The Complete Literature References

Total Page:16

File Type:pdf, Size:1020Kb

The Complete Literature References 18 Annotated Bibliography The purpose of this annotated bibliography is to supply the reader with more material and with more detail than was possible in the preceding chapters, rather than to just list the works referenced in the text. The annotations cover a considerable number of subjects that have not been treated in the rest of the book. The printed version of this book includes only those literature references and their summaries that are actually referred to in it. The full literature list with summaries as far as available can be found on the web site of this book; it includes its own authors index and subject index. This annotated bibliography differs in several respects from the habitual literature list. • The annotated bibliography consists of five sections: – Main parsing material — papers about the main parsing techniques. – Further parsing material — papers about extensions of and refinements to the main parsing techniques, non-Chomsky systems, error recovery, etc. – Parser writing and application — both in computer science and in natural languages. – Support material — books and papers useful to the study of parsers. – Secondary Material — unannotated papers of peripheral interest (Internet version only). • The entries in each section have been grouped into more detailed categories; for example, the main section contains categories for general CF parsing, LR parsing, precedence parsing, etc. For details see the Table of Contents at the beginning of this book. Most publications in parsing can easily be assigned a single category. Some that span two categories have been placed in one, with a reference in the other. • The majority of the entries are annotated. This annotation is not a copy of the ab- stract provided with the paper (which generally says something about the results obtained) but is rather the result of an attempt to summarize the technical content in terms of what has been explained elsewhere in this book. 576 18 Annotated Bibliography • The entries are ordered chronologically rather than alphabetically. This arrange- ment has the advantage that it is much more meaningful than a single alphabetic list, ordered on author names. Each section can be read as the history of research on that particular aspect of parsing, related material is found closely together and recent material is easily separated from older publications. A disadvantage is that it is now difficult to locate entries by author; to remedy this, an author index (starting on page 779) has been supplied. 18.1 Major Parsing Subjects 18.1.1 Unrestricted PS and CS Grammars 1. Loeckx, Jacques J. C. Mechanical Construction of Bounded-Context Parsers for Chomsky 0-Type Languages. PhD thesis, University of Leuven, Eindhoven, 1969. Also Philips research reports. Supplements; 1969, no. 3., See Loeckx [2]. 2. Loeckx, Jacques. The parsing for general phrase-structure grammars. Inform. Control, 16:443–464, 1970. The paper sketches two non-deterministic parsers for PS grammars, one top- down, which tries to mimic the production process and one bottom-up, which tries to find a handle. The instructions of the parsers are derived by listing all possible transitions in the grammar and weeding out by hand those that cannot occur. Trial-and-error methods are discussed to resolve the non-determinism, but no instruction selection mechanisms are given. Very readable, nice pictures. 3. Walters, Daniel A. Deterministic context-sensitive languages, Parts I & II. Inform. Control, 17(1):14–61, 1970. The definition of LR(k) grammars is extended to context-sensitive grammars. Emphasis is more on theoretical properties than on obtaining a parser. 4. Woods, William A. Context-sensitive parsing. Commun. ACM, 13(7):437–445, July 1970. The paper presents a canonical form for context-sensitive (ε-free) derivation trees. Parsing is then performed by an exhaustive guided search over these canonical forms exclusively. This guarantees that each possible parsing will be found exactly once. 5. Révész, György. Unilateral context sensitive grammar and left to right parsing. J. Comput. Syst. Sci., 5:337–352, 1971. Right-sensitive grammars (RSGs) are context-sensitive grammars in which the left context X in all rules XAY XαY is empty. The rules of such a grammar can all be reduced to the rule forms X Y, X! YZ, and XT YT, in Chomsky Normal Form fashion. A simple non-deterministic!parser is!proposed for RSGs,! which basically always does the leftmost possible reduction using one of the grammar rules. The bulk of the paper is concerned with finding properties of grammars for which this parsing method works, the so- called “progressive grammars”. 