5-3 JJY, the National Standard on Time and Frequency in Japan

Total Page:16

File Type:pdf, Size:1020Kb

5-3 JJY, the National Standard on Time and Frequency in Japan 5-3 JJY, The National Standard on Time and Frequency in Japan KURIHARA Noriyuki The Communications Research Laboratory (CRL) determines the national standard time and frequency in Japan, which is disseminated throughout Japan by the LF standard-time and frequency-signal emission, JJY. JJY is utilized as reference signal of radio controlled watches and clocks which have now come into wide use rapidly, and is being recognized as a social infrastructure which supports the people's living in Japan. In this paper, the follow- ings are introduced: JJY facilities with dual operation system, and future utilization and development of JJY. Keywords Frequency standard, Japan standard time, Standard-time and frequency-signal emis- sion, Radio controlled clock 1 Introduction ties have already begun in these areas. This paper will briefly describe the background of As the nation's sole agency responsible for the JJY-LF, completed LF station, operational Japan's frequency standard, the Communica- conditions, precision of the distributed JJY, tions Research Laboratory (CRL) produces the and future applications. national standard frequency and Japan Stan- dard Time, and disseminates these signals 2 Overview of standard time/fre- nationwide via LF standard-time and frequen- quency cy-signal emission (JJY-LF). JJY-LF is used as a reference signal for a growing number of Since time and frequency play an impor- radio-controlled clocks and has been recog- tant role both in daily life and in specialized nized to be a part of the national infrastruc- areas of science and technology, consistency is ture. JJY-LF was formally operated in June essential. Each industrialized country with 1999, with the Ohtakadoya-yama LF station advanced fields of science and technology (located at the top of Mt. Ohtakodoya in produces and takes responsibility for its own Fukushima prefecture) serving as the nation's high-precision national time/frequency stan- first base for JJY-LF. The Hagane-yama LF dard. In Japan, the CRL (Incorporated station (Kyushu LF station) then began similar Administrative Agency) produces, maintains, operations in October 2001, resulting in a and disseminates the national standard dual-station nationwide system of standard- time/frequency in accordance with the Min- time and frequency-signal emission. istry of Public Management, Home Affairs, Precise Japan Standard Time and standard Posts and Telecommunications Establishment frequency are expected to find applications Law, in addition to the CRL Law. Such stan- not only in the field of radio-controlled clocks dard time/frequency services are widely used but also in the areas of home appliances, time- to calibrate in-house standards for domestic business applications, and precision synchro- manufacturers of measurement devices and nization over high-speed communications net- communications devices, in the TV/radio works; in fact, a number of commercial activi- time-announcement applications that provide KURIHARA Noriyuki 179 time to the general public, or in NTT's 117 Dissemination of the JJY began on Janu- time service. ary 30, 1940, in an effort to broadcast a stan- CRL's Standard time/frequency services work dard frequency to domestic radio stations and consists of the following three factors: broadcast stations. Later, beginning in August ① Generation and maintenance of standard 1948, a time code was added to the JJY. This time and frequency time code has been used as a reference for ② International comparison of standard time TV/radio time announcement services and and frequency NTT's 117 service, and has already been ③ Dissemination of standard time and fre- established in our civic life in Japan. The JJY quency has thus served as Japan's basis of time for As for the first factor, it is essential to gen- more than half a century, throughout the post- erate a national standard time and frequency war years. that is sufficiently accurate and precise, and to At first, the standard-time and frequency- maintain this standard with a high degree of signal emission (JJY) was broadcast in the stability. The CRL generates Japan Standard shortwave (HF) band. However, since the HF Time and frequency by using 12 Cs commer- radio path depends heavily on ionospheric cial frequency standards. conditions, the use of HF raises various issues, In terms of the second factor, it is of including unstable signal receiving, insuffi- importance to ensure consistency among each cient frequency precision, and jamming. To country's national standards, therefore, the solve these problems, in 1993 a committee Bureau International des Poids et Mesures was established inside the CRL to discuss the (BIPM)[1] works with the standards authorities future standard-signal distribution policy and of each country to compare standards, via sta- to conduct a comprehensive review by using tionary satellites (two-way