview There are six systems that can receive environmental water in the Central Region: the Yarra and Tarago systems in the east and the Werribee, Maribyrnong, Moorabool and Barwon systems in the west. The landscape Community considerations The Yarra River flows west from the Yarra Ranges
    [Show full text]
  • Drought and Desalination: Melbourne Water Supply and Development Choices in the Twenty-First Century
    Drought and Desalination: Melbourne water supply and development choices in the twenty-first century Author Porter, Michael G, Downie, David, Scarborough, Helen, Sahin, Oz, Stewart, Rodney A Published 2015 Journal Title Desalination and Water Treatment Version Accepted Manuscript (AM) DOI https://doi.org/10.1080/19443994.2014.959743 Copyright Statement © 2014 Taylor & Francis (Routledge). This is an Accepted Manuscript of an article published by Taylor & Francis in Desalination and Water Treatment on 09 Oct 2014, available online: http:// www.tandfonline.com/doi/full/10.1080/19443994.2014.959743 Downloaded from http://hdl.handle.net/10072/65114 Griffith Research Online https://research-repository.griffith.edu.au TDWT 959743 CE: AS QA: RB 3 September 2014 Initial Coll: QC: Desalination and Water Treatment XX (2014) XX–XX www.deswater.com XXXX doi: 10.1080/19443994.2014.959743 Drought and Desalination: Melbourne water supply and development choices in the twenty-first century Michael G. Porter*, David Downie, Helen Scarborough, Oz Sahin, Rodney A. Stewart Deakin University City Centre, 3rd Floor, 550 Bourke St., Melbourne 3000, Australia, Tel. +61 3 5227 8424; 5 email: [email protected] Received 16 April 2014; Accepted 16 June 2014 10 ABSTRACT Sharply reduced catchment inflows across Australia around the end of the twentieth Century led to a sequence of water restrictions followed, as the drought persisted, by approximately $10 billion of investments in desalination plants near Perth, Adelaide, AQ1 Melbourne, Sydney and Brisbane. This Deakin University project jointly with Griffith 15 University, for the National Centre of Excellence in Desalination (NCEDA), follows these new investments. We ask how best to manage bulk water supply and retail supply given the facts and fears of uncertain rainfall, modelled over a 100 year simulation period.
    [Show full text]
  • Water Supply Options for Melbourne
    Submission to the Environment and Natural Resources Committee Inquiry into Melbourne’s Water Supply Water supply options for Melbourne An examination of costs and availabilities of new water supply sources for Melbourne and other urban areas in Victoria Alan Moran Director, Deregulation Unit, Institute of Public Affairs Institute of Public Affairs Occassional Paper, revised August 2008 Water supply options for Melbourne Summary greenfield developments. Recycling Eastern Treatment Plant (ETP) water appears to be prohibitively costly, while Melbourne’s water supply is suffering from a combination releasing treated water and substituting it for other sources of drought and a failure to build new storage facilities over is also expensive. Some variations of household rainwater the past 23 years when the population has increased by tanks rival the Wonthaggi desalination plant proposal in over 30 per cent. These matters may be aggravated by providing the most expensive solutions. Less expensive is long term climate change diminishing the precipitation to the government’s Sugarloaf approach, but this still entails the traditional sources in the Melbourne catchment. water costing two and a half times that from a new dam in The government policy of matching supply and the Melbourne catchment. demand has been, and largely remains, directed at The table below summarises the estimated costs measures that curtail demand; supply side measures and potential additional water supplies from the more have focused on tapping local sources, mainly through realistic options available. A major new Gippsland dam household water tanks. Additional supply sources have is the lowest cost option, though a river diversion into the been proposed over the past year or so.
    [Show full text]
  • Research Report 67 a Practical Guide to Reservoir Management Final
    Water Quality Research Australia Membership at December 2008 Industry Members • Australian Water Association Ltd • Degrémont Pty Ltd • Barwon Region Water Corporation “Barwon Water” • Central Highlands Water • City West Water Ltd • Coliban Region Water Corporation • Department of Human Services (Vic) • Goulburn Valley Regional Water Corporation A Practical Guide “Goulburn Valley Water” • Grampians Wimmera Mallee Water Corporation • Hunter Water Corporation to Reservoir Water Quality Research Australia Limited • Melbourne Water Corporation GPO BOX 1751, Adelaide SA 5001 • Power & Water Corporation • South East Water Limited For more information about WQRA visit the website Management • Sydney Catchment Authority www.wqra.com.au • Sydney Water Corporation • United Water International Pty Ltd • Wannon Region Water Corporation • Water Corporation of WA • Yarra Valley Water Ltd Research Report 67 • South Australian Water Corporation • Central Gippsland Regional Water Corporation Research Members • Australian Water Quality Centre • Centre for Appropriate Technology • Curtin University of Technology • Flinders University • Griffith University • Monash University • RMIT University • University of Adelaide • University of NSW • The University of Queensland • University of South Australia • University of Technology, Sydney • University of Wollongong, Faculty of Engineering, The Cooperative Research Centre (CRC) for Water Quality and • Victoria University Treatment operated for 13 years as Australia’s national drinking water research centre. It was established and supported under the General Members Australian Government’s Cooperative Research Centres Program. • Cradle Coast Water • Department of Water (WA) The CRC for Water Quality and Treatment officially ended in October 2008, and has been succeeded by Water Quality • Esk Water Authority Research Australia Limited (WQRA), a company funded by the • Lower Murray Urban and Rural Water Corporation Australian water industry.
    [Show full text]