6. Book, R. V. Terminal context in context-sensitive grammars. SIAM J. Computing, 1:20–30, 1972. Some conditions under which CS grammars produce CF languages. 7. Ghandour, Z. J. Formal systems and analysis of context-sensitive languages. Computer J., 15(3):229–237, 1972. Ghandour describes a formal production system that is in some ways similar to but far from identical to a two-level grammar. A hierarchy of 4 classes is defined on these systems, with Class 1 Class 2 Class 3 Class 4, Class 1 CS and Class 4 = CF. A parsing algorithm for Class 1 systems¶ is given in fairly great detail. ¶ 8. Savitch, Walter J. How to make arbitrary grammars look like context-free grammars. SIAM J. Computing, 2:174–182, 1973. Proves that any Type(0) grammar is equivalent to a Type(0) grammar with only three kinds of rules: BA αA (right context only), AB Aα (left context only), and B α (context-free). ! ! ! 18.1 Major Parsing Subjects 577 9. Khabbaz, N. A. Multipass precedence analysis. Acta Inform., 4:77–85, 1974. A hierarchy of CS grammars is given that can be parsed using multipass precedence parsing. The parser and the table construction algorithm are given explicitly. 10. Hart, Johnson M. Right and left parses in phrase-structure grammars. Inform. Control, 32(3):242–262, Nov. 1976. 11. Tanaka, Eiichi and Fu, King-Sun. Error-correcting parsers for formal languages. IEEE Trans. Comput., C-27(7):605–616, July 1978. In addition to the error correction algorithms referred to in the title (for which see [940]) a version of the CYK algorithm for context-sensitive grammars is described. It requires the grammar to be in 2-form: no rule has a right-hand size longer than 2, and no rule has a left-hand size longer than its right-hand size. This limits the number of possible rule forms to 4: A a, A BC, AB CB (right context), and BA BC (left context). The algorithm is largely straightforw! !ard; for e!xample, for rule AB CB, if C!and B have been recognized adjacently, an A is recognized in the position of the C. Care!has to be taken, however, to avoid recognizing a context for the application of a production rule when the context is not there at the right moment; a non-trivial condition is given for this, without explanation or proof. 12. Tomita, E., Sakuramoto, K., and Kasai, T. A top-down parsing algorithm for a context- sensitive language. Trans. Inst. Electron. & Commun. Eng. Jpn., E62(2):127–128, Feb. 1979. Abstract only. 13. Turnbull, C. J. M. and Lee, E. S. Generalized deterministic left to right parsing. Acta Inform., 12:187–207, 1979. The LR(k) parsing machine is modified so that the reduce in- struction removes the reduced right-hand side from the stack and pushes an arbitrary number of symbols back into the input stream. (The traditional LR(k) reduce is a special case of this: it pushes the recognized non-terminal back into the input and immediately shifts it. The technique is similar to that put forward by Dömölki [40].) The new machine is capable of parsing efficiently a subset of the Type 0 grammars, DRP grammars (for Deterministic Regular Parsable). Member- ship of this subset is undecidable, but an approximate algorithm can be constructed by extending the LR(k) parse table algorithm. Details are not given, but can be found in a technical report by the first author. 14. Matsuoka, K. Context-sensitive LR(k) parsers. Trans. Inst. Electron. & Commun. Eng. Jpn., E64:691, 1981. Abstract only. 15. Vol’dman, G. Sh. A parsing algorithm for context-sensitive grammars. Program. Comput. Softw., 7:302–307, 1981. Extends Earley’s algorithm first to length-increasing phrase structure grammars and then to non-decreasing PS grammars (= CS grammars). The resulting algorithm has exponential time requirements but is often much better. 16. Harris, Lawrence A. SLR(1) and LALR(1) parsing for unrestricted grammars. Acta Inform., 24:191–209, 1987. The notion of an LR(0) item can easily be defined for unrestricted grammars: “For each item λ µ1 Xµ2 there is a transition on X to the item λ µ1X µ2 and an ε-transition to any item X!δ ²η”, for any symbol X. These items are grouped! by² subset construction into the usual states,!called² here preliminary states, since some of them may actually be ineffective. A GOTO function is also defined. If we can, for a given grammar, compute the FOLLOW sets of all left-hand sides (undecidable in the general case), we can apply a variant of the usual SLR(1) test and construct a parsing table for a parser as described by Turnbull and Lee [13]. To obtain the LALR(1) definition, a look-ahead grammar system is defined that will, for each item in each state, generate the (unrestricted) language of all continuations after that item. If we can, for a given grammar, compute the FIRST sets of all these languages (undecidable in the general case), we can apply a variant of the usual LALR(1) test and construct a parsing table for a similar parser.