satellite time and questionnaires and similar means of the con- frequency transfer: TWSTFT) and/or GPS. ventional signal dissemination regime, which The results are then used to determine Coordi- relied primarily on HF standard-time and fre- nated Universal Time (UTC) and International quency-signal emission (JJY-HF). As a result, Atomic Time (TAI). The CRL, appointed by the future shape of the standard-time and fre- the BIPM as a node station in the Asia-Pacific quency-signal emission was clarified; specifi- area of the international precise time transfer cally, the use of an LF standard-time and fre- network, plays a crucial role[2] within this quency-signal emission (JJY-LF) was pro- framework. posed to ensure appropriate precision. In terms of the third factor, some ways of After a series of efforts to realize this new dissemination according to the required accu- broadcasting regime, construction of the racy must be prepared, so that the national Ohtakadoya-yama LF station[3] (Fukushima standard may be put to wide public use. prefecture) began in FY 1997, and the JJY-LF The CRL disseminates Japan Standard began formal operation on June 10 (Time Day), Time and standard frequency to society 1999. With the support of the Ohtakadoya- through various methods, including LF stan- yama LF station, the use of radio-controlled dard-time and frequency-signal emission (JJY- clocks or watches has grown rapidly ever LF, as the most popular ways, as described in since. In light of the growing role of the JJY- detail below) and telephone networks. LF in society and in view of the CRL's contin- uing responsibilities as the national standard 3 Overview of LF standard-time organization, in 1999, construction began on a and frequency-signal emission second JJY-LF station in Hagane-yama (Mt. (JJY-LF) Hagane), located at the boundary between Saga and Fukuoka prefectures. On October 1, 3.1 History of the JJY-LF 2001, two years later, the facility was com- 180 Journal of the National Institute of Information and Communications Technology Vol.50 Nos.1/2 2003 pleted and was in operation. Fig.1 presents an overview of the Ohtakadoya- yama LF station, and Fig.2 shows the trans- mission antenna of 200-m in height installed at the Hagane-yama LF station. Fig.1 Overview of the Ohtakadoya-yama LF station 3.2 Establishment of a dual-station Fig.2 Transmission antenna of 200-m in regime height (Hagane-yama LF station) To ensure higher reliability in broadcasting JJY-LF, it is essential to minimize service was provided with double or even triple interruptions, to make the broadcast standard redundancy in its main systems and was available nationwide, and to transmit the cor- equipped with a local power generator to rect code. Although the first JJY-LF station ensure continuous operation, service interrup- Fig.3 Operation rate and the causes of outage at the two LF stations KURIHARA Noriyuki 181 Fig.4 Locations of the JJY-LF stations and estimated strength of JJY, μV/m tion time totaled approximately 81 hours in avoid frequency interference, which would FY 2001, due to regular maintenance and to make the receiving intensity lower in certain natural disasters. However, with the start of areas. The large difference in antenna effi- the broadcasting from Hagane-yama LF sta- ciency (25% as opposed to 45%) stems from tion in October 2001 and the establishment of the different grounding efficiencies, which in the dual-station regime, the total time of oper- turn depend on the properties and structure of ation outage has been sufficiently reduced. local soil and ground water. The Fig.5 illus- Reliability is thus ensured through each sta- trates the block diagram of the JJY-LF sta- tion's role as a potential backup facility for the tions. other. Fig.3 illustrates each station's operation The broadcasting signals of the Cs atomic rate and presents the causes of outage in FY clocks placed in the standard room are adjust- 2002. Fig.4 shows the location of each station ed by an auxiliary output generator (AOG) by and the electric field strength estimated from the common view method[4] at regular inter- their transmission power. As demonstrated in vals via GPS/GLONASS satellites. This this figure, the entire nation of Japan from adjustment is performed to ensure that the tim- Hokkaido to Okinawa is covered by the both ing and frequency from the clocks match the stations, with the strength of 50 to 60 dBμV/m Japan Standard Time of CRL Headquarters available everywhere. (Koganei, Tokyo) within a margin of several nanoseconds. The carrier frequency and time 3.3 Station description of JJY code to be broadcast as the JJY-LF are gener- Table 1 shows the characteristics of each ated based on the 5-MHz and 1-PPS signals JJY-LF stations. The stations broadcast on output from the AOG, sent to a 50-kW trans- different frequencies (40kHz and 60kHz) to mitter, and then emitted from the antenna via 182 Journal of the National Institute of Information and Communications Technology Vol.50 Nos.1/2 2003 the impedance matching facility room.
