Martin's Maximum Implies Woodin's Axiom
Martin's Maximum++ implies Woodin's Axiom (∗) David Asper´o* and Ralf Schindler March 18, 2021 Abstract ++ We show that Martin's Maximum implies Woodin's Pmax axiom (∗). This answers a question from the 1990's and amalgamates two prominent ax- ioms of set theory which were both known to imply that there are @2 many real numbers. 1 Introduction. Cantor's Continuum Problem, which later became Hilbert's first Problem (see [18]), asks how many real numbers there are. After having proved his celebrated theorem @0 according to which R is uncountable, i.e., 2 > @0, see [4], Cantor conjectured that @0 every uncountable set of reals has the same size as R, i.e., 2 = @1. This statement is known as Cantor's Continuum Hypothesis (CH). G¨odel[14] proved in the 1930's that CH is consistent with the standard axiom system for set theory, ZFC, by showing that CH holds in his constructible universe L, the minimal transitive model of ZFC containing all the ordinals. The axiom V = L, saying that the universe V of all sets is simply identical with L, has often been rejected, however, as an undesirable minimalistic assumption about V . For instance, L cannot have measurable cardinals by a result of Scott [43]. G¨odelhimself believed that CH would be shown not to *School of Mathematics, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK. Funded by EPSRC Grant EP/N032160/1. Institut f¨urMathematische Logik und Grundlagenforschung, Universit¨atM¨unster,Einsteinstr. 62, 48149 M¨unster,FRG. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2044 390685587, Mathematics M¨unster: Dynamics - Geometry - Structure.
[Show full text]