Recommended publications
  • A Protein Interaction Extraction Systemusing a Link Grammar Parser from Biomedical Abstracts
    World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering Vol:1, No:5, 2007 PIELG: A Protein Interaction Extraction System using a Link Grammar Parser from Biomedical Abstracts Rania A. Abul Seoud, Nahed H. Solouma, Abou-Baker M. Youssef, and Yasser M. Kadah, Senior Member, IEEE failure. Applications that repair or replace portions of or Abstract—Due to the ever growing amount of publications about whole living tissues (e.g., bone, dentine, or bladder) using protein-protein interactions, information extraction from text is living cells is named Tissue Engineering (TE). For example, increasingly recognized as one of crucial technologies in dentine formation is the process of regenerating dental tissues bioinformatics. This paper presents a Protein Interaction Extraction by tissue engineering principles and technology. Dentine System using a Link Grammar Parser from biomedical abstracts formation is governed by biological mediators or growth (PIELG). PIELG uses linkage given by the Link Grammar Parser to start a case based analysis of contents of various syntactic roles as factors (protein) and interactions amongst different proteins. well as their linguistically significant and meaningful combinations. Dentine formation needs the support of continuous updated The system uses phrasal-prepositional verbs patterns to overcome information about protein-protein interactions. preposition combinations problems. The recall and precision are Researches in the last decade have resulted in the 74.4% and 62.65%, respectively. Experimental evaluations with two production of a large amount of information about protein other state-of-the-art extraction systems indicate that PIELG system functions involved in dentine formation process. That achieves better performance.
    [Show full text]
  • Journal of Computer Science and Engineering Parsing
    IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING PARSING TECHNIQUES Ojesvi Bhardwaj Abstract: ‘Parsing’ is the term used to describe the process of automatically building syntactic analyses of a sentence in terms of a given grammar and lexicon. The resulting syntactic analyses may be used as input to a process of semantic interpretation, (or perhaps phonological interpretation, where aspects of this, like prosody, are sensitive to syntactic structure). Occasionally, ‘parsing’ is also used to include both syntactic and semantic analysis. We use it in the more conservative sense here, however. In most contemporary grammatical formalisms, the output of parsing is something logically equivalent to a tree, displaying dominance and precedence relations between constituents of a sentence, perhaps with further annotations in the form of attribute-value equations (‘features’) capturing other aspects of linguistic description. However, there are many different possible linguistic formalisms, and many ways of representing each of them, and hence many different ways of representing the results of parsing. We shall assume here a simple tree representation, and an underlying context-free grammatical (CFG) formalism. *Student, CSE, Dronachraya Collage of Engineering, Gurgaon Volume-1 | Issue-12 | December, 2015 | Paper-3 29 - IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843 1. INTRODUCTION Parsing or syntactic analysis is the process of analyzing a string of symbols, either in natural language or in computer languages, according to the rules of a formal grammar. The term parsing comes from Latin pars (ōrātiōnis), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science.
    [Show full text]
  • An Efficient Implementation of the Head-Corner Parser
    An Efficient Implementation of the Head-Corner Parser Gertjan van Noord" Rijksuniversiteit Groningen This paper describes an efficient and robust implementation of a bidirectional, head-driven parser for constraint-based grammars. This parser is developed for the OVIS system: a Dutch spoken dialogue system in which information about public transport can be obtained by telephone. After a review of the motivation for head-driven parsing strategies, and head-corner parsing in particular, a nondeterministic version of the head-corner parser is presented. A memorization technique is applied to obtain a fast parser. A goal-weakening technique is introduced, which greatly improves average case efficiency, both in terms of speed and space requirements. I argue in favor of such a memorization strategy with goal-weakening in comparison with ordinary chart parsers because such a strategy can be applied selectively and therefore enormously reduces the space requirements of the parser, while no practical loss in time-efficiency is observed. On the contrary, experiments are described in which head-corner and left-corner parsers imple- mented with selective memorization and goal weakening outperform "standard" chart parsers. The experiments include the grammar of the OV/S system and the Alvey NL Tools grammar. Head-corner parsing is a mix of bottom-up and top-down processing. Certain approaches to robust parsing require purely bottom-up processing. Therefore, it seems that head-corner parsing is unsuitable for such robust parsing techniques. However, it is shown how underspecification (which arises very naturally in a logic programming environment) can be used in the head-corner parser to allow such robust parsing techniques.