Recommended publications
  • WWVB: a Half Century of Delivering Accurate Frequency and Time by Radio
    Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.004 Journal of Research of the National Institute of Standards and Technology WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio Michael A. Lombardi and Glenn K. Nelson National Institute of Standards and Technology, Boulder, CO 80305 [email protected] [email protected] In commemoration of its 50th anniversary of broadcasting from Fort Collins, Colorado, this paper provides a history of the National Institute of Standards and Technology (NIST) radio station WWVB. The narrative describes the evolution of the station, from its origins as a source of standard frequency, to its current role as the source of time-of-day synchronization for many millions of radio controlled clocks. Key words: broadcasting; frequency; radio; standards; time. Accepted: February 26, 2014 Published: March 12, 2014 http://dx.doi.org/10.6028/jres.119.004 1. Introduction NIST radio station WWVB, which today serves as the synchronization source for tens of millions of radio controlled clocks, began operation from its present location near Fort Collins, Colorado at 0 hours, 0 minutes Universal Time on July 5, 1963. Thus, the year 2013 marked the station’s 50th anniversary, a half century of delivering frequency and time signals referenced to the national standard to the United States public. One of the best known and most widely used measurement services provided by the U. S. government, WWVB has spanned and survived numerous technological eras. Based on technology that was already mature and well established when the station began broadcasting in 1963, WWVB later benefitted from the miniaturization of electronics and the advent of the microprocessor, which made low cost radio controlled clocks possible that would work indoors.
    [Show full text]
  • C9 Collection
    C9 COLLECTION O W N E R ’ S H A N D B O O K TIME ON YOUR SIDE... Your Christopher Ward watch has been designed and engineered by highly talented craftspeople to ensure not only accurate and precise timekeeping but also to bring a real pride of ownership that only luxury items of the highest quality can ever hope to deliver. You have made an investment, a good one, and the aim of this handbook is to help you make the most of that investment during what I hope will be a lifetime of ownership. Christopher Ward 1 JOHN HARRISON WATCHMAKER John Harrison was born in 1693 in Foulby, West Yorkshire and lived for most of his life in Barrow upon Humber. He became a carpenter, like his father, was a gifted musician and a self-taught watchmaker, creating his first timepieces entirely out of wood. He moved to London in the 1750s, at the height of his development of his “sea watches” and died in the capital in 1776. The ship’s chronometers were rediscovered at the Royal Greenwich Observatory in the mid-20th century and restored. Today the H1, H2, H3 and H4 are on display at the National Maritime Museum in Greenwich. The H5 is owned by the Worshipful Company of Clockmakers, and is displayed in the Clockmaker’s Museum in London’s Guildhall. 2 THE LONGITUDE SOLUTION In 1760 horologist John Harrison took his 1735 invention of the Marine Chronometer to a higher level by making it portable in the form of a pocket watch - his H4 was effectively the first precision watch and the true ancester of the Christopher Ward collection.
    [Show full text]
  • International Earth Rotation and Reference Systems Service (IERS) Provides the International Community With
    The Role of the IERS in the Leap Second Brian Luzum Chair, IERS Directing Board Background The International Earth Rotation and Reference Systems Service (IERS) provides the international community with: • the International Celestial Reference System and its realization, the International Celestial Reference Frame (ICRF); • the International Terrestrial Reference System and its realization, the International Terrestrial Reference Frame (ITRF); • Earth orientation parameters (EOPs) that are used to transform between the ICRF and the ITRF; • Conventions (i.e., standards, models, and constants) used in generating and using reference frames and EOPs; • Geophysical data to study and understand variations in the reference frames and the Earth’s orientation. The IERS was created in 1987 and began operations on 1 January 1988. It continued much of the tasking of the Bureau International de l’Heure (BIH), which had been created early in the 20th century. It is responsible to the International Astronomical Union (IAU) and the International Union of Geodesy and Geophysics (IUGG). For more than twenty-five years, the IERS has been providing for the reference frame and EOP needs of a variety of users. Time The IERS has an important role in determining when the leap seconds are to be inserted and the dissemination of information regarding leap seconds. In order to understand this role, it is important to realize some things regarding time. For instance, there are two different kinds of “time” being related: (1) a uniform time, now based on atomic clocks and (2) “time” based on the variable rotation of the Earth. The differences between uniform time and Earth rotation “time” only became apparent in the 1930s with the improvements in clock technology.
    [Show full text]
  • Role of the IERS in the Leap Second Brian Luzum Chair, IERS Directing Board Outline
    Role of the IERS in the leap second Brian Luzum Chair, IERS Directing Board Outline • What is the IERS? • Clock time (UTC) • Earth rotation angle (UT1) • Leap Seconds • Measures and Predictions of Earth rotation • How are Earth rotation data used? • How the IERS provides for its customers • Future considerations • Summary What is the IERS? • The International Earth Rotation and Reference Systems Service (IERS) provides the following to the international scientific communities: • International Celestial Reference System (ICRS) and its realization the International Celestial Reference Frame (ICRF) • International Terrestrial Reference System (ITRS) and its realization the International Terrestrial Reference Frame (ITRF) • Earth orientation parameters that transform between the ICRF and the ITRF • Conventions (i.e. standards, models, and constants) used in generating and using reference frames and EOPs • Geophysical data to study and understand variations in the reference frames and the Earth’s orientation • Due to the nature of the data, there are many operational users Brief history of the IERS • The International Earth Rotation Service (IERS) was created in 1987 • Responsible to the International Astronomical Union (IAU) and the International Union of Geodesy and Geophysics (IUGG) • IERS began operations on 1 January 1988 • IERS changed its name to International Earth Rotation and Reference Systems Service to better represent its responsibilities • Earth orientation relies directly on having accurate, well-defined reference systems Structure
    [Show full text]
  • Five Years of VLF Worldwide Comparison of Atomic Frequency Standards
    RADIO SCIENCE, Vol. 2 (New Series), No. 6, June 1967 Five Years of VLF Worldwide Comparison of Atomic Frequency Standards B. E. Blair,' E. 1. Crow,2 and A. H. Morgan (Received January 19, 1967) The VLF radio broadcasts of GBR(16.0 kHz), NBA(18.0 or 24.0 kHz), and NSS(21.4 kHz) have enabled worldwide comparisons of atomic frequency standards to parts in 1O'O when received over varied paths and at distances up to 9000 or more kilometers. This paper summarizes a statistical analysis of such comparison data from laboratories in England, France, Switzerland, Sweden, Russia, Japan, Canada, and the United States during the 5-year period 1961-1965. The basic data are dif- ferences in 24-hr average frequencies between the local atomic standard and the received VLF radio signal expressed as parts in 10"'. The analysis of the more recent data finds the receiving laboratory standard deviations, &, and the transmission standard deviation, ?, to be a few parts in 10". Averag- ing frequencies over an increasing number of days has the effect of reducing iUi and ? to some extent. The variation of the & with propagation distance is studied. The VLF-LF long-term mean differences between standards are compared with the recent portable clock tests, and they agree to parts in IO". 1. Introduction points via satellites (Steele, Markowitz, and Lidback, 1964; Markowitz, Lidback, Uyeda, and Muramatsu, Six years ago in London, the XIIIth General Assem- 1966); improvements in the transmission of VLF and bly of URSI adopted a resolution (No. 2) which strongly LF radio signals (Milton, Fey, and Morgan, 1962; recommended continuous very-low-frequency (VLF) Barnes, Andrews, and Allan, 1965; Bonanomi, 1966; and low-frequency (LF) transmission monitoring US.