    [Show full text]
  • Implementing a Portable Clinical NLP System with a Common Data Model: a Lisp Perspective
    Implementing a portable clinical NLP system with a common data model: a Lisp perspective The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Luo, Yuan, and Peter Szolovits, "Implementing a portable clinical NLP system with a common data model: a Lisp perspective." Proceedings, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018), December 3-6, 2018, Madrid, Spain (Piscataway, N.J.: IEEE, 2018): doi 10.1109/BIBM.2018.8621521 ©2018 Author(s) As Published 10.1109/BIBM.2018.8621521 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Original manuscript Citable link https://hdl.handle.net/1721.1/124439 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Implementing a Portable Clinical NLP System with a Common Data Model – a Lisp Perspective Yuan Luo* Peter Szolovits* Dept. of Preventive Medicine CSAIL Northwestern University MIT Chicago, USA Cambridge, USA [email protected] [email protected] Abstract— This paper presents a Lisp architecture for a annotations, often in idiosyncratic representations. This makes portable NLP system, termed LAPNLP, for processing clinical it quite difficult to chain together sequences of operations. Alt- notes. LAPNLP integrates multiple standard, customized and hough several recent projects have achieved reasonable in-house developed NLP tools. Our system facilitates portability success in analyzing certain types of clinical narratives [3-6], across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize neces- efforts towards a common data model (CDM) to ensure port- sary data elements.
    [Show full text]
  • Generalized Probabilistic LR Parsing of Natural Language (Corpora) with Unification-Based Grammars
    Generalized Probabilistic LR Parsing of Natural Language (Corpora) with Unification-Based Grammars Ted Briscoe* John Carroll* University of Cambridge University of Cambridge We describe work toward the construction of a very wide-coverage probabilistic parsing system for natural language (NL), based on LR parsing techniques. The system is intended to rank the large number of syntactic analyses produced by NL grammars according to the frequency of occurrence of the individual rules deployed in each analysis. We discuss a fully automatic procedure for constructing an LR parse table from a unification-based grammar formalism, and consider the suitability of alternative LALR(1) parse table construction methods for large grammars. The parse table is used as the basis for two parsers; a user-driven interactive system that provides a computationally tractable and labor-efficient method of supervised training of the statistical information required to drive the probabilistic parser. The latter is constructed by associating probabilities with the LR parse table directly. This technique is superior to parsers based on probabilistic lexical tagging or probabilistic context-free grammar because it allows for a more context-dependent probabilistic language model, as well as use of a more linguistically adequate grammar formalism. We compare the performance of an optimized variant of Tomita's (1987) generalized LR parsing algorithm to an (efficiently indexed and optimized) chart parser. We report promising results of a pilot study training on 150 noun definitions from the Longman Dictionary of Contemporary English (LDOCE) and retesting on these plus a further 55 definitions. Finally, we discuss limitations of the current system and possible extensions to deal with lexical (syntactic and semantic)frequency of occurrence.
    [Show full text]
  • Chapter 14: Dependency Parsing
    Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All rights reserved. Draft of September 21, 2021. CHAPTER 14 Dependency Parsing The focus of the two previous chapters has been on context-free grammars and constituent-based representations. Here we present another important family of dependency grammars grammar formalisms called dependency grammars. In dependency formalisms, phrasal constituents and phrase-structure rules do not play a direct role. Instead, the syntactic structure of a sentence is described solely in terms of directed binary grammatical relations between the words, as in the following dependency parse: root dobj det nmod (14.1) nsubj nmod case I prefer the morning flight through Denver Relations among the words are illustrated above the sentence with directed, labeled typed dependency arcs from heads to dependents. We call this a typed dependency structure because the labels are drawn from a fixed inventory of grammatical relations. A root node explicitly marks the root of the tree, the head of the entire structure. Figure 14.1 shows the same dependency analysis as a tree alongside its corre- sponding phrase-structure analysis of the kind given in Chapter 12. Note the ab- sence of nodes corresponding to phrasal constituents or lexical categories in the dependency parse; the internal structure of the dependency parse consists solely of directed relations between lexical items in the sentence. These head-dependent re- lationships directly encode important information that is often buried in the more complex phrase-structure parses. For example, the arguments to the verb prefer are directly linked to it in the dependency structure, while their connection to the main verb is more distant in the phrase-structure tree.