    [Show full text]
  • Concern on UTC Leap Second Schedule Announcements
    Concern on UTC Leap Second Schedule Announcements Karl Kovach 15 Aug 19 © 2019 The Aerospace Corporation UTC & Leap Seconds • International Earth Rotation Service (IERS) – The “keeper’ of UTC • The ‘decider’ of UTC leap seconds • U.S. Naval Observatory (USNO) – Contributes to IERS for UTC • Follows IERS for UTC leap seconds • U.S. Department of Defense (DoD) – Follows USNO for UTC & UTC leap seconds • Global Positioning System (GPS) – Should be following USNO for UTC & UTC leap seconds 2 UTC Leap Second Announcements • IERS announces the UTC leap second schedule – USNO forwards the IERS announcements • DoD uses the IERS leap second announcements – GPS should simply follow along… 3 IERS “Bulletin C” Announcements Paris, 6 July 2016 – Bulletin C 52 4 IERS “Bulletin C” Announcements Paris, 9 January 2017 – Bulletin C 53 5 IERS “Bulletin C” Announcements Paris, 06 July 2017 – Bulletin C 54 6 IERS “Bulletin C” Announcements Paris, 09 January 2018 – Bulletin C 55 7 IERS “Bulletin C” Announcements Paris, 05 July 2018 – Bulletin C 56 8 IERS “Bulletin C” Announcements Paris, 07 January 2019 – Bulletin C 57 9 IERS “Bulletin C” Announcements Paris, 04 July 2019 – Bulletin C 58 10 UTC Leap Second Announcements • IERS announces the UTC leap second schedule – USNO forwards the IERS announcements • DoD uses the IERS leap second announcements – GPS should simply follow along… • GPS also announces a UTC leap second schedule – Should be the same schedule as IERS & USNO 11 GPS Leap Second Announcement WNLSF DN ΔtLSF 12 GPS Leap Second Announcement Leap
    [Show full text]
  • Leap Second Application Anomaly
    PRESS RELEASE Leap Second Application Anomaly Affected products The following models will not properly apply the leap second coming 31 December 201 6. Model 1 084A/B/C Model 1 093A/B/C Model 1 1 33A Model 1 088A/B Model 1 094B Model 1 092A/B/C Model 1 095B/C What is a leap second? A leap second is the second added to or subtracted from the UTC time reference when the difference between UTC and UT1 approaches 0.9 seconds. By adding an additional second to the time count, clocks are effectively stopped for that second to give Earth the opportunity to catch up with atomic time. What does this mean, UTC, UT1 , et cetera? There are many time references in use. There is time based on atoms. There is time based on the Earth's rotation. Then there is time that we civilians use. • International Atomic Time (TAI). TAI is a statistical atomic time scale based on a large number of clocks operating at standards laboratories around the world with the unit interval of the SI second. • Universal Time (UT1 ). UT1 is also known as Astronomical Time and is the non-uniform time based on the Earth’s rotation. • Coordinated Universal Time (UTC) is a widely used standard for international timekeeping of civil time and differs from TAI by the total number of leap seconds. • Global Positioning System (GPS) Time is the atomic time scale implemented by the atomic clocks in the GPS ground control stations and the GPS satellites themselves. GPS time was zero at 0h 6 January 1 980 and does not include leap seconds.
    [Show full text]
  • Kintaro Hattori in 1881 Founded the Company That Was to Become Seiko
    /MRXEVS,EXXSVMMRJSYRHIHXLI GSQTER]XLEX[EWXSFIGSQI7IMOS %.3962)=-28-1) 8,)6)1%6/%&0)7836=3*7)-/3 7IMOS;EXGL'SVTSVEXMSR *MVWX4YFPMWLIH (IWMKRIHF]7LIPPI]22SXX*+%(+% 4VSHYGIHF]+SSH-QTVIWWMSRW7X%PFERW,IVXW9/ 4VMRXIHF]8344%246-28-2+'308(.ETER %PPVMKLXWVIWIVZIH2STEVXSJXLMWFSSOQE]FI VITVSHYGIHSVXVERWQMXXIHMRER]JSVQSVF]ER]QIERW IPIGXVSRMGQIGLERMGEPSVTLSXSKVETLMGSVWXSVIHMRER] MRJSVQEXMSRWXSVEKISVVIXVMIZEPW]WXIQ[MXLSYXXLI TIVQMWWMSRSJ7IMOS;EXGL'SVTSVEXMSR %.SYVRI]MR8MQI8LI6IQEVOEFPI7XSV]SJ7IMOS[EW[VMXXIREXXLIMRWXMKEXMSRSJ7IMOS;EXGL 'SVTSVEXMSRXS½PPEZSMHMRXLI)RKPMWLPERKYEKIPMXIVEXYVIEFSYXXLITEWXTVIWIRXERHJYXYVI SJXLIGSQTER]8LIEYXLSV .SLR+SSHEPPMWENSYVREPMWX[LSLEWWTIRXQSWXSJLMW[SVOMRK PMJI[VMXMRKEFSYX[EXGLIWERHXLI[EXGLQEVOIX¯JSVRIEVP]]IEVWEWXLIIHMXSVSJXLI PIEHMRK&VMXMWLXVEHIRI[WTETIV[LMGL[EWXLIRGEPPIH6IXEMP.I[IPPIVERHWYFWIUYIRXP]EW XLIIHMXSVSJE[EXGLQEKE^MRIJSVIRXLYWMEWXW*SVXLIPEWX]IEVWLILEWFIIREJVIIPERGI NSYVREPMWX[VMXMRKEFSYX[EXGLIWJSVLMKLUYEPMX]QEKE^MRIWERHREXMSREPRI[WTETIVW,MW EVXMGPIWLEZIFIIRTYFPMWLIHMRXLI97%-XEP]+IVQER]*VERGIXLI9/ERH.ETER '328)287 'LETXIV ,YQFPI&IKMRRMRKW'VIEXIE7SYRH*SYRHEXMSR 8LIIEVP]7IMOSWXSV] 'LETXIV -RRSZEXMSRERH6IßRIQIRX %RI[HMVIGXMSRJSVXLIWXGIRXYV] 'LETXIV 8LI(IZIPSTQIRX=IEVW 8LIIEVP]LMWXSV]¯ 'LETXIV 'SQTIXMXMSRW7TYVVIH7IMOSXS2I[,IMKLXW -RXIVREXMSREPVIGSKRMXMSR 'LETXIV 8LI4MRREGPISJ1IGLERMGEP)\GIPPIRGI 8LIWXSV]SJXLI+VERH7IMOSGSPPIGXMSR 'LETXIV 8LI(E]XLEX'LERKIHXLI,MWXSV]SJ8MQI 8LIEHZIRXSJUYEVX^XIGLRSPSK] 'LETXIV /MRIXMG;EXGLIW®%PP 8LEXMW&IWXMR7IMOS8IGLRSPSK] 8LIGLEPPIRKISJGPIERIRIVK] 'LETXIV 8LI²+VEQQEVSJ(IWMKR³
    [Show full text]
  • Time Signal Stations 1By Michael A
    122 Time Signal Stations 1By Michael A. Lombardi I occasionally talk to people who can’t believe that some radio stations exist solely to transmit accurate time. While they wouldn’t poke fun at the Weather Channel or even a radio station that plays nothing but Garth Brooks records (imagine that), people often make jokes about time signal stations. They’ll ask “Doesn’t the programming get a little boring?” or “How does the announcer stay awake?” There have even been parodies of time signal stations. A recent Internet spoof of WWV contained zingers like “we’ll be back with the time on WWV in just a minute, but first, here’s another minute”. An episode of the animated Power Puff Girls joined in the fun with a skit featuring a TV announcer named Sonny Dial who does promos for upcoming time announcements -- “Welcome to the Time Channel where we give you up-to- the-minute time, twenty-four hours a day. Up next, the current time!” Of course, after the laughter dies down, we all realize the importance of keeping accurate time. We live in the era of Internet FAQs [frequently asked questions], but the most frequently asked question in the real world is still “What time is it?” You might be surprised to learn that time signal stations have been answering this question for more than 100 years, making the transmission of time one of radio’s first applications, and still one of the most important. Today, you can buy inexpensive radio controlled clocks that never need to be set, and some of us wear them on our wrists.