    [Show full text]
  • Validating LR(1) Parsers
    Validating LR(1) Parsers Jacques-Henri Jourdan1;2, Fran¸coisPottier2, and Xavier Leroy2 1 Ecole´ Normale Sup´erieure 2 INRIA Paris-Rocquencourt Abstract. An LR(1) parser is a finite-state automaton, equipped with a stack, which uses a combination of its current state and one lookahead symbol in order to determine which action to perform next. We present a validator which, when applied to a context-free grammar G and an automaton A, checks that A and G agree. Validating the parser pro- vides the correctness guarantees required by verified compilers and other high-assurance software that involves parsing. The validation process is independent of which technique was used to construct A. The validator is implemented and proved correct using the Coq proof assistant. As an application, we build a formally-verified parser for the C99 language. 1 Introduction Parsing remains an essential component of compilers and other programs that input textual representations of structured data. Its theoretical foundations are well understood today, and mature technology, ranging from parser combinator libraries to sophisticated parser generators, is readily available to help imple- menting parsers. The issue we focus on in this paper is that of parser correctness: how to obtain formal evidence that a parser is correct with respect to its specification? Here, following established practice, we choose to specify parsers via context-free grammars enriched with semantic actions. One application area where the parser correctness issue naturally arises is formally-verified compilers such as the CompCert verified C compiler [14]. In- deed, in the current state of CompCert, the passes that have been formally ver- ified start at abstract syntax trees (AST) for the CompCert C subset of C and extend to ASTs for three assembly languages.
    [Show full text]
  • Efficient Computation of LALR(1) Look-Ahead Sets
    Efficient Computation of LALR(1) Look-Ahead Sets FRANK DeREMER and THOMAS PENNELLO University of California, Santa Cruz, and MetaWare TM Incorporated Two relations that capture the essential structure of the problem of computing LALR(1) look-ahead sets are defined, and an efficient algorithm is presented to compute the sets in time linear in the size of the relations. In particular, for a PASCAL grammar, the algorithm performs fewer than 15 percent of the set unions performed by the popular compiler-compiler YACC. When a grammar is not LALR(1), the relations, represented explicitly, provide for printing user- oriented error messages that specifically indicate how the look-ahead problem arose. In addition, certain loops in the digraphs induced by these relations indicate that the grammar is not LR(k) for any k. Finally, an oft-discovered and used but incorrect look-ahead set algorithm is similarly based on two other relations defined for the fwst time here. The formal presentation of this algorithm should help prevent its rediscovery. Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory--syntax; D.3.4 [Programming Languages]: Processors--translator writing systems and compiler generators; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting Systems--parsing General Terms: Algorithms, Languages, Theory Additional Key Words and Phrases: Context-free grammar, Backus-Naur form, strongly connected component, LALR(1), LR(k), grammar debugging, 1. INTRODUCTION Since the invention of LALR(1) grammars by DeRemer [9], LALR grammar analysis and parsing techniques have been popular as a component of translator writing systems and compiler-compilers.
    [Show full text]
  • Formal Language (3B)
    Formal Language (3B) ● Context Free Language Young Won Lim 6/9/18 Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to [email protected]. This document was produced by using LibreOffice and Octave. Young Won Lim 6/9/18 Regular Language a regular language (a rational language) is a formal language that can be expressed using a regular expression, in the strict sense Alternatively, a regular language can be defined as a language recognized by a finite automaton. The equivalence of regular expressions and finite automata is known as Kleene's theorem. Regular languages are very useful in input parsing and programming language design. https://en.wikipedia.org/wiki/Regular_language Young Won Lim Context Free Language (3B) 3 6/9/18 Regular Language – Formal Definition The collection of regular languages over an alphabet Σ is defined recursively as follows: The empty language Ø, and the empty string language {ε} are regular languages. For each a ∈ Σ (a belongs to Σ), the singleton language {a} is a regular language. If A and B are regular languages, then A ∪ B (union), A • B (concatenation), and A* (Kleene star) are regular languages. No other languages over Σ are regular.