    [Show full text]
  • Best Practices for Leap Second Event Occurring on 30 June 2015
    26 May 2015 Best Practices for Leap Second Event Occurring on 30 June 2015 Sponsored by the National Cybersecurity and Communications Integration Center in coordination with the United States Naval Observatory, National Institute of Standards and Technology, the USCG Navigation Center, and the National Coordination Office for Space-Based Positioning, Navigation and Timing. This product is intended to assist federal, state, local, and private sector organizations with preparations for the 30-June 2015 Leap Second event. Entities using precision time should be mindful that no leap second adjustment has occurred on a non- holiday weekday in the past decade. Of the three leap seconds implemented since 2000, two have been scheduled on 31 December and the most recent was on Sunday, 1 July 2012. Please report operational challenges you experience to the following organizations: GPS -- United States Coast Guard Navigation Center (NAVCEN), via the NAVCEN Website, http://www.navcen.uscg.gov/ under "Report a GPS Problem" Network Timing Protocols (NTP) -- Michael Lombardi at NIST, Boulder, Colorado at 303-497- 3212, or [email protected]. ============================================= 1. Leap Second Introduction The Coordinated Universal Time (UTC) time standard, based on atomic clocks, is widely used for international timekeeping and as the reference for time in most countries. UTC is the basis of legal time for most of the world. UTC must be adjusted at irregular intervals to maintain its correlation to mean solar time due to irregularities in the Earth’s rotation. These adjustments, called leap seconds, are pre-determined. The next leap second will occur on 30 June 2015 at 23:59:59 UTC.
    [Show full text]
  • STANDARD FREQUENCIES and TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec
    Rec. ITU-R TF.768-2 1 SYSTEMS FOR DISSEMINATION AND COMPARISON RECOMMENDATION ITU-R TF.768-2 STANDARD FREQUENCIES AND TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec. ITU-R TF.768-2 The ITU Radiocommunication Assembly, considering a) the continuing need in all parts of the world for readily available standard frequency and time reference signals that are internationally coordinated; b) the advantages offered by radio broadcasts of standard time and frequency signals in terms of wide coverage, ease and reliability of reception, achievable level of accuracy as received, and the wide availability of relatively inexpensive receiving equipment; c) that Article 33 of the Radio Regulations (RR) is considering the coordination of the establishment and operation of services of standard-frequency and time-signal dissemination on a worldwide basis; d) that a number of stations are now regularly emitting standard frequencies and time signals in the bands allocated by this Conference and that additional stations provide similar services using other frequency bands; e) that these services operate in accordance with Recommendation ITU-R TF.460 which establishes the internationally coordinated UTC time system; f) that other broadcasts exist which, although designed primarily for other functions such as navigation or communications, emit highly stabilized carrier frequencies and/or precise time signals that can be very useful in time and frequency applications, recommends 1 that, for applications requiring stable and accurate time and frequency reference signals that are traceable to the internationally coordinated UTC system, serious consideration be given to the use of one or more of the broadcast services listed and described in Annex 1; 2 that administrations responsible for the various broadcast services included in Annex 2 make every effort to update the information given whenever changes occur.
    [Show full text]
  • What Time I T
    Does Anybody Really What Time It Is? 24/7/365, Here's How Time Got On Your Best Side By Michael A. Lombardi ccasionally I'll talk to people who known to most radio buffs. He used a can't believe that some radio sta- spark-gap transmitter to successfully 0tions exist solely to transmit accu- send radio signals over a distance of more rate time. While they wouldn't poke fun than one mile in 1895. By 1899 he had at the Weather Channel or even a radio transmitted signals across the English station that plays nothing but Garth Channel, and sent signals across the Brooks records (imagine that), people Atlantic Ocean in 1901. often make jokes about time signal sta- Surprisingly, in the midst of Marconi's tions. They'll ask "Doesn't the program- early work, before any radio stations exist- ming get a little boring?'or "How does ed, or before the public even completely the announcer stay awake?'There have believed his results, a proposal was made even been parodies of time signal sta- to use the new wireless medium to broad- tions. A recent Internet spoof of WWV cast time. In November 1898. an optical containedzingers like "we'll be back with instrument maker and inventor named Sir the time on WWV in just a minute, but Howard Grubb addressed the Royal first, here's another minute." Dublin Society and proposed the concept An episode of the animated Powerpuff of a radio controlled clock. After many Girls joined in the fun with a skit featur- years of working with astronomical obser- ing a TV announcer named Sonnv Dial L, vatories.
    [Show full text]