    [Show full text]
  • Adaptive LL(*) Parsing: the Power of Dynamic Analysis
    Adaptive LL(*) Parsing: The Power of Dynamic Analysis Terence Parr Sam Harwell Kathleen Fisher University of San Francisco University of Texas at Austin Tufts University [email protected] [email protected] kfi[email protected] Abstract PEGs are unambiguous by definition but have a quirk where Despite the advances made by modern parsing strategies such rule A ! a j ab (meaning “A matches either a or ab”) can never as PEG, LL(*), GLR, and GLL, parsing is not a solved prob- match ab since PEGs choose the first alternative that matches lem. Existing approaches suffer from a number of weaknesses, a prefix of the remaining input. Nested backtracking makes de- including difficulties supporting side-effecting embedded ac- bugging PEGs difficult. tions, slow and/or unpredictable performance, and counter- Second, side-effecting programmer-supplied actions (muta- intuitive matching strategies. This paper introduces the ALL(*) tors) like print statements should be avoided in any strategy that parsing strategy that combines the simplicity, efficiency, and continuously speculates (PEG) or supports multiple interpreta- predictability of conventional top-down LL(k) parsers with the tions of the input (GLL and GLR) because such actions may power of a GLR-like mechanism to make parsing decisions. never really take place [17]. (Though DParser [24] supports The critical innovation is to move grammar analysis to parse- “final” actions when the programmer is certain a reduction is time, which lets ALL(*) handle any non-left-recursive context- part of an unambiguous final parse.) Without side effects, ac- free grammar. ALL(*) is O(n4) in theory but consistently per- tions must buffer data for all interpretations in immutable data forms linearly on grammars used in practice, outperforming structures or provide undo actions.
    [Show full text]
  • SAKI: a Fortran Program for Generalized Linear Inversion of Gravity and Magnetic Profiles
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SAKI: A Fortran program for generalized linear Inversion of gravity and magnetic profiles by Michael Webring Open File Report 85-122 1985 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Table of Contents Abstract ------------------------------ 1 Introduction ---------------------------- 1 Theory ------------------------------- 2 Users Guide ---------------------------- 7 Model File -------------------------- 7 Observed Data Files ---------------------- 9 Command File ------------------------- 10 Data File Parameters ------------------- 10 Magnetic Parameters ------------------- 10 General Parameters -------------------- H Plotting Parameters ------------------- n Annotation Parameters ------------------ 12 Program Interactive Commands ----------------- 13 Inversion Function ---------------------- 16 Examples ------------------------------ 20 References ----------------------------- 26 Appendix A - plot system description ---------------- 27 Appendix B - program listing -------------------- 30 Abstract A gravity and magnetic inversion program is presented which models a structural cross-section as an ensemble of 2-d prisms formed by linking vertices into a network that may be deformed by a modified Marquardt algorithm. The nonuniqueness of this general model is constrained by the user in an interactive mode. Introduction This program fits in a least-squares sense the theoretical gravity and magnetic response of
    [Show full text]
  • Disambiguation Filters for Scannerless Generalized LR Parsers
    Disambiguation Filters for Scannerless Generalized LR Parsers Mark G. J. van den Brand1,4, Jeroen Scheerder2, Jurgen J. Vinju1, and Eelco Visser3 1 Centrum voor Wiskunde en Informatica (CWI) Kruislaan 413, 1098 SJ Amsterdam, The Netherlands {Mark.van.den.Brand,Jurgen.Vinju}@cwi.nl 2 Department of Philosophy, Utrecht University Heidelberglaan 8, 3584 CS Utrecht, The Netherlands [email protected] 3 Institute of Information and Computing Sciences, Utrecht University P.O. Box 80089, 3508TB Utrecht, The Netherlands [email protected] 4 LORIA-INRIA 615 rue du Jardin Botanique, BP 101, F-54602 Villers-l`es-Nancy Cedex, France Abstract. In this paper we present the fusion of generalized LR pars- ing and scannerless parsing. This combination supports syntax defini- tions in which all aspects (lexical and context-free) of the syntax of a language are defined explicitly in one formalism. Furthermore, there are no restrictions on the class of grammars, thus allowing a natural syntax tree structure. Ambiguities that arise through the use of unrestricted grammars are handled by explicit disambiguation constructs, instead of implicit defaults that are taken by traditional scanner and parser gener- ators. Hence, a syntax definition becomes a full declarative description of a language. Scannerless generalized LR parsing is a viable technique that has been applied in various industrial and academic projects. 1 Introduction Since the introduction of efficient deterministic parsing techniques, parsing is considered a closed topic for research, both by computer scientists and by practi- cioners in compiler construction. Tools based on deterministic parsing algorithms such as LEX & YACC [15,11] (LALR) and JavaCC (recursive descent), are con- sidered adequate for dealing with almost all modern (programming) languages.
    [Show full text]